摘 要: "中甸刺玫(Rosa praelucens)是云南香格里拉市的特有“極?!敝参锖蛧?guó)家二級(jí)重點(diǎn)保護(hù)植物,也是著名的高山花卉和重要的十倍體月季種質(zhì)資源,種內(nèi)存在豐富的表型多樣性。為了澄清中甸刺玫種內(nèi)表型變異的遺傳背景,該文利用二代測(cè)序技術(shù)對(duì)40個(gè)不同表型的中甸刺玫代表性個(gè)體的葉綠體基因組進(jìn)行測(cè)序、組裝注釋和比較分析。結(jié)果表明:(1)中甸刺玫的基因組序列長(zhǎng)157 173~157 261 bp,植株間僅相差88 bp,共編碼132個(gè)功能基因,主要為與光合作用和自我復(fù)制相關(guān)的基因。全部基因共由27 155個(gè)密碼子編碼,以A-和U-為末端的密碼子較常見(jiàn)。(2)中甸刺玫的葉綠體基因組共鑒定出36個(gè)重復(fù)序列和73個(gè)簡(jiǎn)單重復(fù)序列(SSRs),后者大部分為單核苷酸SSRs,主要位于大單拷貝(LSC)區(qū)的基因間隔區(qū)。(3)中甸刺玫種內(nèi)葉綠體全基因組的單倍型多樣性為0.928±0.027,核酸多態(tài)性(Pi)為0.000 12;位于LSC的petN-trnD、psaA-ycf3等基因間隔區(qū),以及rps16和ycf1等基因的核酸多態(tài)性相對(duì)較高;不同表型的代表性個(gè)體的葉綠體基因組間在結(jié)構(gòu)上不存在大片段或基因的逆轉(zhuǎn)或者丟失。該研究結(jié)果表明,中甸刺玫種內(nèi)在葉綠體基因組大小、序列和結(jié)構(gòu)等方面均高度保守,其種內(nèi)豐富的表型多樣性并非由葉綠體基因組變異而引起。
關(guān)鍵詞: 中甸刺玫, 葉綠體基因組, 比較基因組, 簡(jiǎn)單重復(fù)序列, 核酸多態(tài)性, 密碼子偏好
中圖分類號(hào): "Q943
文獻(xiàn)標(biāo)識(shí)碼: "A
文章編號(hào): nbsp;1000-3142(2025)01-0015-16
基金項(xiàng)目: "國(guó)家自然科學(xué)基金(31972443); 云南省高層次科技人才及創(chuàng)新團(tuán)隊(duì)選拔專項(xiàng)(202305AS350002)。
第一作者: 王其剛(1977—),碩士,研究員,研究方向?yàn)樵录具z傳育種,(E-mail)171068976@qq.com。
*通信作者: "蹇洪英,博士,研究員,研究方向?yàn)樵录痉N質(zhì)資源研究與利用,(E-mail)ynwildflower@aliyun.com。
Chloroplast genome features and intraspecific
variation of Rosa praelucens
WANG Qigang"CAO Shirui1,2, WANG Huichun"MA Changle2,
YAN Huijun"QIU Xianqin"JING Weikun"JIAN Hongying1*
( 1. Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; 2. College
of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China )
Abstract: "Rosa praelucens is a critically endangered alpine wild flower endemic to Shangri-La City of Yunnan Province. Rich in phenotypic diversity and with a high ploidy level of decaploid, R. praelucens is a very important rose germplasm resource. In order to clarify the genetic background of its phenotypic variation, the chloroplast genomes of 40 R. praelucens individual plants representing different phenotypes within the species were sequenced by using the Illumina HiSeq 2000 platform, and then assembled, annotated, compared and analyzed. The results were as follows: (1) Chloroplast genomes of R. praelucens were 157 173 - 157 261 bp in length, with a size difference of 88 bp among different individual plants. The genomes encoded 132 function genes, mainly related with photosynthesis and self-replication. A total of 27 155 codons, preferring using codon ending of A or U, were found in all the coding sequences. (2) A total of 36 repeats and 73 simple sequence repeats (SSRs) were detected in the chloroplast genome of R. praelucens. Most of the SSRs were mononucleotide type and located in the intergenic region of large single scale (LSC). (3) The haplotype diversity among the 40 chloroplast genomes was 0.928±0.027, and the nucleotide polymorphism (Pi)"was 0.000 12. The intergenic region of petN-trnD and psaA-ycf gene rps16 and ycf1 were relatively more divergent. No reverse or loss of large DNA fragments and genes were found among the chloroplast genomes of different individuals. These results indicate that the chloroplast genomes are highly conserved in size, sequence and structure within R. praelucens. The rich intraspecific phenotypic diversity is not caused by the variation of chloroplast genomes among different individual plants.
