摘 要:在醇解-酯交換法回收廢舊聚酯紡織品過程中,重金屬鹽類醇解催化劑易引發(fā)環(huán)境污染,且強(qiáng)堿性酯交換催化劑NaOH易引起設(shè)備腐蝕。為了改善該問題,采用K2CO3催化醇解廢舊聚酯紡織品制得醇解產(chǎn)物,以K2CO3為酯交換反應(yīng)催化劑將醇解產(chǎn)物轉(zhuǎn)化為再生對苯二甲酸二甲酯 (DMT),通過單因素實(shí)驗(yàn)協(xié)同響應(yīng)面法統(tǒng)計(jì)分析,系統(tǒng)研究了酯交換反應(yīng)時(shí)間、甲醇與醇解產(chǎn)物投料比、催化劑K2CO3添加量及其交互作用對再生DMT收率的影響,獲得最佳反應(yīng)參數(shù)組合,并采用減壓升華法對含雜再生DMT進(jìn)行提純。結(jié)果表明:醇解產(chǎn)物主要成分為對苯二甲酸雙羥乙酯(BHET),伴含微量BHET低聚體及對苯二甲酸單羥乙酯;酯交換最佳反應(yīng)參數(shù)為反應(yīng)溫度70 ℃、反應(yīng)時(shí)間118 min、甲醇與醇解產(chǎn)物質(zhì)量投料比2.13∶1、K2CO3添加量為醇解產(chǎn)物質(zhì)量的0.94%,該工藝條件下再生DMT實(shí)際收率為88.50%;經(jīng)3次減壓升華提純,再生DMT中2-羥乙基甲基對苯二甲酸酯、對苯二甲酸單甲酯和間苯二甲酸二甲酯等雜質(zhì)均得到有效去除,再生DMT純度高達(dá)99.89%。
關(guān)鍵詞:廢舊聚酯;醇解;酯交換;再生DMT;減壓升華
中圖分類號:TQ342.21
文獻(xiàn)標(biāo)志碼: A
文章編號:1009-265X(2025)02-0059-08
聚酯纖維因其具有良好的力學(xué)性能、化學(xué)穩(wěn)定性和可加工性,被廣泛應(yīng)用于服裝、汽車內(nèi)飾、土木工程等領(lǐng)域。隨著聚酯纖維應(yīng)用領(lǐng)域不斷拓展和產(chǎn)能不斷增加,廢舊聚酯紡織品累積數(shù)量也在持續(xù)增長,大量廢舊聚酯紡織品被填埋或焚燒,造成嚴(yán)重的資源浪費(fèi)和環(huán)境污染[1-2]。采用化學(xué)回收法將聚酯解聚成小分子單體,后期經(jīng)聚合等工藝制備高性能再生產(chǎn)品,對于廢舊聚酯紡織品的循環(huán)回收和升級利用具有重要的經(jīng)濟(jì)價(jià)值與現(xiàn)實(shí)意義[3]。乙二醇醇解法將廢舊聚酯解聚為對苯二甲酸雙羥乙酯(BHET),該方法反應(yīng)條件溫和、安全性好且產(chǎn)物收率高[4]。然而,乙二醇醇解催化劑通常以鋅、錳、鈷、銻等重金屬鹽類為主,極易引發(fā)重金屬污染[5]。近年來,盡管離子液體[6-7]、深共晶溶劑[8]、有機(jī)催化劑[9-10]等新型解聚催化劑的研究有所報(bào)道,但目前難以實(shí)現(xiàn)工業(yè)化應(yīng)用。另外,廢舊聚酯紡織品來源廣泛,其中往往混有油漬、染料等雜質(zhì),且產(chǎn)物BHET在高溫條件下易發(fā)生縮聚反應(yīng),使產(chǎn)物脫色除雜異常困難,導(dǎo)致該方法局限于處理純凈的瓶片與薄膜[11]。
以乙二醇醇解法解聚廢舊聚酯紡織品,隨后將醇解產(chǎn)物與甲醇進(jìn)行酯交換反應(yīng),可制得對苯二甲酸二甲酯(DMT),該方法不僅利用了乙二醇醇解法解聚體系的固有優(yōu)勢,而且產(chǎn)物DMT可以通過重結(jié)晶等方法快速提純,是當(dāng)下最具前景的工藝路線之一。劉志陽等[12]以醋酸鋅催化醇解不同密實(shí)化方式的廢舊聚酯紡織品,在NaOH催化酯交換反應(yīng)條件下把各醇解產(chǎn)物轉(zhuǎn)化為DMT,將DMT和甲醇按照1∶30質(zhì)量比進(jìn)行4次重結(jié)晶提純,DMT純度提升至99%;呂媛媛等[13]研究了不同乙二醇添加比例對廢舊PET織物的醇解及酯交換產(chǎn)物的影響,并采用重結(jié)晶法對DMT進(jìn)行提純;類似地,胡紅梅[14]在制備DMT基再生PET時(shí),同樣采用重結(jié)晶法提純聚合原料DMT。