摘""要:糜子(Panicum"miliaceum"L.)是我國傳統(tǒng)的糧食作物,截至目前,針對糜子遺傳轉(zhuǎn)化方法的研究仍較少,本研究旨在建立農(nóng)桿菌介導(dǎo)的糜子高效遺傳轉(zhuǎn)化方法。以糜子品種冀黍5號的成熟種子為外植體,在CIM和MSD誘導(dǎo)培養(yǎng)基上分別誘導(dǎo)糜子的胚性愈傷,以其作為轉(zhuǎn)化受體材料,用含植物表達載體的農(nóng)桿菌侵染60"min并共培養(yǎng)6"d,轉(zhuǎn)接至含0.025"g/L潮霉素的篩選培養(yǎng)基上篩選出抗性愈傷,接著在含0.015"g/L潮霉素的分化培養(yǎng)基上分化,最后在含0.015"g/L潮霉素的生根培養(yǎng)基上生根成苗,用載體特異性引物對再生植株進行PCR檢測,鑒定其是否為陽性轉(zhuǎn)基因植株。根據(jù)多個批次的轉(zhuǎn)化實驗統(tǒng)計糜子的抗性再生植株的篩選效率和轉(zhuǎn)化效率。結(jié)果表明:CIM和MSD誘導(dǎo)培養(yǎng)基均能誘導(dǎo)出糜子胚性愈傷,但CIM培養(yǎng)基誘導(dǎo)的糜子胚性愈傷效果更好;糜子胚性愈傷在被農(nóng)桿菌侵染及與農(nóng)桿菌共培養(yǎng)后,經(jīng)在含潮霉素的培養(yǎng)基上篩選、分化和生根后獲得多株抗性再生糜子植株,3次試驗獲得的糜子抗性再生植株的PCR鑒定陽性率為100%,平均轉(zhuǎn)化效率為30%以上。本研究成功建立了農(nóng)桿菌介導(dǎo)的糜子遺傳轉(zhuǎn)化方法,操作簡單,轉(zhuǎn)化效率高,成本低廉,且轉(zhuǎn)化不受季節(jié)限制,能規(guī)?;_展,為糜子的遺傳改良提供有效的技術(shù)手段。
關(guān)鍵詞:糜子;農(nóng)桿菌;遺傳轉(zhuǎn)化;轉(zhuǎn)化效率中圖分類號:S516""""""文獻標(biāo)志碼:A
An"Efficient"Genetic"Transformation"Method"for"Broomcorn"Millet"Mediated"by"Agrobacterium"tumefaciens
XIA"Qiyu1,"XIANG"Yanmiao2*,"LIU"Yanan2,"LI"Haiquan2,"CHENG"Ruhong2,"GUO"Anping1,"LIU"Guoqing2**,"ZHAO"Hui1**
1."Sanya"Research"Institute,"Chinese"Academy"of"Tropical"Agricultural"Sciences"/"Institute"of"Tropical"Bioscience"and"Biotechnology,"Chinese"Academy"of"Tropical"Agricultural"Sciences"/"Hainan"Key"Laboratory"for"Biosafety"Monitoring"and"Molecular"Breeding"in"Off-Season"Reproduction"Regions,"Sanya,"Hainan"572024,"China;"2."Institute"of"Millet"Crops,"Hebei"Academy"of"Agriculture"and"Forestry"Sciences,"Shijiazhuang,"Hebei"050035,"China
Abstract:"Broomcorn"millet"(Panicum"miliaceum"L.)"is"a"traditional"grain"crop"in"China."Currently,"there"is"still"limited"research"on"the"genetic"transformation"methods"for"P."miliaceum."This"study"aimed"to"establish"an"efficient"genetic"transformation"method"for"P."miliaceum"mediated"by"Agrobacterium."Mature"seeds"of"the"millet"variety"Jishu"5"were"used"as"the"explants"to"induce"embryogenic"callus"of"millet"on"CIM"and"MSD"induction"media,"respectively."They"were"used"as"the"transformation"receptor"materials"and"infected"with"Agrobacterium"containing"plant"expression"vectors"for"60"minutes"and"co-cultured"for"6"days."The"calli"were"then"transferred"to"a"screening"medium"containing"0.025"g/L"of"hygromycin"to"screen"for"resistant"calli."Then,"they"differentiated"on"a"differentiation"medium"containing"0.015"g/L"of"hygromycin."Finally,"they"rooted"into"seedlings"on"a"rooting"medium"containing"0.015"g/L"of"hygromycin."PCR"detection"was"performed"on"the"regenerated"plants"using"vector"specific"primers"to"identify"whether"they"were"positive"transgenic"plants."Based"on"the"multiple"batches"of"transformation"experiments,"the"screening"efficiency"and"transformation"efficiency"of"resistant"regenerated"plants"of"broomcorn"millet"were"statistically"analyzed."The"results"showed"that"both"CIM"and"MSD"media"could"induce"embryogenic"callus"of"broomcorn"millet,"but"CIM"medium"had"a"better"effect"on"inducing"embryogenic"callus"of"broomcorn"millet."After"being"infected"by"Agrobacterium"and"co-cultured"with"Agrobacterium,"the"multiple"resistant"regenerated"plants"were"obtained"through"screening,"differentiation,"and"rooting"on"a"medium"containing"hygromycin."The"PCR"identification"positive"rate"of"the"resistant"regenerated"plants"obtained"from"three"experiments"was"100%,"and"the"average"transformation"efficiency"was"over"30%."This"study"successfully"established"an"Agrobacterium"mediated"genetic"transformation"method"for"broomcorn"millet,"which"is"simple"to"operate,"efficient,"cost-effective,"and"not"limited"by"seasons."It"could"be"carried"out"on"a"large"scale,"providing"an"effective"technical"means"for"genetic"improvement"of"broomcorn"millet.