Key words: Rosa praelucens, chloroplast genome, comparative "genome, simple sequence repeats (SSRs), nucleotide polymorphism (Pi), codon preference
葉綠體在植物的生活史中具有重要作用(Wicke et al., 2011)。大多數(shù)維管植物的葉綠體基因組長(zhǎng)度約為150 kb,為保守的四分體結(jié)構(gòu),包括一個(gè)大單拷貝區(qū)(large single copy, LSC)、一個(gè)小單拷貝區(qū)(small single copy, SSC)和兩個(gè)反向重復(fù)區(qū)(inverted repeats, IRs)(Wicke et al., 2011; Shetty et al., 2016; Zhu et al., 2016)。高等植物的葉綠體基因組高度保守,但某些類群的葉綠體基因組中存在大片段的倒置(Sun et al., 2017)、大量重復(fù)序列(Guisinger et al., 2011)、基因丟失或假基因化(Ye et al., 2018)以及IR區(qū)的擴(kuò)張或收縮(Li et al., 2017; Liu et al., 2017)。葉綠體基因組在大多數(shù)被子植物中為母系遺傳(Neale amp; Sederoff, 1989;Daniell et al., 2016)。與核基因組相比,葉綠體基因組具有分子量低、結(jié)構(gòu)簡(jiǎn)單、保守性強(qiáng)等特點(diǎn),還包含大量的重復(fù)序列,包括簡(jiǎn)單重復(fù)序列(simple sequence repeats, SSRs)(Cavalier-Smith, 2002)。因此,被廣泛應(yīng)用于系統(tǒng)發(fā)育、DNA條形碼、基因工程和親緣關(guān)系等研究(Dong et al., 2018)。隨著二代測(cè)序技術(shù)(next-generation sequencing, NGS)的發(fā)展,越來(lái)越多的植物葉綠體全基因組序列被報(bào)道,NCBI數(shù)據(jù)庫(kù)迄今已公布了超過(guò)8 500個(gè)植物葉綠體基因組。
中甸刺玫(Rosa praelucens)是云南省香格里拉市的特有“極?!敝参铮↘u amp; Robertson, 2003;覃海寧等,2017),也是國(guó)家二級(jí)保護(hù)植物(http://www.forestry.gov.cn/main/3954/20210908/163949170374051.html)。中甸刺玫是著名的高山花卉(Li amp; Zhou, 2005)和重要的月季種質(zhì)資源,既耐寒(鄧菊慶等,2013),也高抗蚜蟲(chóng)(范元蘭等,2021)。自Jian等(2010)發(fā)現(xiàn)其是薔薇屬野生種中唯一的最高倍性——十倍體(2n=10x=70)以來(lái),人們對(duì)中甸刺玫的生境和群落特征(關(guān)文靈等,2012)、繁育系統(tǒng)(伍翔宇等,2014)、種群現(xiàn)狀(周玉泉等,2016)、系統(tǒng)位置(王開(kāi)錦等,2018)、基于染色體熒光原位雜交的核型特征(方橋等,2020)以及遺傳多樣性和遺傳結(jié)構(gòu)(Jian et al., 2018a)等進(jìn)行了系統(tǒng)研究,發(fā)現(xiàn)中甸刺玫種內(nèi)存在豐富的表型多樣性,其中花色和花型變異尤其顯著(李樹(shù)發(fā)等,2013;Jian et al., 2018a)。
理解多倍性如何修飾表型性狀是進(jìn)化生物學(xué)的一個(gè)研究熱點(diǎn)和主要目標(biāo)(Balao et al., 2011)。大量研究表明自然形成或人工誘導(dǎo)的多倍體植物都會(huì)產(chǎn)生遺傳和表觀遺傳的改變,從而改變基因的表達(dá),使其在遺傳、生理和形態(tài)上產(chǎn)生分化,形成新的表型(Ramsey amp; Schemske, 2002)。對(duì)于十倍體的中甸刺玫而言,其種內(nèi)豐富的表型變異的機(jī)制尚不清楚。中甸刺玫的高倍性特征,限制了多種分子技術(shù)手段在其遺傳背景研究上的應(yīng)用。Jian等(2017)報(bào)道了中甸刺玫的葉綠體基因組大小、各分區(qū)的長(zhǎng)度和GC含量、編碼的基因數(shù)量等基本信息,發(fā)現(xiàn)中甸刺玫的葉綠體基因組大小為157 186 bp,與同屬的單瓣月季花(R. chinensis var. spontanea)等其他植物相比,其葉綠體基因組最大且在LSC區(qū)的psbM和trnD之間有一個(gè)長(zhǎng)為505 bp的插入。在此基礎(chǔ)上,為了探究中甸刺玫種內(nèi)表型變異的遺傳背景,本研究利用二代測(cè)序技術(shù)對(duì)40個(gè)不同表型的中甸刺玫代表性個(gè)體的葉綠體基因組進(jìn)行了測(cè)序、組裝和比較分析,探討以下問(wèn)題:(1)中甸刺玫葉綠體基因組的序列特征和密碼子偏好性;(2)中甸刺玫種內(nèi)不同表型個(gè)體在葉綠體基因組上是否存在較大的變異。以期為中甸刺玫的物種形成和保護(hù)提供更多的遺傳信息,也為探討其種內(nèi)表型變異的分子機(jī)制提供葉綠體基因組方面的基礎(chǔ)數(shù)據(jù)。