然而,在實(shí)際生產(chǎn)實(shí)踐中,強(qiáng)堿性酯交換反應(yīng)催化劑NaOH的使用極易引起設(shè)備腐蝕。此外,盡管重結(jié)晶法能夠利用各組分在甲醇溶劑中的溶解度差異實(shí)現(xiàn)組分的有效分離,但在純化再生DMT時(shí),該方法耗時(shí)較長、能耗較高、甲醇消耗量巨大,且DMT品質(zhì)難以達(dá)到高純級。
基于以上所述,本文以經(jīng)濟(jì)環(huán)保的K2CO3作為乙二醇醇解與甲醇酯交換反應(yīng)催化劑,采用醇解-酯交換法回收廢舊聚酯紡織品制備再生DMT,通過單因素實(shí)驗(yàn)協(xié)同響應(yīng)面法(RSM)優(yōu)化酯交換反應(yīng)條件,采用減壓升華法對DMT進(jìn)行提純,并利用傅里葉變換紅外光譜(FT-IR)和熱裂解氣相-質(zhì)譜聯(lián)用(Py-GC/MS)等技術(shù),對醇解產(chǎn)物及酯交換產(chǎn)物具體成分進(jìn)行深入分析,以期為醇解-酯交換法回收廢舊聚酯紡織品過程中催化劑的選擇、酯交換反應(yīng)參數(shù)調(diào)控及產(chǎn)物純化提供參考。
1 實(shí)驗(yàn)
1.1 試劑及設(shè)備
試劑:K2CO3、KOH、對苯二甲酸二甲酯(DMT)、鄰苯二甲酸二丙酯、對二甲苯、丙酮、苯甲酸甲酯、己內(nèi)酰胺、棕櫚酸甲酯、三氯甲烷、對苯二甲酸雙羥乙酯(BHET)、乙二醇、甲醇。以上試劑均為分析純,購于上海麥克林生化科技股份有限公司。
設(shè)備:D232440G玻璃減壓升華器,Synthware 公司;差式掃描量熱儀,瑞士梅特勒托利多公司;SHB-III 循環(huán)水式多用真空泵,河南省予華儀器有限公司;Nicolet iS50型傅里葉紅外光譜儀,美國Nicolet公司;Agilent 7890B-5977型氣相色譜-質(zhì)譜聯(lián)用儀,美國Agilentg公司;GC-2014型氣相色譜儀,日本島津公司;PY-3030D型微爐式裂解器,日本Frontier公司。
1.2 實(shí)驗(yàn)步驟
收集聚對苯二甲酸乙二醇酯(PET)含量超過98%的廢舊紡織品,將其破碎后在轉(zhuǎn)速為1500 r/min的高溫泡料機(jī)中壓捻摩擦,經(jīng)噴淋水降溫后制得堆積密度為0.27 g/cm3、比表面積為0.45 m2/g的致密化泡料,實(shí)驗(yàn)前干燥處理。將聚酯泡料、乙二醇、解聚催化劑K2CO3按照1∶2.5∶0.025質(zhì)量投料比加入至配備有冷凝管、氮?dú)獾娜跓恐校?97 ℃條件下反應(yīng)2.5 h,攪拌速率200 r/min。待反應(yīng)結(jié)束,停止加熱,趁熱快速過濾,分離得到醇解液,自然冷卻至室溫后再次抽濾,將濾餅溶于沸水,趁熱過濾3次,將濾液靜置24 h后,利用水泵減壓抽濾,濃縮母液后重復(fù)上述步驟,合并過濾得到的晶體產(chǎn)物,制得醇解產(chǎn)物。
將醇解產(chǎn)物、甲醇、酯交換催化劑K2CO3按照一定質(zhì)量投料比加入三口燒瓶中,通氮?dú)獠⒂脦в写帕嚢杵鞯碾姛崽拙徛訜?,設(shè)置最高反應(yīng)溫度70 ℃。待反應(yīng)完成,冷卻反應(yīng)液至室溫,經(jīng)真空泵抽濾和冷卻結(jié)晶,獲得酯交換產(chǎn)物。隨后,使用甲醇洗滌酯交換產(chǎn)物表面油劑、乙二醇、催化劑殘?jiān)?、小分子染料等可溶性雜質(zhì),烘干后得到含雜再生DMT。將含雜再生DMT投入減壓升華器,對減壓升華器進(jìn)行抽真空減壓處理,隨后關(guān)閉其壓力調(diào)節(jié)閥,緩慢升溫至230 ℃。待投入的再生DMT減壓升華完成,使裝置自然冷卻,取出富集在冷凝接收器上的再生DMT,得到提純后的再生DMT。經(jīng)醇解-酯交換法制得的再生DMT的樣品圖如圖1所示,未提純的含雜再生DMT收率按公式(1)計(jì)算:
RDMT/%=W2/MDMTW1/MBHET×100(1)
式中:W1為醇解產(chǎn)物投入質(zhì)量,g;MBHET為BHET分子質(zhì)量(254 g/mol);W2為再生DMT實(shí)際產(chǎn)量,g;MDMT為DMT分子質(zhì)量(194 g/mol)。
1.3 性能測試與表征
1.3.1 傅里葉紅外光譜(FTIR)分析
醇解產(chǎn)物和提純后再生DMT的FTIR測試光譜波長從500 cm-1掃描至4000 cm-1,均采用KBr壓片法,設(shè)定掃描次數(shù)為32。
1.3.2 熱裂解氣相-質(zhì)譜聯(lián)用(Py-GC/MS)分析
氣相色譜柱:測試型號為弱極性HP-5MS,進(jìn)樣口溫度280 ℃,升溫程序?yàn)椋撼跏紲囟?0 ℃,保溫1 min,隨后以10 ℃/min升溫速率升溫至280 ℃,恒溫保持3 min;分流比20∶1,柱流量1.0 mL/min、載氣為氦氣。質(zhì)譜檢測儀:采用電子轟擊(EI)離子源,電子能量70 eV,離子源溫度230 ℃,四極桿溫度150 ℃,接口溫度280 ℃;測定方式:全掃描模式(SCAN),質(zhì)量掃描范圍15~450 amu。熱裂解器:醇解產(chǎn)物和再生DMT熱裂解溫度均為600 ℃,裂解時(shí)間30 s,接口溫度300 ℃。
1.3.3 再生DMT純度分析
采用氣相色譜-內(nèi)標(biāo)法定量分析減壓升華后的再生DMT純度及部分有機(jī)雜質(zhì),鄰苯二甲酸二丙酯為內(nèi)標(biāo)物質(zhì)、二氯甲烷為溶劑;氣相色譜設(shè)置:進(jìn)樣口溫度280 ℃、色譜柱流量0.7 mL/min、分流比15∶1、總流量3.7 mL/min、柱溫60 ℃、載氣為氮?dú)狻4送猓玫味ǚy試DMT酸值,以濃度為0.01mol/L的氫氧化鉀-乙醇溶液為滴定劑,溴百里酚藍(lán)-乙醇混合試劑為指示劑。
2 結(jié)果與討論
2.1 醇解產(chǎn)物結(jié)構(gòu)分析
醇解產(chǎn)物的具體組分對后續(xù)酯交換反應(yīng)階段再生DMT的收率和純度產(chǎn)生重要影響,為此,首先采用傅里葉紅外光譜對醇解產(chǎn)物化學(xué)結(jié)構(gòu)進(jìn)行定性分析,結(jié)果如圖2(a)所示。由圖2(a)可知,3457 cm-1處出現(xiàn)—OH的伸縮振動特征峰,表明存在羥基結(jié)構(gòu);在2950cm-1和2870 cm-1處的吸收峰分別對應(yīng)亞甲基的伸縮振動和彎曲振動;1703 cm-1處強(qiáng)吸收峰對應(yīng) CO的伸縮振動;1120、1285 cm-1處吸收峰對應(yīng)C—O的伸縮振動;1505、1460 cm-1處吸收峰為CC的伸縮振動;871、728 cm-1處吸收峰由苯環(huán)結(jié)構(gòu)中C—H彎曲振動引起。醇解產(chǎn)物的紅外吸收譜圖中雜峰較少,且均具有BHET及其低聚體的特征結(jié)構(gòu)[15]。
為進(jìn)一步鑒別醇解產(chǎn)物組分,采用熱裂解氣相色譜-質(zhì)譜聯(lián)用技術(shù)進(jìn)行在線熱裂解分析,醇解產(chǎn)物在600 ℃下熱裂解得到的總離子流色譜圖如圖2(b)所示,利用Nist14標(biāo)準(zhǔn)譜庫檢索以鑒定裂解產(chǎn)物的具體化學(xué)結(jié)構(gòu),其主要裂解產(chǎn)物組分詳列于表1。由表1可見,醇解產(chǎn)物的主要成分為BHET,在高溫環(huán)境下,部分BHET進(jìn)一步熱裂解生成苯甲酸乙二醇酯。