Keywords:"broomcorn"millet"(Panicum"miliaceum"L.);"Agrobacterium;"genetic"transformation;"transformation"efficiency
DOI:"10.3969/j.issn.1000-2561.2025.01.005
糜子(Panicum"miliaceum"L.),屬禾本科黍?qū)?,起源于我國的黃河流域,又名黍稷,一年生小粒禾谷類作物,是人類最早馴化的作物之一,具有生育期短、抗旱耐瘠等特點,在干旱環(huán)境中具生產(chǎn)優(yōu)勢,主要分布在亞洲和歐洲的半干旱地區(qū)[1-3]。在中國,糜子曾是華北地區(qū)的主糧,如今僅在山區(qū)和邊遠地帶栽培,年種植面積約32萬hm2,產(chǎn)量約30萬t[4]。目前,全球糜子種質(zhì)資源有29"000余份,我國糜子種質(zhì)資源庫有9885份糜子資源[5-6]。與玉米、水稻等作物相比,糜子馴化水平低,具有許多野生性狀,這些性狀嚴重阻礙了糜子的育種進程及品種改良,成為現(xiàn)代糜子遺傳改良的重點。目前我國糜子育種方法落后,主要為雜交育種和誘變育種等常規(guī)育種方法,分子標(biāo)記輔助選擇育種也很少[7-8]?,F(xiàn)代基因工程技術(shù)的發(fā)展,為糜子的育種及品種改良提供了一種快速有效的途徑。但由于糜子的遺傳轉(zhuǎn)化研究發(fā)展比較緩慢,嚴重影響了糜子的轉(zhuǎn)基因育種速度。因此,建立糜子的高效遺傳轉(zhuǎn)化方法,對糜子的育種及品種改良尤為重要。
目前常見的植物遺傳轉(zhuǎn)化方法為基因槍法和農(nóng)桿菌法?;驑尫ㄊ菍藥康幕虻腄NA溶液的高速微彈直接送入完整的植物組織中,通過細胞和組織培養(yǎng)技術(shù),可再生出植株,選出其中轉(zhuǎn)基因陽性植株即為轉(zhuǎn)基因植株[9]。其主要優(yōu)點是不受受體植物范圍的限制,但該儀器不易獲得,且耗材成本高昂,操作復(fù)雜,外源基因插入拷貝數(shù)高,影響了基因槍法的廣泛應(yīng)用。農(nóng)桿菌法是將目的基因插入到經(jīng)過改造的T-DNA區(qū),借助農(nóng)桿菌的感染實現(xiàn)外源基因向植物細胞的轉(zhuǎn)移與整合,然后通過組織培養(yǎng)技術(shù),再生出轉(zhuǎn)基因植株,具有操作簡單,成本低,遺傳穩(wěn)定,轉(zhuǎn)化效率高且外源基因插入拷貝數(shù)低等優(yōu)點,目前在多種植物中廣泛應(yīng)用[10-16]。本研究以糜子品種冀黍5號的成熟種子為外植體,建立農(nóng)桿菌介導(dǎo)的糜子高效遺傳轉(zhuǎn)化方法,為糜子的遺傳改良提供了有效的技術(shù)手段。
1.1""材料
糜子品種為冀黍5號。含潮霉素抗性基因"(HPT)篩選標(biāo)記的植物表達載體pRLG103_Predicted由Daniel"Voytas實驗室提供。大腸桿菌DH5α感受態(tài)和農(nóng)桿菌AGL1感受態(tài)分別購自北京全式金生物技術(shù)股份有限公司和上海唯地生物技術(shù)有限公司。植物基因組DNA提取試劑盒(DP305)購自天根生化科技(北京)有限公司;Taq酶MIX購自北京康為世紀生物科技有限公司;MS購自Duchefa"Biochemie公司;植物凝膠購自Caisson"Labs公司;潮霉素購自Gold"Biotechnology公司;蛋白胨和酵母粉購自O(shè)xoid公司;瓊脂糖購自Biowest公司;硫酸軟骨素鈉(軟骨素)購自北京璞棠生物科技有限公司生產(chǎn)。其它試劑均為國產(chǎn)分析純。
1.2""方法