1 材料與方法
1.1 研究材料
用于葉綠體基因組序列特征分析的中甸刺玫植株來(lái)源于香格里拉市小中甸鎮(zhèn)和平村塘安培組(99°49′38.1″ E、27°32′16.68″ N, 3 248 m),其原始序列已上傳至NCBI,序列號(hào)為MG450565.1。其余40個(gè)不同表型的代表性植株的基本信息見(jiàn)表1。于2021年6月底在野外采集當(dāng)年生成熟健康葉片,立即用硅膠進(jìn)行干燥,-18 ℃低溫保存用于后續(xù)實(shí)驗(yàn)。
1.2 研究方法
1.2.1 基因組總DNA的提取、測(cè)序、組裝及注釋 使用改良的CTAB法進(jìn)行中甸刺玫葉片的總DNA提取,達(dá)到建庫(kù)測(cè)序要求的DNA送到北京諾禾致源科技股份有限公司用Illumina Hiseq 2000測(cè)序平臺(tái)進(jìn)行建庫(kù)測(cè)序,每個(gè)樣品得到約3.5 Gb的150 bp短片段原始序列(raw data),用NGSQC Toolkit_v2.3.3軟件(Patel amp; Jain, 2012)按照默認(rèn)參數(shù)對(duì)原始序列進(jìn)行過(guò)濾篩選,得到高質(zhì)量的有效序列(clean data)。使用GetOrganelle(https://github.com/Kinggerm/GetOrganelle)進(jìn)行de novo從頭組裝,得到葉綠體全基因組序列。將組裝好的基因組序列使用CpGAVAS(Liu et al., 2012)自動(dòng)進(jìn)行注釋,用Genious 9.1(Kearse et al., 2012)進(jìn)行校對(duì)和調(diào)整每個(gè)注釋基因的邊界區(qū)域,采用OGDRAW(Lohse et al., 2013)繪制葉綠體基因組物理圖譜。
1.2.2 葉綠體基因組結(jié)構(gòu)分析 利用Geneious軟件對(duì)已上傳到NCBI、序列號(hào)為MG450565.1的中甸刺玫葉綠體全基因組進(jìn)行葉綠體全基因組編碼基因構(gòu)成統(tǒng)計(jì)。用MEGA6(Tamura et al., 2013)進(jìn)行密碼子偏好分析,計(jì)算同義密碼子相對(duì)使用值(relative synonymous codon usage values; RSCU)并統(tǒng)計(jì)AT含量。用重復(fù)序列分析軟件REPuter軟件(https://bibiserv.cebitec.uni-bielefeld.de/reputer)(Kurtz et al., 2001),搜索基因組中的正向重復(fù)(forward repeats)和反向重復(fù)(reverse repeats)序列。軟件運(yùn)行時(shí),設(shè)置搜索的重復(fù)序列長(zhǎng)度不小于20 bp,序列一致性大于85%。此外,利用MISA(Beier et al.,2017)軟件來(lái)鑒定簡(jiǎn)單重復(fù)序列,搜索的閾值設(shè)置為單核苷酸、二核苷酸、三核苷酸、四核苷酸、五核苷酸和六核苷酸重復(fù)次數(shù)分別不小于10、5、4、3、3和3。
1.2.3 種內(nèi)不同個(gè)體的葉綠體基因組序列比較 在Geneious軟件中調(diào)用Mauve程序(Darling et al., 2004)對(duì)中甸刺玫40個(gè)代表性植株的葉綠體基因組進(jìn)行比對(duì),分析不同植株的葉綠體基因組間是否存在大片段的逆轉(zhuǎn)或丟失。用DNASP v5.10軟件(Librado amp; Rozas, 2009)計(jì)算種內(nèi)葉綠體基因組的單倍型多樣性和核苷酸多態(tài)性(Pi),篩選葉綠體基因組中的高變區(qū)。
2 結(jié)果與分析
2.1 中甸刺玫葉綠體基因組的結(jié)構(gòu)特征
中甸刺玫種內(nèi)不同表型的40個(gè)代表性植株的葉綠體基因組序列的長(zhǎng)度、各分區(qū)長(zhǎng)度、GC含量、編碼基因數(shù)目等基本信息見(jiàn)圖1和表2。中甸刺玫的基因組序列全長(zhǎng)157 173~157 261 bp,植株間相差88 bp?;蚪M最大的是7-1號(hào)植株,為157 261 bp,基因組最小的是2-5號(hào)植株,為157 173 bp。LSC區(qū)長(zhǎng)為86 300~86 353 bp,相差53 bp,最長(zhǎng)的是7-1號(hào)植株,最短的是2-5號(hào)植株;SSC區(qū)長(zhǎng)為18 765~18 803 bp,相差38 bp;反向重復(fù)IR區(qū)長(zhǎng)度均為26 054 bp,說(shuō)明種內(nèi)基因組大小的差異主要來(lái)源于LSC區(qū)和SSC區(qū)。基因組的GC含量在不同個(gè)體間無(wú)顯著差異,全基因組的GC含量均為37.2%,其中IR區(qū)的GC含量為42.7%,LSC區(qū)的GC含量為35.2%,SSC區(qū)的GC含量為31.2%。
2.2 中甸刺玫葉綠體基因組的基因構(gòu)成