此外,二甘醇二苯甲酸酯的存在證實(shí)了少量的BHET發(fā)生醚化反應(yīng)后生成了低聚體。苯甲酸碎片的峰面積比例相對于苯甲酸乙二醇酯和二甘醇二苯甲酸酯而言較高,一方面,原生聚酯在高溫聚合和后期紡絲加工過程中難免產(chǎn)生熱降解,產(chǎn)生的副產(chǎn)物中伴有少量苯甲酸;另一方面,鑒于解聚反應(yīng)和熱裂解過程均在無氧條件下進(jìn)行,解聚產(chǎn)物分子的酯鍵斷裂后難以氧化生成羧酸有機(jī)物,因此,可推斷帶有端羧基的PET分子鏈末端斷鏈之后,其解聚產(chǎn)物在高溫環(huán)境下進(jìn)一步熱裂解生成苯甲酸。
2.2 甲醇酯交換法制備再生DMT
2.2.1 酯交換工藝單因素分析
經(jīng)乙二醇醇解法解聚聚酯泡料,制得主要成分為BHET的醇解產(chǎn)物,之后采用甲醇酯交換法將其轉(zhuǎn)換為再生DMT。在70 ℃酯交換反應(yīng)溫度下,利用控制變量法分析反應(yīng)時(shí)間、甲醇與醇解產(chǎn)物質(zhì)量比、酯交換催化劑K2CO3相對于醇解產(chǎn)物質(zhì)量添加比對DMT收率的影響,結(jié)果如圖3所示。
由圖3(a)可知,當(dāng)m(甲醇)∶m(醇解產(chǎn)物)為2∶1,m(K2CO3)添加量為0.7%時(shí),隨著酯交換時(shí)間延長,DMT收率逐漸增加,120 min后趨于穩(wěn)定,反應(yīng)達(dá)到平衡。當(dāng)反應(yīng)時(shí)間為90 min、m(K2CO3)添加比為0.7% 時(shí),由圖3(b)可見,隨著m(甲醇)∶m(醇解產(chǎn)物)從1∶1增加到3∶1,DMT收率先是顯著提高,當(dāng)比例大于2.5后,收率增長不再明顯。此外,當(dāng)m(甲醇)∶m(醇解產(chǎn)物)為2∶1,反應(yīng)時(shí)間為90 min時(shí),由圖3(c)可知,m(K2CO3)添加量超過1% 后對DMT收率影響不再顯著。綜合考量,為獲得較高DMT收率,酯交換反應(yīng)時(shí)間可控制在60~120 min、m(甲醇)∶m(醇解產(chǎn)物)在1~2.5之間、m(K2CO3)添加量為0.3%~1%。
2.2.2 響應(yīng)面法(RSM)優(yōu)化再生DMT制備工藝
基于單因素實(shí)驗(yàn)結(jié)果,運(yùn)用 Box-Behnken 實(shí)驗(yàn)設(shè)計(jì)(BBD)原理,選取再生DMT收率為響應(yīng)值,以酯交換反應(yīng)時(shí)間、酯交換催化劑K2CO3用量、甲醇與醇解產(chǎn)物質(zhì)量比為影響再生DMT收率的主要考察因素,在此基礎(chǔ)上進(jìn)行3因素響應(yīng)面建模分析,具體設(shè)計(jì)的影響因素與水平取值詳見表2,其中A為反應(yīng)時(shí)間,B為K2CO3添加量,C為甲醇與醇解產(chǎn)物質(zhì)量比。
以再生DMT收率為評價(jià)指標(biāo),運(yùn)用 Design-Expert 12軟件進(jìn)行組合實(shí)驗(yàn)設(shè)計(jì),得到15 組實(shí)驗(yàn)方案,具體設(shè)計(jì)方案及實(shí)驗(yàn)結(jié)果如表3所示。
運(yùn)用Design-Expert 12軟件對實(shí)驗(yàn)結(jié)果進(jìn)行響應(yīng)面分析,得到的二次擬合回歸方程(編碼后)為:
R=73.13+16.24 A+2.45 B+
4.31 C-0.50 AB+0.975 AC+
1.90 BC-2.20 A2-1.53 B2-6.0 C2