1.2.1""糜子的胚性愈傷誘導(dǎo)""選取經(jīng)休眠處理的冀黍5號的干燥成熟種子,去除種皮,將約2"g種子裝入50"mL無菌離心管中,用20"mL有效濃度為3%的次氯酸鈉溶液和50"μL吐溫20溶液,消毒滅菌處理20"min,用無菌水清洗多次后將種子接種于胚性愈傷誘導(dǎo)培養(yǎng)基上。接種時注意種子芽點朝上,芽點不直接接觸培養(yǎng)基,每皿培養(yǎng)基接種子約20個,24"℃恒溫培養(yǎng),濕度為55%,培養(yǎng)過程中先以12"h/12nbsp;h的光/暗培養(yǎng)模式進行光照發(fā)芽,發(fā)芽后轉(zhuǎn)為暗培養(yǎng),暗培養(yǎng)28"d后從芽點處挑取誘導(dǎo)的胚性愈傷組織,繼續(xù)暗培養(yǎng)7"d。使用2種胚性愈傷誘導(dǎo)培養(yǎng)基CIM和MSD進行糜子胚性愈傷誘導(dǎo)。CIM中含有MS干粉4.4"g/L、蔗糖30.0"g/L、七水合硫酸鋅0.035"g/L、五水合硫酸銅0.0006"g/L、激動素0.0005"g/L、2,4-二氯苯氧乙酸0.002"g/L和植物凝膠9.0"g/L,pH"5.8。MSD中含有MS干粉4.4"g/L、蔗糖30.0"g/L、2,4-二氯苯氧乙酸0.002"g/L和植物凝膠9.0"g/L,pH"5.8。
1.2.2""農(nóng)桿菌菌液的制備及活化""從–80"℃冰箱取出含載體pRLG103_Predicted(圖1)的AGL1農(nóng)桿菌菌株,置于LB培養(yǎng)基(蛋白胨10.0"g/L、酵母粉5.0"g/L、氯化鈉10.0"g/L和瓊脂粉15.0"g/L)上涂板活化,24"℃暗培養(yǎng)3"d,長出單菌落;挑取3個以上單菌落,同時置于含0.05"g/L的羧芐青霉素和0.05"g/L卡那霉素的LB培養(yǎng)液中,于20"℃以200"r/min進行震蕩培養(yǎng)24"h,離心得到新鮮的農(nóng)桿菌菌液。將新鮮的農(nóng)桿菌菌液加至侵染液中,搖晃進行懸浮處理,得農(nóng)桿菌菌懸液,并用侵染液將農(nóng)桿菌菌懸液濃度調(diào)整到OD600值為0.6,然后于20"℃以100"r/min低速振蕩培養(yǎng)2~3"h進行活化,得活化的農(nóng)桿菌菌液。侵染液中含有MS干粉2.2"g/L、蔗糖30"g/L、嗎啉乙磺酸1.0"g/L、乙酰丁香酮0.04"g/L和質(zhì)量體積比為0.1%的泊洛沙姆,pH"5.4。
1.2.3""侵染和共培養(yǎng)""將糜子的胚性愈傷誘導(dǎo)組織加至活化農(nóng)桿菌菌液中,按每30"mL活化農(nóng)桿菌菌液中加入60~80塊直徑約為0.5"cm糜子的胚性愈傷誘導(dǎo)組織的比例添加,于20"℃以120"r/min輕搖振蕩侵染60"min(振蕩侵染采用暗培養(yǎng)),侵染完成后,倒掉菌液,得經(jīng)侵染的糜子胚性愈傷組織。將經(jīng)侵染的糜子胚性愈傷組織倒在無菌濾紙上,吸干多余的菌液,并在超凈臺上適當(dāng)吹干,約30"min后轉(zhuǎn)接到放有無菌濾紙的共培養(yǎng)培養(yǎng)基上,20"℃暗培養(yǎng)6"d,得共培養(yǎng)后糜子胚性愈傷組織。共培養(yǎng)培養(yǎng)基中含有MS干粉2.2"g/L、蔗糖30.0"g/L、嗎啉乙磺酸1.0"g/L、2,4-二氯苯氧乙酸0.002"g/L、激動素0.0005"g/L、乙酰丁香酮0.04"g/L和植物凝膠4.0"g/L,pH"5.4。