由表3可知,中甸刺玫的葉綠體基因組共編碼132個(gè)功能基因,包括87個(gè)蛋白質(zhì)編碼基因,37個(gè)tRNA基因和8個(gè)rRNA基因。其中,與光合作用有關(guān)的基因有45個(gè),與自我復(fù)制相關(guān)的基因有76個(gè),功能未知的其他基因共11個(gè)。6個(gè)蛋白編碼基因(ndhB、rpl2、rpl23、rps7、rps12、ycf2)、7個(gè)tRNAs(trnA-UGC、trnI-CAU、trnI-GAU、trnL-CAA、trnN-GUU、trnR-ACG、trnV-GAC)和4個(gè)rRNAs(rrn16、rrn23、rrn 4.5、rrn5)在IR區(qū)完全重復(fù)。在132個(gè)基因中,petB、petD、ndhA、ndhB、rps16、rpl2、rpl16、rpoC1、trnA-UGC、trnI-GAU、trnK-UUU、trnL-UAA、trnV-UAC等13個(gè)基因有1個(gè)內(nèi)含子,ycf3和clpP這2個(gè)基因各有2個(gè)內(nèi)含子,rps12為反式剪接的基因,其5′端在LSC區(qū),而3′端在IR區(qū)重復(fù)。
2.3 中甸刺玫葉綠體基因組密碼子偏好性
中甸刺玫的葉綠體基因組密碼子使用頻率(RSCU)如表4。全部基因由27 155個(gè)密碼子編碼,其中亮氨酸(leucine)是使用頻率最高的氨基酸,共編碼了其中的2 765個(gè)密碼子,占總數(shù)的10.85%,而組氨酸(histidine)是使用頻率最低的氨基酸,僅編碼了其中的530個(gè)密碼子,占總數(shù)的1.95%。以A-和U-為末端的密碼子較常見(jiàn),除了trnL-CAA、trnS-GGA、精氨酸Arg-AGG和甘氨酸Gly-GGG以外,所有的首選同義密碼子(RSCUgt;1)都是以A或U結(jié)尾。
2.4 中甸刺玫葉綠體基因組的重復(fù)序列
重復(fù)序列分析結(jié)果表明,中甸刺玫的葉綠體基因組中共有33個(gè)正向重復(fù)序列和3個(gè)反向重復(fù)序列,這些重復(fù)序列長(zhǎng)度大多為20~30 bp(表5)。最長(zhǎng)的重復(fù)序列分別位于rps12-trnV(GAC)基因間隔區(qū)和ndhA基因的含子區(qū)域。大多數(shù)重復(fù)序列位于LSC區(qū)和IR區(qū),還有9個(gè)重復(fù)序列在不同的區(qū)域開(kāi)始,如第1號(hào)重復(fù)的2個(gè)序列分別開(kāi)始于IRb區(qū)和SSC區(qū)。
2.5 中甸刺玫葉綠體基因組的簡(jiǎn)單重復(fù)序列
MISA軟件在中甸刺玫的葉綠體基因組中共找到73個(gè)簡(jiǎn)單重復(fù)序列(SSRs),其中單核苷酸SSRs(A/T/G/C)最多,共有42個(gè);其次是二核苷酸類型(AG/AT/TA/TC),有9個(gè),三核苷酸類型有4個(gè),四核苷酸類型有8個(gè),六核苷酸SSRs有2個(gè),沒(méi)有五核苷酸SSRs。絕大部分為單純類型SSRs,復(fù)合類型的SSRs較少,二者分別為65個(gè)和8個(gè),沒(méi)有間接型SSRs(表6)。58個(gè)SSRs位于LSC區(qū),占全部SSRs的79.5%,5個(gè)SSRs位于SSC區(qū),IRa和IRb區(qū)各有5個(gè)SSRs。只有23個(gè)SSRs位于基因中,其他均位于基因間隔區(qū)。單核苷酸SSRs中的74%屬于A/T,這與SSRs主要由短腺嘌呤(adenine,A)或胸腺嘧啶(thymine, T)重復(fù)組成而很少有串聯(lián)鳥(niǎo)嘌呤(guanine, G)和胞嘧啶(cytosine, C)組成的假說(shuō)相一致。
2.6 中甸刺玫種內(nèi)的葉綠體基因組序列差異
中甸刺玫種內(nèi)不同個(gè)體的葉綠體基因組序列差異較小。所有代表性個(gè)體的全基因組序列比對(duì)分析共檢測(cè)到58個(gè)變異位點(diǎn)共22個(gè)單倍型,單倍型多樣性為0.928±0.027,核酸多態(tài)性為0.000 12。種內(nèi)葉綠體基因組在基因、基因間隔區(qū)的核酸多態(tài)性都較低,相對(duì)多態(tài)性較大的是位于LSC區(qū)的psbI-trnS(GCU)、trnS(GCU)-trnG(UCC)、trnG(UCC)-trnfM(CAU)、petN-trnD(GUC)、petA-psbJ、psaA-ycf3等基因間隔區(qū),以及rps16和ycf1等基因(圖2)。Mauve比對(duì)的結(jié)果表明,中甸刺玫種內(nèi)不同代表性個(gè)體的葉綠體基因組在結(jié)構(gòu)上并無(wú)顯著差異,并且不存在大片段或基因的逆轉(zhuǎn)或者丟失(圖3)。
3 討論與結(jié)論
雖然植物的葉綠體基因組在基因組成和排列順序上具有較高的保守性,但由于長(zhǎng)期對(duì)不同環(huán)境的適應(yīng)常導(dǎo)致同屬植物的葉綠體基因組在大小上發(fā)生改變,從而產(chǎn)生結(jié)構(gòu)重排以及IR區(qū)的收縮或擴(kuò)張等(Daniell et al., 2016)。中甸刺玫不同表型40個(gè)代表性個(gè)體的葉綠體基因組大小為157 173~157 261 bp,整個(gè)基因組共編碼132個(gè)基因,主要與光合作用和自我復(fù)制相關(guān)。與同屬的單瓣月季花(Jian et al., 2018b)、亮葉月季(R. lucidissima)(Zhao et al., 2019)、木香花(R. banksiae)(楊芳,2019),大花香水月季(R. odorata var. gigantea)(Yang et al., 2014)、金櫻子(R. laevigata)(Yin et al., 2020)以及其他種(Chen et al., 2019; Cui et al., 2022)的葉綠體基因組相比,中甸刺玫的基因組除在長(zhǎng)度上明顯多出約500 bp以外,在基因組的GC含量、基因構(gòu)成和排列順序上與其他種基本一致,表明薔薇屬植物的葉綠體基因組較保守,種間差異較小,主要在非編碼區(qū)有序列長(zhǎng)度的變化。
