摘""要:香草蘭是重要的天然香料經(jīng)濟(jì)作物,由尖孢鐮刀菌引起的土傳病害嚴(yán)重限制了其可持續(xù)發(fā)展,而作物輪作是防控土傳病害的有效途徑。本研究采用實(shí)時(shí)熒光定量PCR結(jié)合高通量測(cè)序方法,在溫室盆栽條件下,研究輪作胡椒/斑蘭葉/糯米香茶對(duì)香草蘭病原菌及根際土壤微生物群落的影響。結(jié)果表明:與撂荒和連作香草蘭處理相比,輪作斑蘭葉和糯米香茶顯著降低了土壤中尖孢鐮刀菌(Fusarium"oxysporum)的數(shù)量,并顯著提高了根際土壤細(xì)菌群落的豐富度和多樣性。撂荒、連作和輪作顯著誘導(dǎo)形成3種不同的群落結(jié)構(gòu),但輪作斑蘭葉和糯米香茶結(jié)構(gòu)相似。輪作后門水平上顯著增加了優(yōu)勢(shì)細(xì)菌酸桿菌門(Acidobacteria)、綠彎菌門(Chloroflexi)及Rokubacteria門,以及優(yōu)勢(shì)真菌子囊菌門(Ascomycota)的相對(duì)豐度,且屬水平上增加了優(yōu)勢(shì)細(xì)菌類諾卡氏屬(Nocardioides)的相對(duì)豐度,即輪作胡椒后該屬的相對(duì)豐度為64.26%,輪作斑蘭葉后相對(duì)豐度達(dá)到98.54%,輪作糯米香茶后則為63.07%。隨機(jī)森林結(jié)果表明,輪作斑蘭葉能特異激發(fā)Terriglobus屬、克雷伯桿菌屬(Kribbella)、粘球菌屬(Myxococcus)細(xì)菌核心類群,以及枝頂孢霉屬(Acremonium)、帚枝霉屬(Sarocladium)真菌核心類群,且輪作斑蘭葉后真菌群落物種間網(wǎng)絡(luò)互作更緊密。輪作后顯著提高土壤pH,而土壤pH、細(xì)菌和真菌群落結(jié)構(gòu)是顯著抑制病原菌的最重要指示因子。綜合表明,在長(zhǎng)期連作的香草蘭土壤中輪作短期且經(jīng)濟(jì)價(jià)值高的香料作物斑蘭葉,對(duì)緩解香草蘭土傳病害的發(fā)生效果較好。
關(guān)鍵詞:輪作;香草蘭;斑蘭葉;根際微生物;微生物群落中圖分類號(hào):Q939.96;S573.9""""""文獻(xiàn)標(biāo)志碼:A
Crop"Rotation"Effects"on"Pathogen"Dynamics"and"Rhizosphere"Microbial"Assemblages"of"Vanilla
XING"Yizhang1,"HONG"Shan2,3,4*,"YANG"Jinming5,"ZHAO"Qingyun1,"SU"Fan1,"ZHUANG"Huifa1,"WANG"Hui1
1."Spice"and"Beverage"of"Institute,"Chinese"Academy"of"Tropical"Agricultural"Sciences"/"Key"Laboratory"of"Genetic"Resources"Utilization"of"Spice"and"Beverage"Crops,"Ministry"of"Agriculture"and"Rural"Affairs"/"Hainan"Provincial"Key"Laboratory"of"Genetic"Improvement"and"Quality"Regulation"for"Tropical"Spice"and"Beverage"Crops,"Wanning,"Hainan"571533,"China;"2."Institute"of"Genetics"and"Developmental"Biology,"Chinese"Academy"of"Sciences"/"State"Key"Laboratory"of"Plant"Genomics,"Beijing"100101,"China;"3."Hainan"Seed"Industry"Laboratory,"Sanya,"Hainan"572025,"China;"4."Sanya"Institute,"Hainan"Academy"of"Agricultural"Sciences"/"Institute"of"Vegetables,"Hainan"Academy"of"Agricultural"Sciences,"Sanya,"Hainan"572025,"China;"5."School"of"Tropical"Agriculture"and"Forestry,"Hainan"University,"Haikou,"Hainan"570228,"China