1.2.4""抗性愈傷的篩選""將共培養(yǎng)后糜子胚性愈傷組織轉(zhuǎn)移至愈傷篩選培養(yǎng)基上,每皿約20~30粒共培養(yǎng)后糜子胚性愈傷組織,24"℃暗培養(yǎng)2周,完成一次繼代,轉(zhuǎn)至光照培養(yǎng)2周(光照培養(yǎng)是于24"℃采用12"h/12"h光/暗培養(yǎng)),完成第二次繼代,整個共培養(yǎng)篩選過程繼代2次,每2周繼代1次,共培養(yǎng)篩選總用時1個月,得抗性愈傷組織。愈傷篩選培養(yǎng)基中含有MS干粉4.4"g/L、蔗糖30.0"g/L、七水合硫酸鋅0.035"g/L、五水合硫酸銅0.0006"g/L、激動素0.0005"g/L、2,4-二氯苯氧乙酸0.002"g/L、植物凝膠9.0"g/L、特美汀0.5"g/L和潮霉素0.025"g/L,pH"5.8。
1.2.5""分化和生根""先從愈傷篩選培養(yǎng)基中將抗性愈傷組織轉(zhuǎn)移至第一階段分化培養(yǎng)基中,于24"℃采用12"h/12"h的光/暗培養(yǎng)方式進行光培養(yǎng)2周,再轉(zhuǎn)接至第二階段分化培養(yǎng)基中,24"℃采用12"h/12"h的光/暗培養(yǎng)方式進行光培養(yǎng)2周,得苗高約2"cm的分化幼苗。將分化幼苗接入生根培養(yǎng)基中,于24"℃采用12"h/12"h的光/暗培養(yǎng)方式進行生根培養(yǎng)1~2周得糜子的抗性再生植株。第一階段分化培養(yǎng)基中含有MS干粉4.4"g/L、蔗糖30.0"g/L、MS微量元素母液(1000′)1.0"mL/L、MS維生素(1000′)1.0"mL/L、6-芐氨基嘌呤0.003"g/L、激動素0.003"g/L、2,4-二氯苯氧乙酸0.001"g/L、椰子水5%(V/V)、特美汀0.5"g/L、潮霉素0.015"g/L、稀釋5000倍的軟骨素1.0"mL/L和植物凝膠9.0"g/L,pH"5.8。第二階段分化培養(yǎng)基中含有MS干粉4.4nbsp;g/L、蔗糖20.0"g/L、MS微量元素母液(1000′)1nbsp;mL/L、MS維生素(1000′)1"mL/L、6-芐氨基嘌呤0.001"g/L、激動素(KT)0.001"g/L、2,4-二氯苯氧乙酸0.0005"g/L、椰子水5%(V/V)、特美汀0.5"g/L、潮霉素0.015"g/L、稀釋5000倍的軟骨素1.0"mL/L和植物凝膠9.0"g/L,pH"5.8。生根培養(yǎng)基中含有MS干粉2.2"g/L、蔗糖15.0"g/L、MS微量元素母液(1000′)1.0"mL/L、MS維生素(1000′)1.0"mL/L、3-吲哚丁酸0.0005"g/L、特美汀0.5"g/L、潮霉素0.015"g/L和植物凝膠9.0"g/L,pH"5.8。
1.2.6""抗性再生植株的PCR鑒定""糜子的抗性再生植株用水洗掉培養(yǎng)基,移栽到植物培養(yǎng)箱中利用營養(yǎng)土進行栽培,栽培過程中待轉(zhuǎn)基因植株長到20"cm高后,剪取葉片提取其基因組DNA。以上述DNA為模板,對抗性再生植株進行了潮霉素抗性基因HPT和載體特異序列M1的PCR檢測,使用的檢測引物見表1。PCR檢測使用的酶為Taq"Mix,反應(yīng)體系為:無菌水9.5"μL、引物(10"μmol/L)各1.0"μL、Taq"Mix"12.5"μL、DNA模板1.0"μL。PCR擴增程序為:95"℃預(yù)變性5"min;95"℃變性30"s,60"℃退火30"s,72"℃延伸30"s,35個循環(huán);72"℃延伸7"min。PCR擴增產(chǎn)物經(jīng)2%的瓊脂糖凝膠電泳分離檢測。根據(jù)不同批次的糜子轉(zhuǎn)化實驗統(tǒng)計糜子的抗性再生植株的篩選效率和轉(zhuǎn)化效率。其中,篩選效率=PCR陽性的抗性再生植株數(shù)量/抗性再生植株數(shù)量×100%;轉(zhuǎn)化效率=PCR陽性的抗性再生植株數(shù)量/胚性愈傷誘導(dǎo)組織數(shù)量×100%。