密碼子是連接核酸和蛋白質(zhì)的紐帶,研究物種的密碼子偏好并確定最優(yōu)密碼子,有助于設(shè)計(jì)基因表達(dá)載體來(lái)提高目的基因的表達(dá)量,在作物遺傳育種和品種改良方面具有重要應(yīng)用價(jià)值(Qi et al., 2015)。密碼子偏好性分析顯示中甸刺玫的葉綠體基因組編碼密碼子中,亮氨酸是使用頻率最高的氨基酸,而組氨酸使用頻率最低。此外,中甸刺玫所有的首選同義密碼子都是以A-或U-結(jié)尾(RSCU gt; 1),由于RSCU大于1則表示實(shí)際頻率高于其他同義密碼子的使用頻率(晁岳恩等,2012),因此中甸刺玫的密碼子偏好以A-和U-結(jié)尾。這與同屬的單瓣月季花的密碼子偏好性(Jian et al., 2018b)基本一致,為研究相關(guān)基因的分子進(jìn)化和外源表達(dá)奠定了基礎(chǔ)。
植物的葉綠體簡(jiǎn)單重復(fù)序列為單親遺傳且有較高的種內(nèi)多態(tài)性,是物種進(jìn)化和多態(tài)性的重要遺傳標(biāo)記(Cavalier-Smith, 2002),常被用作野生植物系統(tǒng)演化和居群遺傳研究(Provan, 2000; Flannery et al., 2006)以及作物遺傳圖譜構(gòu)建的分子標(biāo)記(Powell et al., 1995; Xue et al., 2012)。由于poly A和poly T相比poly C和poly G可能具有更高的結(jié)構(gòu)穩(wěn)定性(Gragg et al., 2002),因此大多數(shù)植物的葉綠體基因組單核苷酸SSRs多為poly A和poly T結(jié)構(gòu)。中甸刺玫葉綠體基因組中共有73個(gè)簡(jiǎn)單重復(fù)序列SSRs,主要為單核苷酸SSRs,大部分由短腺嘌呤(A)或胸腺嘧啶(T)重復(fù)組成,主要位于LSC區(qū)的基因間隔區(qū),與同屬的單瓣月季花(Jian et al., 2018b)基本一致,也與其他多種植物如山茶屬(Camellia)(丁祥青等,2022;鄧永彪等,2024)、絹蒿屬(Seriphidium)(Jin et al., 2023)等類似。
Jian等(2018b)研究表明,薔薇屬內(nèi)不同物種的葉綠體基因組間的核酸高變區(qū)主要位于LSC區(qū)的trnK-rps16、ps16-trnQ、trnS-trnG、atpF-atpH、rps2-rpoC2等多個(gè)基因隔區(qū)、rps19和ycf1等基因的編碼區(qū),以及rpl2、rps16、ndhA等基因的內(nèi)含子區(qū)域。中甸刺玫種內(nèi)不同表型代表性個(gè)體的全基因組核酸多態(tài)性較低,核酸多態(tài)性相對(duì)較高的是位于LSC區(qū)內(nèi)的petN-trnD(GUC)、petA-psbJ、psaA-ycf3等少數(shù)幾個(gè)基因間隔區(qū),以及rps16和ycf1等少數(shù)幾個(gè)基因。結(jié)合Mauve比對(duì)的結(jié)果,說(shuō)明中甸刺玫種內(nèi)的葉綠體基因組的基因序列和結(jié)構(gòu)均高度保守,不存在大片段序列或基因的逆轉(zhuǎn)或者丟失,其種內(nèi)不同個(gè)體的表型變異并非由葉綠體基因組變異而引起。
綜上所述,本研究在對(duì)中甸刺玫的葉綠體基因組進(jìn)行簡(jiǎn)單報(bào)道的基礎(chǔ)上,詳細(xì)地分析了中甸刺玫葉綠體基因組的基因構(gòu)成、密碼子偏好以及簡(jiǎn)單重復(fù)序列等基本特征,并對(duì)種內(nèi)具有不同表型的代表性個(gè)體的葉綠體基因組進(jìn)行了比較基因組分析,結(jié)果表明,中甸刺玫種內(nèi)的葉綠體基因組大小、序列和基因結(jié)構(gòu)等方面均高度保守,不存在大片段序列或基因的逆轉(zhuǎn)或者丟失,為中甸刺玫的保護(hù)和開(kāi)發(fā)利用提供了葉綠體基因組方面基礎(chǔ)數(shù)據(jù)。本研究也表明中甸刺玫種內(nèi)豐富的表型變異并非由葉綠體基因組變異而引起,應(yīng)結(jié)合中甸刺玫的高倍性特征,從染色體的數(shù)量和結(jié)構(gòu)、基因表達(dá)以及表觀遺傳等角度進(jìn)行深入系統(tǒng)的研究。
參考文獻(xiàn):
BALAO F, HERRERA J, TALAVERA S, 2011. Phenotypic consequences of polyploidy and genome size at the microevolutionary scale: A multivariate morphological approach "[J]. The New Phytologist, 192(1): 256-265.