利用RSM法統(tǒng)計(jì)建模時(shí),當(dāng)模型P值小于0.05,表明模型顯著。本試驗(yàn)擬合結(jié)果的ANOVA(方差)分析詳見表4,可見該模型P值小于0.0001,模型擬合非常顯著;響應(yīng)值R的失擬項(xiàng)檢驗(yàn)概率值P為0.1119gt;0.05,表明各響應(yīng)值失擬項(xiàng)均無顯著性差異,且回歸方程擬合系數(shù)R2gt;0.99,該二次方模型擬合可信度高,可以準(zhǔn)確地描述實(shí)際活潑率。另外,從F值的大小可以判斷各因素對響應(yīng)值影響的顯著性,在設(shè)定的反應(yīng)條件范圍內(nèi),3因素對再生DMT收率的影響程度依次為A、C、B,各因素之間的相互作用對響應(yīng)值影響程度從大到小依次為BC、AC、AB。
三維響應(yīng)面圖和等高線圖可以更加清晰地展示A、B、C及其交互項(xiàng)對響應(yīng)值活潑率的影響,其中顏色代表不同的DMT收率,從深藍(lán)色到綠色和紅色的顏色漸變表明DMT收率逐漸增加,曲線陡峭度反映了影響因素對DMT收率的影響程度,越陡峭則影響越顯著,走勢平緩則影響越小。由圖4可見,在m(甲醇)∶m(醇解產(chǎn)物)比例恒定時(shí),交互項(xiàng)AB響應(yīng)面曲線比較陡峭,隨著反應(yīng)時(shí)間延長,響應(yīng)值R逐漸增大,時(shí)間因素對R影響顯著,但當(dāng)催化劑K2CO3添加量超過0.86%時(shí),交互項(xiàng)AB等高線近似平行,繼續(xù)添加K2CO3對響應(yīng)值的影響程度逐漸減弱。交互項(xiàng)AC等高線圖呈現(xiàn)半圓形特征,表明在酯交換過程中,當(dāng)甲醇添加比例超過一定閾值后,單位時(shí)間內(nèi)再生DMT收率不會繼續(xù)提高,在工業(yè)化生產(chǎn)中可適當(dāng)控制甲醇添加比例以避免甲醇浪費(fèi)。交互項(xiàng)BC等高線走勢為半橢圓形,在K2CO3添加量恒定時(shí),繼續(xù)增大甲醇投入量導(dǎo)致酯交換反應(yīng)液中K2CO3濃度被稀釋,進(jìn)而降低了催化效果。
運(yùn)用 Design-Expert 12軟件進(jìn)行方案優(yōu)化,以實(shí)現(xiàn)目標(biāo)函數(shù)R的最大化。軟件預(yù)測酯交換反應(yīng)最佳工藝參數(shù)為:A為118.722,B為0.942047,C為2.12761?;谧顑?yōu)條件預(yù)測,取反應(yīng)時(shí)間118 min,甲醇與醇解產(chǎn)物質(zhì)量比2.13∶1,K2CO3添加量為醇解產(chǎn)物質(zhì)量的0.94%。對模擬結(jié)果進(jìn)行實(shí)驗(yàn)驗(yàn)證,該工藝條件下測得再生DMT實(shí)際收率為88.50%,實(shí)驗(yàn)值與軟件模擬預(yù)測得到的89.1562%非常接近,進(jìn)而驗(yàn)證了該模型的準(zhǔn)確性和可靠性。
2.2.3 減壓升華法提純再生DMT
為提升DMT品質(zhì),采用不同于甲醇重結(jié)晶的提純策略:使用甲醇洗滌一次再生DMT后將其烘干,負(fù)壓條件下,通過連續(xù)3次的減壓升華操作進(jìn)行提純,記連續(xù)3次純化后得到的產(chǎn)物依次為:DMT 1、DMT 2、DMT 3。對提純后的再生DMT進(jìn)行紅外光譜分析,結(jié)果如圖5(a)所示。由圖5(a)可見,3種提純后的產(chǎn)物具有相似的紅外峰型特征,具體而言,2965 cm-1 處的吸收峰歸因于C—H的伸縮振動,1713 cm-1處的吸收峰對應(yīng)酯基中CO的伸縮振動,1431 cm-1處的吸收峰對應(yīng)苯環(huán)骨架中CC伸縮振動,1275 cm-1和 1113 cm-1 處的吸收峰對應(yīng)酯基中C—O的伸縮振動[16]。相較于醇解產(chǎn)物紅外光譜(圖2(a)),3種再生DMT在3430 cm-1處對應(yīng)的—OH 特征峰非常微弱,表明醇解產(chǎn)物與甲醇之間的酯交換反應(yīng)較為完全,經(jīng)提純處理后再生DMT中的羥基副產(chǎn)物含量較少。