2.1""糜子的胚性愈傷誘導(dǎo)
為考察添加細胞分裂素和生長素對愈傷組織形成的影響,在愈傷誘導(dǎo)階段設(shè)置了2種培養(yǎng)基CIM和MSD。結(jié)果表明,CIM和MSD培養(yǎng)基均能誘導(dǎo)糜子胚性愈傷,但CIM誘導(dǎo)效率更高(圖2),表明KT的添加對糜子愈傷的誘導(dǎo)有促進作用。糜子的胚性愈傷組織致密,非水漬狀,其在CIM培養(yǎng)基上誘導(dǎo)的不同階段的狀態(tài)見圖3。
2.2""抗性愈傷的篩選、分化和生根
糜子胚性愈傷在篩選培養(yǎng)基上暗培養(yǎng)2周后,糜子胚性愈傷會發(fā)生褐化,將糜子愈傷轉(zhuǎn)至光培養(yǎng)2周,期間會有抗性愈傷的生長,抗性愈傷會分化出綠色的組織(圖4A),轉(zhuǎn)至分化培養(yǎng)基上繼續(xù)培養(yǎng)會分化出糜子再生苗。將糜子再生苗幼苗接入生根培養(yǎng)基中進行生根培養(yǎng)1~2周,即為抗性苗(圖4B)。具體生根培養(yǎng)時間根據(jù)幼苗大小決定,待生根完成后,得糜子的抗性再生植株,整個轉(zhuǎn)化周期約為12~16周。
2.3""糜子再生苗的PCR檢測
將糜子的抗性再生植株移栽到植物培養(yǎng)箱培養(yǎng)至約20"cm高時進行PCR檢測,HPT和M1的檢測結(jié)果為陽性,即為抗性轉(zhuǎn)基因苗。多個糜子抗性再生植株的HPT和M1的PCR檢測結(jié)果如圖5所示,糜子的抗性再生植株都能擴增出目的基因HPT和M1,而野生型對照(CK-)、DNA提取對照(CK1)和空白對照(CK2)均未擴增出目的條帶,說明這些抗性再生植株均為轉(zhuǎn)基因陽性植株,目的載體已經(jīng)成功導(dǎo)入到糜子基因組中。根據(jù)3個批次的糜子轉(zhuǎn)化實驗結(jié)果統(tǒng)計糜子的抗性再生植株的篩選效率和轉(zhuǎn)化效率(表2),結(jié)果表明,本方法獲得的糜子抗性再生植株的篩選效率為100%,平均轉(zhuǎn)化效率約為30.4%。
糜子是起源于我國的最古老農(nóng)作物之一,曾經(jīng)是我國北方重要栽培作物,但隨著農(nóng)業(yè)生產(chǎn)的發(fā)展,逐漸退出主栽作物地位成為區(qū)域特色作物,主要原因是糜子產(chǎn)量沒有大的突破,品質(zhì)沒有根本提升[9]。近年來,膳食結(jié)構(gòu)多樣化成為人們追求健康生活的需求,雜糧倍受重視,糜子作為藥食同源作物展現(xiàn)了新的種植前景[17]。因此,改良糜子品質(zhì)和提高糜子產(chǎn)量對糜子的產(chǎn)業(yè)發(fā)展具有重要意義?,F(xiàn)代基因工程技術(shù)的發(fā)展為糜子提供了快速有效的轉(zhuǎn)基因育種的途徑。
有效的遺傳轉(zhuǎn)化對于轉(zhuǎn)基因育種至關(guān)重要,但目前針對糜子的遺傳轉(zhuǎn)化方法僅在近3年開始有少量報道。2021年,申請?zhí)枮?02111531566.3的中國發(fā)明專利申請公開了一種黍?qū)僦参锏倪z傳轉(zhuǎn)化方法,其采用基因槍轟擊法獲得了糜子的轉(zhuǎn)基因植株[18]。但該方法可能引起突變、丟失和基因沉默等問題,不利于外源基因在糜子中穩(wěn)定表達,同時還具有操作復(fù)雜、命中率低、轉(zhuǎn)化效率低、育種成本高等缺點。2024年,研究者成功利用農(nóng)桿菌介導(dǎo)法獲得了糜子的基因編輯植株。