Abstract:"Vanilla,"a"vital"spice"crop,"faces"significant"challenges"from"soil-borne"diseases"caused"by"Fusarium"oxysporum,"affecting"its"sustainable"cultivation."This"study"utilized"quantitative"polymerase"chain"reaction"(qPCR)"and"high-throughput"sequencing"to"assess"the"impact"of"rotating"black"pepper,"pandan,"and"sweet"rice"tea"on"pathogen"levels"and"the"rhizosphere"soil"microbial"communities"of"vanilla"plants"cultivated"in"a"pot"environment."Incorporating"pandan"and"sweet"rice"tea"into"the"crop"rotation"significantly"reduced"the"prevalence"of"F."oxysporum"and"enhanced"both"the"abundance"and"diversity"of"the"rhizosphere"soil"bacteria."Three"distinct"microbial"community"structures"associated"with"fallow,"monoculture,"and"crop"rotation"conditions"were"identified."Notably,"the"rotations"involving"pandan"and"sweet"rice"tea"showed"no"significant"differences"in"the"bacterial"and"fungal"community"compositions."Crop"rotation"notably"increased"the"relative"abundance"of"key"phyla"such"as"Acidobacteria,"Chloroflexi,"Rokubacteria"and"Ascomycota."Moreover,"the"relative"abundance"of"the"dominant"bacterial"genus"Nocardioides"increased"at"the"genus"level,"with"a"relative"abundance"of"64.26%"after"pepper"rotation,"98.54%"after"pandan"rotation,"and"63.07%"after"sweet"rice"tea"rotation."The"core"microbiome,"featuring"species"such"as"Terriglobus,"Kribbella,"Myxococcus,"Acremonium"and"Sarocladium,"showed"a"particularly"strong"response"to"the"presence"of"pandan,"suggesting"a"closer"network"interaction"among"fungal"species"post-rotation."Additionally,"crop"rotation"was"found"to"significantly"raise"the"soil"pH,"which,"along"with"the"altered"bacterial"and"fungal"community"structures,"emerged"as"critical"factors"in"disease"suppression."Collectively,"our"results"suggest"that"integrating"the"economically"valuable"spice"crop"pandan"into"the"rotation"schedule"in"vanilla"monoculture"systems"can"significantly"reduce"the"incidence"of"soil-borne"diseases,"offering"a"sustainable"cultivation"strategy"for"vanilla.
Keywords:"crop"rotation;"vanilla;"pandan;"rhizosphere"microorganisms;"microbial"community
DOI:"10.3969/j.issn.1000-2561.2025.01.020
"
香草蘭(Vanilla"planifolia),隸屬于蘭科香草蘭屬,是一種多年生的熱帶藤本攀緣植物。以其獨(dú)特的香氣和風(fēng)味被譽(yù)為“天然食品香料之王”[1],享有極高的聲譽(yù)。但因其易受土傳病原真菌尖孢鐮刀菌(Fusarium"oxysporum"f."sp."vanilla)侵染而引發(fā)嚴(yán)重的連作障礙,造成產(chǎn)量下降和品質(zhì)降低。前期研究表明,長(zhǎng)期連作后加劇香草蘭枯萎病的發(fā)生可歸因于土壤微生物群落組成和結(jié)構(gòu)的改變,即有益微生物的減少和真菌病原菌的積累[2]。