為進(jìn)一步深入分析和驗(yàn)證減壓升華提純后產(chǎn)物的具體化學(xué)結(jié)構(gòu),采用熱裂解氣相色譜-質(zhì)譜聯(lián)用技術(shù)對其進(jìn)行在線熱裂解分析,3種再生DMT在600 ℃條件下熱裂解所得的總離子流色譜圖結(jié)果如圖5(b)所示。通過比對Nist14標(biāo)準(zhǔn)譜庫,保留時(shí)間為9.88 min處的峰歸屬為DMT,6.93 min處附近出現(xiàn)的峰對應(yīng)苯甲酸甲酯,是DMT熱裂解得到的主要產(chǎn)物。總離子流色譜圖中雜峰較少,減壓升華提純后的再生DMT展現(xiàn)出較高的純度特性。
采用氣相色譜-內(nèi)標(biāo)法對減壓升華產(chǎn)物中的微量雜質(zhì)以及DMT的百分含量進(jìn)行定量分析,結(jié)果如表5所示。由表5可知,經(jīng)3次減壓升華提純,再生DMT純度得到顯著提升,最終高達(dá)99.89%。在經(jīng)3次減壓升華后,再生DMT中的痕量間苯二甲酸二甲酯和鄰苯二甲酸二甲酯幾乎被完全去除;有機(jī)雜質(zhì)2-羥乙基甲基對苯二甲酸酯的產(chǎn)生是由一分子甲醇與一分子BHET反應(yīng)生成的酯交換中間產(chǎn)物,對苯二甲酸單甲酯是由甲醇與醇解產(chǎn)物中的對苯二甲酸單羥乙酯發(fā)生酯交換反應(yīng)生成,其含量均呈遞減趨勢。由于BHET在該酯交換反應(yīng)條件下難以斷鏈氧化為對苯二甲酸單羥乙酯,進(jìn)一步表明帶端羧基的PET末端分子鏈經(jīng)乙二醇醇解后生成的主要產(chǎn)物為對苯二甲酸單羥乙酯。另外,為了間接評估羧酸有機(jī)雜質(zhì)含量,利用滴定法檢測了再生DMT的酸值,隨著減壓升華次數(shù)增加,再生DMT相對應(yīng)的酸值同樣呈下降趨勢。
最后對DMT 3的基本物性進(jìn)行了測定,通過醇解-酯交換步驟及后續(xù)的減壓升華提純工藝,制得的DMT 3呈白色晶體狀,其熔融色度低于20,色相優(yōu)良;該再生DMT的灰分含量、氮含量和鐵含量分別為1.5、0.09、0.01mg·kg-1,表明在減壓升華過程中,含雜DMT中的無機(jī)填料、催化劑殘留等雜質(zhì)均被有效去除,原生滌綸面料中的氮系小分子染料同樣得到了較為徹底的去除,且鐵含量及熔點(diǎn)(142℃)均滿足多領(lǐng)域產(chǎn)品制備要求,可直接應(yīng)用于下游高性能DMT基產(chǎn)品的研究與開發(fā)。
3 結(jié)論
以K2CO3為乙二醇醇解和甲醇酯交換反應(yīng)催化劑,采用醇解-酯交換法回收廢舊聚酯紡織品制得再生DMT,并采用減壓升華法對其進(jìn)行提純,主要結(jié)論如下:
a)醇解產(chǎn)物主要成分為BHET,包含少量BHET低聚體和對苯二甲酸單羥乙酯;采用單因素實(shí)驗(yàn)協(xié)同RSM分析法,優(yōu)化甲醇酯交換反應(yīng)條件得到的最佳工藝參數(shù)為:反應(yīng)溫度70 ℃、反應(yīng)時(shí)間118 min、甲醇與醇解產(chǎn)物質(zhì)量比為2.13∶1、K2CO3添加量為醇解產(chǎn)物質(zhì)量的0.94%,該工藝條件下再生DMT實(shí)際收率為88.50%。
b)經(jīng)減壓升華提純,再生DMT中有機(jī)雜質(zhì)2-羥乙基甲基對苯二甲酸酯、對苯二甲酸單甲酯和間苯二甲酸二甲酯、催化劑殘?jiān)靶》肿尤玖系染挥行コ?次減壓升華提純后再生DMT純度高達(dá)99.89%。相較于甲醇重結(jié)晶法,減壓升華法操作簡單易行、經(jīng)濟(jì)高效,是提純醇解-酯交換法再生DMT的有效途徑。
參考文獻(xiàn):
[1]張大省,饒小堅(jiān),王遵元.廢舊聚酯服裝的回收再生利用路徑[J]. 紡織導(dǎo)報(bào),2022(4):52-55.