LIU等[19]利用農(nóng)桿菌介導(dǎo)法將基因編輯載體導(dǎo)入糜子品種Hongmi的基因組中,以潮霉素抗性基因為篩選標(biāo)記獲得了八氫番茄紅素脫氫酶(PDS)基因敲除的轉(zhuǎn)基因植株,轉(zhuǎn)基因植株出現(xiàn)白化癥狀。此外,LU等[20]也利用農(nóng)桿菌介導(dǎo)法將基因編輯載體導(dǎo)入糜子品種Longmi4的基因組中,以潮霉素抗性基因為篩選標(biāo)記獲得了Pmsd1敲除的轉(zhuǎn)基因植株,轉(zhuǎn)基因植株出現(xiàn)明顯的矮化癥狀。雖然上述研究已經(jīng)通過基因槍法或農(nóng)桿菌介導(dǎo)法獲得了糜子的轉(zhuǎn)基因株系,但由于農(nóng)桿菌介導(dǎo)的轉(zhuǎn)化法受基因型的限制,不同品系的胚性愈傷誘導(dǎo)能力、農(nóng)桿菌侵染能力、愈傷脫分化能力均不同,導(dǎo)致不同品系的轉(zhuǎn)化效率也存在較大差異。因此,針對不同品種的糜子的遺傳轉(zhuǎn)化方法仍需進行各項條件的摸索。
本研究以糜子品種冀黍5號的成熟種子為外植體,采用CIM培養(yǎng)基誘導(dǎo)糜子胚性愈傷,以潮霉素抗性基因為篩選標(biāo)記經(jīng)過抗性愈傷的篩選、分化和生根獲得了糜子的轉(zhuǎn)基因植株。本研究建立的糜子遺傳轉(zhuǎn)化方法與上述糜子遺傳轉(zhuǎn)化研究[19-20]中的方法有諸多不同:上述研究中愈傷誘導(dǎo)使用的激素為2,4-二氯苯氧乙酸或2,4-二氯苯氧乙酸和6-芐氨基嘌呤,而本研究中使用的激素為2,4-二氯苯氧乙酸和激動素,有較高的愈傷誘導(dǎo)效率;上述研究中使用的農(nóng)桿菌均為EHA105,本研究使用的農(nóng)桿菌為AGL1,具有良好的侵染糜子
的效果;本研究在侵染培養(yǎng)液中添加了嗎啉乙磺酸和泊洛沙姆,起到穩(wěn)定侵染液pH的作用;LIU等[19]在糜子胚性愈傷分化時使用的激素是6-芐氨基嘌呤,而本研究經(jīng)過對分化培養(yǎng)基中的激素種類及比例的摸索,發(fā)現(xiàn)在分化階段使用2種分化培養(yǎng)基能獲得良好的分化效率,階段一和階段二培養(yǎng)基均含激素2,4-二氯苯氧乙酸、激動素和6-芐氨基嘌呤,只是含量上有變化,同時在分化培養(yǎng)基中添加了椰子水和軟骨素,也起到促進愈傷分化的作用。LIU等[19]在糜子篩選抗性胚性愈傷時使用的潮霉素濃度為0.05"g/L,本研究中使用的潮霉素濃度為0.025"g/L,這可能是由于品種差異導(dǎo)致的。本研究建立的冀黍5號的遺傳轉(zhuǎn)化方法獲得的抗性再生植株P(guān)CR鑒定的陽性率為100%,平均轉(zhuǎn)化效率30%以上,而LIU等[19]建立Hongmi的遺傳轉(zhuǎn)化方法的平均轉(zhuǎn)化效率僅為16.7%。
本研究建立了糜子品種冀黍5號的農(nóng)桿菌介導(dǎo)的高效遺傳轉(zhuǎn)化方法,轉(zhuǎn)化周期為12~16周,操作簡單,轉(zhuǎn)化效率高,成本低廉,且轉(zhuǎn)化不受季節(jié)限制,能規(guī)?;_展,為糜子品種的遺傳改良提供有效的技術(shù)手段。
參考文獻
[1]"BHAT"S,"NANDINI"C,"SRINATHAREDDY"S,"JAYARAME"G."Proso"millet"(Panicum"miliaceum"L.)-a"climate"resilient"crop"for"food"and"nutritional"security:"a"review[J]."Environment"Conservation"Journal,"2019,"20(3):"113-124.