BEIER S, THIEL T, MNCH T, et al., 2017. MISA-web: A web server for microsatellite prediction "[J]. Bioinformatics, 33(16): 2583-2585.
CAVALIER-SMITH ST, 2002. Chloroplast evolution: Secondary symbiogenesis and multiple losses "[J]. Current Biology, 12(2): 62-64.
CHAO YE, CHANG Y, WANG MF, et al., 2012. Codon usage bias and cluster analysis on chloroplastic genes from seven crop species "[J]. Acta Agriculture Boreali-Sinica, 27(4): 60-64. "[晁岳恩, 常陽(yáng), 王美芳, 等, 2012. 7種作物葉綠體基因的密碼子偏好性及聚類分析 [J]. 華北農(nóng)學(xué)報(bào), 27(4): 60-64.]
CHEN MR, ZHANG C, GAO XF. 2019. The complete chloroplast genome sequence of Rosa pricei (Rosaceae) "[J]. Mitochondrial DNA Part B-Resources, 4(1): 1918-1919.
CUI WH, DU XY, ZHONG MC, et al., 2022. Complex and reticulate origin of edible roses (Rosa, Rosaceae) in China "[J]. Horticulture Research, 9(1): 678-691.
DANIELL H, LIN CS, YU M, et al., 2016. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering "[J]. Genome Biology, 17(1): 1-29.
DARLING ACE, MAU B, BLATTNER FR, et al., 2004. Mauve: Multiple alignment of conserved genomic sequence with rearrangements "[J]. Genome Research, 14(7): 1394-1403.
DENG JQ, JIAN HY, LI SB, et al., 2013. Cold tolerance of several wild Rosa resources endemic of Yunnan "[J]. Southwest China Journal of Agricultural Sciences, 26(2): 273-277. "[鄧菊慶, 蹇洪英, 李淑斌, 等, 2013. 幾種云南特有薔薇資源的抗寒性研究 [J]. 西南農(nóng)業(yè)學(xué)報(bào), 26(2): 273-277.]
DENG YB, ZHANG J, LAN LL, et al., 2024. Analysis of chloroplast genome features of endangered and rare plant Camellia minima "[J]. Guihaia, 44(1):30-42. "[鄧永彪, 張進(jìn), 藍(lán)倫禮, 等, 2024. 珍稀瀕危植物越南小花金花茶的葉綠體基因組特征分析 [J]. 廣西植物, 44(1): 30-42.]
DING XQ, LI WF, WU JL, et al., 2022. Chloroplast genome characteristics and genetic relationship of yellow Camellia "[J]. Journal Fujian Agriculturae Forestry University (Natural Science Edition), 52(3): 1-11. "[丁祥青, 李文芳, 吳麗君, 等, 2022. 4種金花茶葉綠體基因組的比較分析 [J]. 福建農(nóng)林大學(xué)學(xué)報(bào)(自然科學(xué)版), 52(3): 1-11.]
DONG WP, XU C, WU P, et al., 2018. Resolving the systematic positions of enigmatic taxa: Manipulating the chloroplast genome data of Saxifragales "[J]. Molecular Phylogenetics and Evolution, 126(9): 321-330.
FAN YL, CHEN YC, JIAN HY, et al., 2021. Screening of Rosa germplasm resources with resistance to aphids "[J]. Journal of "Yunnan University (Natural Science Edition), 43(3): 619-628. "[范元蘭, 陳宇春, 蹇洪英, 等, 2021. 薔薇屬抗蚜種質(zhì)資源的篩選 [J]. 云南大學(xué)學(xué)報(bào)(自然科學(xué)版), 43(3): 619-628.]