ZHANG Daxing, RAO Xiaojian, WANG Zunyuan. Recycling path of used polyester apparel[J]." China Textile Leader,2022(4):52-55.
[2]錢蔚然,徐平華,王來力.聚酯纖維回收再利用及環(huán)境影響評價(jià)進(jìn)展綜述[J]. 現(xiàn)代紡織技術(shù),2021,29(1):22-26.
QIAN Weiran, XU Pinghua, WANG Laili. Review on polyester fiber recycling and progress of its environmental impact assessment[J]." Advanced Textile Technology,2021,29(1):22-26.
[3]CHEN Z, SUN H, KONG W, et al. Closed-loop utilization of polyester in the textile industry[J]." Green Chemistry,2023,25(11):4429-4437.
[4]XIN J, ZHANG Q, HUANG J, et al. Progress in the catalytic glycolysis of polyethylene terephthalate[J]." Journal of Environmental Management,2021,296:113267.
[5]L PEZ-FONSECA R, DUQUE-INGUNZA I, DE RIVAS B, et al. Chemical recycling of post-consumer PET wastes by glycolysis in the presence of metal salts[J]." Polymer Degradation and Stability,2010,95(6):1022-1028.
[6]WANG L, NELSON G A, TOLAND J, et al. Glycolysis of PET using 1, 3-dimethylimidazolium-2-carboxylate as an organocatalyst[J]." ACS Sustainable Chemistry amp; Engineering,2020,8(35):13362-13368.
[7]LIU Y, YAO X, YAO H, et al. Degradation of poly(ethylene terephthalate) catalyzed by metal-free choline-based ionic liquids[J]." Green Chemistry,2020,22(10):3122-3131.
[8]WANG Q, YAO X, GENG Y, et al. Deep eutectic solvents as highly active catalysts for the fast and mild glycolysis of poly(ethylene terephthalate)(PET)[J]." Green Chemistry,2015,17(4):2473-2479.
[9]CHEN W, LI M, GU X, et al. Efficient glycolysis of recycling poly(ethylene terephthalate) via combination of organocatalyst and metal salt[J]." Polymer Degradation and Stability,2022,206:110168.
[10]WANG Z, JIN Y, WANG Y, et al. Cyanamide as a highly efficient organocatalyst for the glycolysis recycling of PET[J]." ACS Sustainable Chemistry amp; Engineering,2022,10(24):7965-7973.
[11]HUANG J, YAN D, DONG H, et al.Removal of trace amount impurities in glycolytic monomer of polyethylene terephthalate by recrystallization[J]." Journal of Environ-mental Chemical Engineering,2021,9(5):106277.
[12]劉志陽,官軍,顧日強(qiáng),等.密實(shí)化方式對廢棄聚酯紡織品的醇解及酯交換產(chǎn)物的影響[J]. 現(xiàn)代紡織技術(shù),2023,31(1):123-129.
LIU Zhiyang, GUAN Jun, GU Riqiang, et al. Effects of densification methods on glycolysis and transesterification products of waste polyester textiles[J]." Advanced Textile Technology,2023,31(1):123-129.
[13]呂媛媛,胡紅梅,段思雨,等.低比例乙二醇用量下廢舊PET織物的醇解及聚合再生研究[J]. 北京服裝學(xué)院學(xué)報(bào)(自然科學(xué)版),2020,40(1):21-27.