土壤微生物群落是增強(qiáng)作物抗病和抗逆能力的關(guān)鍵因素[3]。土壤微生物群落的多樣性與作物的健康狀況緊密相關(guān)[4]。研究指出,土壤中功能微生物的多樣性可以提高作物對(duì)病害的抵抗力,并通過(guò)促進(jìn)營(yíng)養(yǎng)吸收和產(chǎn)生抗菌化合物來(lái)增強(qiáng)作物的抗逆性[5]。土壤微生物尤其是真菌,對(duì)土壤結(jié)構(gòu)的形成和維持起著重要作用[6]。它們通過(guò)分泌膠結(jié)物質(zhì)促使形成土壤微團(tuán)聚體,進(jìn)而影響土壤的水分保持能力和通氣性,從而促進(jìn)作物健康生長(zhǎng)[7]。此外,農(nóng)業(yè)管理措施包括耕作方式和作物輪作,對(duì)土壤微生物群落的組成和功能有顯著的正向調(diào)控作用[8-9]。
作物輪作通過(guò)調(diào)控土壤微生物群落的豐富度和多樣性以保障土壤和作物健康,是環(huán)境友好且經(jīng)濟(jì)可行的防控土傳病害的綠色措施[10]?;诖?,團(tuán)隊(duì)前期開(kāi)發(fā)了胡椒(Piper"nigrum"L.)-香草蘭和咖啡(Coffea"L.)-香草蘭輪作模式,發(fā)現(xiàn)輪作胡椒能顯著增加真菌木霉屬(Trichoderma)和青霉屬(Penicillium)的有益類群。通過(guò)重塑真菌群落結(jié)構(gòu)和組成,從而實(shí)現(xiàn)高效抗病[11]。但胡椒也是多年生香料作物,如何在有限的耕地上結(jié)合時(shí)下農(nóng)業(yè)生產(chǎn)短平快的經(jīng)濟(jì)種植效益需求,開(kāi)發(fā)出更多既能緩解香草蘭連作障礙又能收獲經(jīng)濟(jì)效益高的輪作作物,對(duì)香草蘭產(chǎn)業(yè)的可持續(xù)發(fā)展具有重要的作用。
根際核心微生物是一類關(guān)鍵的指示性物種,它們通過(guò)與植物的互動(dòng)或在微生物之間的相互作用,對(duì)微生物群落的結(jié)構(gòu)進(jìn)行調(diào)控[12]。團(tuán)隊(duì)前期研究發(fā)現(xiàn),在香草蘭長(zhǎng)期連作系統(tǒng)中,與抑制香草蘭枯萎病較相關(guān)的是真菌群落的變化,且是以抑病核心微生物被孢霉菌屬(Mortierella)為主[13]。此外,研究團(tuán)隊(duì)還發(fā)現(xiàn)了土壤理化性質(zhì),尤其是pH的變化對(duì)微生物群落結(jié)構(gòu)和根際核心微生物的豐度有顯著影響[14]。鑒于此,將土壤理化特性與微生物群落分析相結(jié)合,對(duì)于深入理解輪作對(duì)香草蘭土傳枯萎病的抑制機(jī)制至關(guān)重要[15]。
以往有關(guān)輪作提高香草蘭抗病機(jī)制的研究大多聚焦于多年生香料作物,且側(cè)重從土壤真菌微生物群落角度解析香草蘭抑病機(jī)制,而缺乏解析土壤細(xì)菌微生物群落及將土壤微生物和土壤理化因子聯(lián)合深度挖掘其相關(guān)機(jī)制的研究。據(jù)此,本研究在團(tuán)隊(duì)前期開(kāi)發(fā)胡椒的基礎(chǔ)上,結(jié)合新形勢(shì)下香草蘭的產(chǎn)業(yè)需求,篩選出熱帶地區(qū)極具特色,生產(chǎn)上種植周期短、經(jīng)濟(jì)效益價(jià)值高的香料作物——斑蘭葉(Pandanus"amaryllifolius)和糯米香茶(Strobilanthes"tonkinensis"Lindau)構(gòu)建胡椒-香草蘭/斑蘭葉-香草蘭/糯米香茶-香草蘭輪作新模式。通過(guò)熒光定量PCR和高通量測(cè)序的方法,評(píng)估這3種輪作模式對(duì)香草蘭病原菌及根際土壤微生物群落的影響,以期為香草蘭土傳病害的防控提供新視角和理論依據(jù)。"""
供試連作香草蘭品種為墨西哥香草蘭(Vanilla"planifolia"Andrews);輪作作物選取熱帶地區(qū)特色的香料作物——胡椒/斑蘭葉/糯米香茶,均由中國(guó)熱帶農(nóng)業(yè)科學(xué)院香料飲料研究所提供。
1.2.1""試驗(yàn)設(shè)計(jì)""盆栽試驗(yàn)于2022年4月至2023年4月在中國(guó)熱帶農(nóng)業(yè)科學(xué)院香料飲料研究所溫室大棚中開(kāi)展。采集香草蘭枯萎病發(fā)病嚴(yán)重且連續(xù)種植10"a以上的香草蘭土壤。以連種香草蘭(X)為連作對(duì)照,同時(shí)設(shè)置撂荒負(fù)對(duì)照(CK),以種植胡椒(H)、斑蘭葉(B)及糯米香茶(C)為輪作模式作物。采用隨機(jī)區(qū)組設(shè)計(jì),每個(gè)處理設(shè)立3次生物學(xué)重復(fù),每個(gè)重復(fù)種植6盆,每盆1株。每盆填充15"kg土壤,花盆規(guī)格為32"cm×"25"cm,確保每盆植物之間有足夠的空間,并且相互獨(dú)立,避免潛在的交叉影響。