FANG Q, TIAN M, ZHANG T, et al., 2020. Karyotype analysis of Rosa praelucens and its closely related congeneric species based on FISH "[J]. Acta Horticulturae Sinica, 47(3): 503-516. "[方橋, 田敏, 張婷, 等, 2020. 中甸刺玫及其近緣種基于FISH的核型分析 [J]. 園藝學(xué)報(bào), 47(3): 503-516.]
FLANNERY ML, MITCHELL FJ, COYNE S, et al., 2006. Plastid genome characterisation in Brassica and Brassicaceae using a new set of nine SSRs "[J]. Theoretical and Applied Genetics, 113(7): 1221-1231.
GRAGG H, HARFE BD, JINKS-ROBERTSON S, 2002. Base composition of mononucleotide runs affects DNA polymerase slippage and removal of frame shift intermediates by mismatch repair in Saccharomyces cerevisiae "[J]. Molecular and Cellular Biology, 22(24): 8756-8762.
GUAN WL, LI SF, SONG J, et al., 2012. Study on geographic distribution of Rosa praelucens endemic to Yunnan "[J]. Journal of West China Forestry Science, 41(1): 88-93. "[關(guān)文靈, 李世峰, 宋杰, 等, 2012. 云南特有瀕危植物中甸刺玫的分布特征研究 [J]. 西部林業(yè)科學(xué), 41(1): 88-93.]
GUISINGER MM, KUEHL JV, BOORE JL, et al., 2011. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage "[J]. Molcular Biology and Evolution, 28(1): 1543-1543.
JIAN HY, LI SF, GUO JL,et al., 2018a. High genetic diversity and differentiation of an extremely narrowly distributed and critically endangered decaploid rose (Rosa praelucens): implications for its conservation "[J]. Conservation Genetics, 19(4): 761-776.
JIAN HY, ZHANG H, TANG KX, et al., 2010. Decaploidy in Rosa praelucens Byhouwer (Rosaceae) endemic to zhongdian plateau, Yunnan, China "[J]. Caryologia, 63(2): 162-167.
JIAN HY, ZHANG SD, ZHANG T, et al., 2017. Characterization of the complete chloroplast genome of a critically endangered decaploid rose species, Rosa praelucens (Rosaceae) "[J]. Conservation Genetics Resources, 10: 851-854.
JIAN HY, ZHANG YH, YAN HJ, et al., 2018b. The complete chloroplast genome of a key ancestor of modern roses, Rosa chinensis var. spontanea, and a comparison with congeneric species "[J]. Molecules, 23: 389.
JIN GZ, LI WJ, SONG F, et al., 2023. Comparative analysis of completeArtemisia subgenus Seriphidium (Asteraceae: Anthemideae) chloroplast genomes: insights into structural divergence and phylogenetic relationships "[J]. BMC Plant Biology, 23(1): 136-150.
KEARSE M,MOIR R, WILSON A, et al., 2012. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data "[J]. Bioinformatics, 28(12): 1647-1649.
KU TC, ROBERTSON KR, 2003. Rosa (Rosaceae) "[M] // WU ZY, RAVEN PH. Flora of China: Vol. 9. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press: 339-381.
KURTZ S, CHOUDHURI JV, OHLEBUSCH E, et al., 2001. REPuter: The manifold applications of repeat analysis on a genomic scale "[J]. Nucleic Acids Research, "29(22): 4633-4642.
LI P, LU RS, XU WQ, et al., 2017. Comparative genomics and phylogenomics of East Asian tulips (Amana, Liliaceae) "[J]. Frontiers in Plant Science, 8: 451.
LI SF, LI CJ, JIAN HY, et al., 2013. Studies on phenotypic diversity of vulnerable Rosa praelucens endemic to Shangrila, Yunnan "[J]. Acta Horticiculturae Sinica, 40(5): 924-932. "[李樹(shù)發(fā), 李純佳, 蹇洪英, 等, 2013. 云南香格里拉特有易危植物中甸刺玫的表型多樣性 [J]. 園藝學(xué)報(bào), 40(5): 924-932.]
LI XX, ZHOU ZK, 2005. Endemic wild ornamental plants from North Western Yunnan "[J]. HortScience, 40(6): 1612-1619.
LIBRADO P, ROZAS J, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data "[J]. Bioinformatics, 25(11): 1451-1452.
LIU C, SHI L, ZHU Y, et al., 2012. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences "[J]. BMC Genomics, 13: 715.
LIU LX, LI R, WORTH JRP, et al., 2017. The complete chloroplast genome of Chinese bayberry (Morella rubra, Myricaceae): Implications for understanding the evolution of Fagales "[J]. Frontiers in Plant Science, 8: 968.
LOHSE M, DRECHSEL O, KAHLAU S, et al., 2013. Organellar Genome-DRAW — A suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets "[J]. Nucleic Acids Research, 41(W1): 575-581.
NEALE DB, SEDEROFF RR, 1989. Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in loblolly pine "[J]. Theoretical Applied Genetics, 77(2): 212-216.
PATEL RK, JAIN M, 2017. NGS QC toolkit: A toolkit for quality control of next generation sequencing data "[J]. PLoS ONE, 7: e30619.