L Yuanyuan, HU Hongmei, DUAN Siyu, et al. Study on glycolysis and polymerization regeneration of waste PET fabrics with low proportion of ethylene glycol[J]." Journal of Beijing Institute of Fashion Technology (Natural Science Edition),2020,40(1):21-27.
[14]胡紅梅.含雜BHET制備DMT及其聚合技術(shù)研究[D]. 上海:東華大學(xué),2017.
HU Hongmei. Study on Preparation and Polymerization Technology of DMT with Impurity BHET[D]. Shanghai: Donghua University,2017.
[15]FAN C, ZHANG L, ZHU C, et al. Efficient glycolysis of PET catalyzed by a metal-free phosphazene base: The important role of EG-[J]." Green Chemistry,2022,24(3):1294-1301.
[16]BRIVIO L, MEINI S, SPONCHIONI M, et al. Chemical recycling of polyethylene terephthalate (PET) to mono-mers: Mathematical modeling of the transesterification reaction of bis(2-hydroxyethyl) terephthalate to dimethyl terephthalate[J]." Chemical Engineering Science,2024,284:119466.
Preparation of recycled DMT by K2CO3 catalytic glycolysis-transesterification and
its purification by decompression sublimation method
LI" Xiaojun1," GUAN" Jun3," L Weiyang1,2," YAO" Yuyuan1,2
(1.National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University,
Hangzhou 310018, China; 2.Zhejiang Provincial Innovation Center of Advanced Textile Technology,
Shaoxing 312030, China; 3.Zhejiang Jiaren New Material Co., Ltd., Shaoxing 312000, China)
Abstract:
As the application fields of polyester fibers continue to expand and production capacity continues to increase, the cumulative amount of waste polyester textiles is also growing steadily. A large amount of waste polyester textiles are landfilled or incinerated, causing serious waste of resources and environmental pollution. The glycolysis method, which can depolymerize waste polyester into bis(hydroxyethyl) terephthalate (BHET), has mild reaction conditions, good safety and high product yield, but its traditional depolymerization catalysts are based on heavy metal salts such as zinc, manganese, cobalt, antimony and other heavy metal salts. Although their catalytic effects are significant, they can easily cause heavy metal pollution.
Furthermore, waste polyester textiles come from a wide range of sources and often contain impurities such as cotton, oil stains and dyes. Moreover, the product BHET is prone to polycondensation under high temperature conditions, makeing it extremely difficult to remove impurities and decolorize, thus limiting this method to the treatment of pure bottle flakes and films and hindering its application in the recycling of waste polyester textiles. Utilizing the inherent advantages of the depolymerization system of the glycolysis method, the waste polyester is depolymerized to produce glycolysis products, which can then be esterified with methanol to produce dimethyl terephthalate (DMT), one of the most promising process routes at present. However, the traditional strong alkaline transesterification catalyst NaOH is easy to cause equipment corrosion, and the conventional recrystallization method of purification is time-consuming and energy-intensive, and consumes a large amount of methanol consumption. In this way, the quality of DMT is difficult to reach high purity grade.
Based on the above, glycolysis products of waste polyester textiles were prepared by using K2CO3 as catalyst, and then K2CO3 was used as catalyst for methanol transesterification to transform the glycolysis products into recycled DMT. The recycled DMT containing impurities was purified by decompression sublimation method, and the specific components of the glycolysis products and transesterification products were analyzed in depth. The results indicated that the main component of the glycolysis product was BHET, with trace amounts of BHET oligomer and monohydroxyethyl terephthalate. After optimization, the optimal reaction parameters of the transesterification process were as follows: the reaction temperature was 70 ℃, the reaction time was 118 min, the mass ratio of methanol to the glycolysis products was 2.13∶1, and the addition ratio of K2CO3 was 0.94% of the mass of the glycolysis products, the actual yield of recycled DMT under this condition was 88.50%. After three times of purification by decompression sublimation method, impurities such as 2-hydroxyethyl methyl terephthalate, monomethyl terephthalate and dimethyl isophthalate were effectively removed from recycled DMT, and the purity of recycled DMT was as high as 99.89%. The results provide useful reference for the selection of catalysts, the regulation of transesterification reaction parameters and the purification of products in the recovery of waste polyester textiles based on the glycolysis-transesterification method.
Keywords:
waste polyester; glycolysis; transesterification; recycled DMT; decompression sublimation