[2]"FLAJ?MAN"M,"?TAJNER"N,"KOCJAN"A?KO"D."Genetic"diversity"and"agronomic"performance"of"Slovenian"landraces"of"proso"millet"(Panicum"miliaceum"L.)[J]."Turkish"Journal"of"Botany,"2019,"43(2):"185-195.
[3]"CALAMAI"A,"MASONI"A,"MARINI"L,"DELL’ACQUA"M,"GANUGI"P,"BOUKAIL"S,"BENEDETTELLI"S,"PALCHETTI"E."Evaluation"of"the"agronomic"traits"of"80"accessions"of"proso"millet"(Panicum"miliaceum"L.)"under"mediterranean"pedoclimatic"conditions[J]."Agriculture,"2020,"10(12):"578.
[4]"GHIMIRE"B"K,"YU"C"Y,"KIM"S"H,"CHUNG"I"M.nbsp;Diversity"in"accessions"of"Panicum"miliaceum"L."based"on"agro-mor phological,"antioxidative,"and"genetic"traits[J]."Molecules,"2019,"24(6):"1012.
[5]"王綸,"王星玉,"喬治軍,"溫琪汾,"康國帥."中國黍稷種質(zhì)資源收集、保護、創(chuàng)新與共享利用[J]."植物遺傳資源學(xué)報,"2015,"16(2):"422-427."WANG"L,"WANG"X"Y,"QIAO"Z"J,"WEN"Q"F,"KANG"G"S."Collection,"conservation,"enhancement,"share"and"utilization"of"proso"millet"germplasm"resource"in"China[J]."Journal"of"Plant"Genetic"Resources,"2015,"16(2):"422-427."(in"Chinese)
[6]"曹越,"辛旭霞,"馮智尊,"郭娟,"王曉丹,"曹曉寧,"SANTRA"D"K,"陳凌,"喬治軍,"王瑞云."基于熒光SSR的寧夏糜子DNA分子身份證的構(gòu)建[J]."作物學(xué)報,"2024,"50(11):"2699-2711.
CAO"Y,"XIN"X"X,"FENG"Z"Z,"GUO"J,"WANG"X"D,"CAO"X"N,"SANTRA"D"K,"CHEN"L,"QIAO"Z"J,"WANG"R"Y."Construction"of"DNA"molecular"identity"card"of"Ningxia"proso"millet"based"on"fluorescent"SSR[J]."Acta"Agronomica"Sinica,"2024,"50(11):"2699-2711."(in"Chinese)
[7]"盤婉向,"劉天鵬,"何繼紅,"董孔軍,"任瑞玉,"張磊,"楊天育."糜子(Panicum"miliaceum"L.)全基因組YABBY基因家族鑒定與高滲溶液脅迫下表達特征[J]."基因組學(xué)與應(yīng)用生物學(xué),"2022,"41(5):"1067-1078.PAN"W"X,"LIU"T"P,"HE"J"H,"DONG"K"J,"REN"R"Y,"ZHANG"L,"YANG"T"Y."Genome-wide"identification"and"expression"characteristics"of"the"YABBY"gene"family"under"hypertonic"solution"stress"in"broomcorn"millet"(Panicum"miliaceum"L.)[J]."Genomics"and"Applied"Biology,"2022,"41(5):"1067-1078."(in"Chinese)
[8]"楊天育."糜子分子遺傳研究進展與展望[J]."寒旱農(nóng)業(yè)科學(xué),"2022,"1(1):"32-36.YANG"T"Y."Research"progress"and"prospect"on"molecular"genetics"of"millet"(Panicum"miliaceum"L.)[J]."Journal"of"Cold-Arid"Agricultural"Science,"2022,"1(1):"32-36."(in"Chinese)
[9]"孫婷婷,"胡寶忠."轉(zhuǎn)基因植物及其安全性研究進展[J]."黑龍江農(nóng)業(yè)科學(xué),"2007(2):"72-74.SUN"T"T,"HU"B"Z."Progress"on"genetically"modified"plants"and"their"securities[J]."Heilongjiang"Agricultural"Sciences,"2007(2):"72-74."(in"Chinese)
[10]"SEGATTO"R,"JONES"T,"STRETCH"D,"ALBIN"C,"CHAUHAN"R"D,"TAYLOR"N"J."Agrobacterium-mediated"genetic"transformation"of"cassava[J]."Current"Protocols,"2022,"2(12):"e620.