POWELL W, MORGANTE M, MCDEVITT R, et al., 1995. Polymorphic simple sequence repeat regions in chloroplast genomes: Applications to the population genetics of pines "[J]. Proceedings of the National Academy of Sciences of the United States of America, 92(17): 7759-7763.
PROVAN J, 2000. Novel chloroplast microsatellites reveal cytoplasmic variation in Arabidopsis thaliana "[J]. Molecular Ecology, 9(12): 2183-2185.
QI YY, XU WJ, XING T, et al., 2015. Synonymous codon usage bias in the plastid genome is unrelated to gene structure and shows evolutionary heterogeneity "[J]. Evolutionary Bioinformatics Online, 11: 65-77.
QIN HN, YANG Y, DONG SY, et al., 2017. List of threatened species of higher plants in China "[J]. Biodiversity Science, 25(7): 696-744. "[覃海寧, 楊永, 董仕勇, 等, 2017. 中國(guó)高等植物受威脅物種名錄 [J]. 生物多樣性, 25(7): 696-744.]
RAMSEY J, SCHEMSKE DW, 2002. Neopolyploidy in flowering plants "[J]. Annual Review Ecology and Systematics, 33(1): 589-639.
SHETTY SM, SHAH MUM, MAKALE K, et al., 2016. Complete chloroplast genome sequence of Musa balbisiana corroborates structural heterogeneity of inverted repeats in wild progenitors of cultivated bananas and plantains "[J]. Plant Genome, 9(2): 1-14.
SUN YX, MOORE MJ, LIN N, et al., 2017. Complete plastome sequencing of both living species of Circaeasteraceae (Ranunculales) reveals unusual rearrangements and the loss of the ndh gene family "[J]. BMC Genomics, 18: 592.
TAMURA K, STECHER G, PETERSON D, et al., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0 "[J]. Molecular Biology and Evolution, 30(12): 2725-2733.
WANG KJ, ZHANG T, WANG QG, et al., 2018. The phylogenetic position and hybrid origination of Rosa Praelucens Byhouwer "[J]. Journal of Plant Genetic Resources, 19(5): 1006-1015. "[王開(kāi)錦, 張婷, 王其剛, 等, 2018. 中甸刺玫的系統(tǒng)位置及雜交起源研究 [J]. 植物遺傳資源學(xué)報(bào), 19(5): 1006-1015.]
WICKE S, SCHNEEWEISS GM,DE PAMPHILIS CW, et al., 2011. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function "[J]. Plant Molecular Biology, 76(3-5): 273-297.
WU XY, CHEN M, WANG QG, et al., 2014. Comparative study on the breeding systems of Rosa praelucens and Rosa soulieana "[J]. Acta Horticulturae Sinica, 41(10): 2075-2084. "[伍翔宇, 陳敏, 王其剛, 等, 2014. 中甸刺玫和川滇薔薇的繁育系統(tǒng)比較研究 [J]. 園藝學(xué)報(bào), 41(10): 2075-2084.]
XUE J, WANG S, ZHOU SL, 2012. Polymorphic chloroplast microsatellite loci in Nelumbo (Nelumbonaceae) "[J]. American Journal of Botany, 99(6): 240-244.
YANG F, 2019. Sequencing and structural analysis of chloroplast genome in Rosa banksiae "[J]. Genomics and Applied Biology, 38(8): 3586-3594. "[楊芳, 2019. 七里香薔薇葉綠體基因組測(cè)序及結(jié)構(gòu)分析 [J]. 基因組學(xué)與應(yīng)用生物學(xué), 38(8): 3586-3594.]
YANG JB, LI DZ, LI HT, 2014. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs "[J]. Molecular Ecology Resources, 14(5): 1024-1031.
YE WQ, YAP ZY, LI P, et al., 2018. Plastome organization, genome-based phylogeny and evolution of plastid genes in Podophylloideae (Berberidaceae) "[J]. Molecular Phylogenetics and Evolution, 127: 978-987.
YIN XM, LIAO BS, GUO S, et al., 2020. The chloroplasts genomic analyses of Rosa laevigata, R. rugosa and R. canina "[J]. Chinese Medicine, 15: 18.
ZHAO L, ZHANG H, WANG QG, et al., 2019. The complete chloroplast genome of Rosa lucidissima, a critically endangered wild rose endemic to China "[J]. Mitochondrial DNA Part B-Resources, 4(1): 1826-1827.
ZHOU YQ, SU Q, ZHANG H, et al., 2016. Distribution and population quantitative dynamics of critically risked Rosa praelucens Byhouwer "[J]. Journal of "Plant Genetic Resources, 17(4): 649-654. "[周玉泉, 蘇群, 張顥, 等, 2016. 極危植物中甸刺玫的分布及種群數(shù)量動(dòng)態(tài) [J]. 植物遺傳資源學(xué)報(bào), 17(4): 649-654.]
ZHU A, GUO W, GUPTA S, et al., 2016. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates "[J]. The New Phytologist, 209(4): 1747-1756.
(責(zé)任編輯 李 莉 王登惠)