[11]"MOHAMMED"S,"SAMAD"A"A,"RAHMAT"Z."Agrobacterium-mediated"transformation"of"rice:"constraints"andnbsp;possible"solutions[J]."Rice"Science,"2019,"26(3):"133-146.
[12]"PURWESTRI"Y"A,"SARI"R"D"K,"ANGGRAENI"L"N,"SASONGKO"A"B."Agrobacterium"tumefaciens"mediated"transformation"of"rolC::Hd3a-GFPnbsp;in"black"rice"(Oryza"sativa"L."cv."Cempo"Ireng)"to"promote"early"flowering[J]."Procedia"Chemistry,"2015,"14:"469-473.
[13]"JIAO"P,"JIN"S,"CHEN"N,"WANG"C,"LIU"S,"QU"J,"GUAN"S,"MA"Y."Improvement"of"cold"tolerance"in"maize"(Zea"mays"L.)"using"Agrobacterium-mediated"transformation"of"ZmSAMDC"gene[J]."GM"Crops"amp;"Food,"2022,"13(1):"131-141.
[14]"TIWARI"R,"SINGH"A"K,"RAJAM"M"V."Improved"and"reliable"plant"regeneration"and"Agrobacterium-mediated"genetic"transformation"in"soybean"(Glycine"max"L.)[J]."Journal"of"Crop"Science"and"Biotechnology,"2023,"26(3):"275-284.
[15]"PRIYANKA"S,"KUMAR"S"R,"MANOJ"P."An"efficient"Agrobacterium-mediated"genetic"transformation"method"for"foxtail"millet"(Setaria"italica"L.)[J]."Plant"Cell"Reports,"2020,"39(4):"511-525.
[16]"LI"J"Q,"WANG"L"H,"ZHAN"Q"W,"FAN"F"F,"ZHAO"T,"WAN"H"B."Development"of"a"simple"and"efficient"method"for"Agrobacterium-mediated"transformation"in"sorghum[J]."International"Journal"of"Agriculture"and"Biology,"2016,"18(1):"134-138.
[17]"李錦華,"朱新強,"余成群,"沈振西,"王曉力,"李少偉,"張茜,"吳芳."西藏高海拔河谷農(nóng)區(qū)糜子種植前景展望[J]."中國草食動物科學(xué),"2023,"43(4):"54-58.LI"J"H,"ZHU"X"Q,"YU"C"Q,"SHEN"Z"X,"WANG"X"L,"LI"S"W,"ZHANG"Q,"WU"F."Prospects"of"millet"planting"in"high"altitude"valley"farming"areas"of"Tibe[J]."China"Herbivore"Science,"2023,"43(4):"54-58."(in"Chinese)
[18]"張蘅,"陳梅,"朱健康,"黃娟."一種黍?qū)僦参锏倪z傳轉(zhuǎn)化方法:"CN"116262931"A[P]."2023-06-16.ZHANG"H,"CHEN"M,"ZHU"J"K,"HUANG"J."A"genetic"transformation"method"for"Panicum"L.:"CN"116262931"A[P]."2023-06-16."(in"Chinese)
[19]"LIU"Y,"CHENG"Z,"CHEN"W,"WU"C,"CHEN"J,"SUI"Y."Establishment"of"genome‐editing"system"and"assembly"of"a"near‐complete"genome"in"broomcorn"millet[J]."Journal"of"Integrative"Plant"Biology,"2024,"66(8):"1688-1702.
[20]"LU"Q,"ZHAO"H,"ZHANG"Z,"BAI"Y,"ZHAO"H,"LIU"G,"LIU"M,"ZHENG"Y,"ZHAO"H,"GONG"H,"CHEN"L,"DENG"X,"HONG"X,"LIU"T,"LI"B,"LU"P,"WEN"F,"WANG"L,"LI"Z,"LI"H,"LI"H,"ZHANG"L,"MA"W,"LIU"C,"BAI"Y,"XIN"B,"CHEN"J,"E"L,"LAI "J,"SONG"W."Genomic"variation"in"weedy"and"cultivated"broomcorn"millet"accessions"uncovers"the"genetic"architecture"of"agronomic"trait[J]."Nature"Genetics,"2024,"56(5):"1006-1017.