每個(gè)花盆施加90"g普通有機(jī)肥料,肥料一次性與采集土壤混合,確保肥料在每盆土壤中分布均勻。斑蘭葉作物遵循農(nóng)業(yè)生產(chǎn)操作,于盆栽4個(gè)月時(shí)進(jìn)行1次收割,采收后繼續(xù)留苗種植。化學(xué)肥料施用方案則參照傳統(tǒng)農(nóng)事操作,于盆栽12個(gè)月后采集根際土壤樣品。
1.2.2""根際土壤樣品采集""每個(gè)處理隨機(jī)選取9盆(9個(gè)重復(fù)),將香草蘭/胡椒/斑蘭葉/糯米香茶植株從土壤中輕輕拔出,保存至4"℃冰盒中迅速帶回實(shí)驗(yàn)室,輕抖植物根系,抖落下的與植物根系緊密結(jié)合的土壤視為根際土壤[16]。
1.2.3""土壤樣品的理化性質(zhì)測(cè)定""土壤理化性質(zhì)測(cè)定參照《土壤農(nóng)化分析》[17]中的相關(guān)方法。使用玻璃電極酸度計(jì)測(cè)定土壤懸濁液pH;采用重鉻酸鉀氧化結(jié)合外加熱方法測(cè)定土壤有機(jī)質(zhì)含量;利用堿解擴(kuò)散法測(cè)定土壤堿解氮含量;采用鉬銻抗比色法分析土壤速效磷含量;利用火焰光度計(jì)測(cè)定土壤速效鉀含量。
1.2.4""樣品總DNA的提取""準(zhǔn)確稱取0.4"g各處理的根際土壤。使用強(qiáng)力土壤DNA提取試劑盒(MoBio"Laboratories,"Carlsbad,"CA,"USA)提取DNA。參照試劑盒說(shuō)明書進(jìn)行試驗(yàn)操作。提取后將所得DNA樣本存放于-70"℃冰箱中,備用。
1.2.5""香草蘭根際土壤病原菌總豐度測(cè)定""采用實(shí)時(shí)熒光定量PCR技術(shù)測(cè)定香草蘭病原菌的總豐度。病原菌特異性擴(kuò)增引物為AFP308R和ITS1F[13]。采用含有尖孢鐮刀菌(Fusarium"oxysporum)ITS區(qū)域序列的質(zhì)粒,通過(guò)10倍稀釋法建立標(biāo)準(zhǔn)曲線。利用ABI7500實(shí)時(shí)熒光定量PCR儀,按照PCR模板程序?qū)?biāo)準(zhǔn)曲線和樣本進(jìn)行測(cè)定。PCR擴(kuò)增體系:總體積20"μL,包含10"μL"SYBR?"Premix"Ex"Taq?"(2倍濃度,TaKaRa"Bio"Inc.,"Japan),每種引物0.4"μL(濃度達(dá)到10"μmol/L),0.4"μL"ROX"Reference"Dye"Ⅱ(50倍濃度),2"μL"DNA模板,6.8"μL無(wú)菌水。通過(guò)分析溶解曲線和擴(kuò)增效率來(lái)評(píng)估PCR的擴(kuò)增效果。每個(gè)樣本進(jìn)行3次獨(dú)立測(cè)定,所得數(shù)據(jù)進(jìn)行對(duì)數(shù)轉(zhuǎn)換,以每克干土對(duì)數(shù)拷貝數(shù)呈現(xiàn)結(jié)果。
1.2.6""香草蘭根際土壤樣品擴(kuò)增子建庫(kù)測(cè)序""土壤細(xì)菌的16S"rRNA基因V4區(qū)域的擴(kuò)增采用特異性引物520F和802R[18]。對(duì)于土壤真菌,擴(kuò)增ITS區(qū)域的ITS1片段,使用的引物為ITS5F和ITS1R[19]。擴(kuò)增過(guò)程中樣本會(huì)加上Barcodes/Linkers和Adapters以備測(cè)序。PCR擴(kuò)增體系:25"μL"總混合體系,5倍反應(yīng)緩沖液5"μL,5倍GC緩沖液5"μL,10"μmol/L的引物1"μL,模板DNA"2"μL,100"mmol/L"dNTP"5"μL,以及無(wú)酶水8.75"μL。PCR擴(kuò)增參數(shù)設(shè)置:98"℃預(yù)變性,持續(xù)2"min;98"℃變性,持續(xù)15"s;細(xì)菌擴(kuò)增的退火溫度為55"℃,持續(xù)30"s;真菌擴(kuò)增的退火溫度為50"℃,同樣持續(xù)30"s;72"℃延伸,30"s;28~30個(gè)循環(huán)。
PCR擴(kuò)增后的產(chǎn)物通過(guò)QIAquick"PCR"Purification"Kit(德國(guó)QIAGEN公司)進(jìn)行純化處理。純化后的DNA樣本利用Qubit?2.0"Fluorometer(美國(guó)Invitrogen公司)測(cè)定其濃度。隨后,采用NEB"Next?"UltraTM"DNA"Library"Prep"Kit"for"Illumina(英國(guó)New"England"Biolabs公司)對(duì)等濃度混合的測(cè)序樣本構(gòu)建測(cè)序文庫(kù)。
構(gòu)建的文庫(kù)質(zhì)量通過(guò)Agilent"2100"Bioanalyzer"Instruments(美國(guó)Agilent"Technologies"Co."Ltd)和KAPA"Library"Quantification"Kits(美國(guó)Kapa"Biosystems公司)進(jìn)行檢測(cè)和驗(yàn)證。從文庫(kù)構(gòu)建到測(cè)序均由上海派森諾生物科技股份有限公司完成。
1.2.7""香草蘭根際土壤樣品數(shù)據(jù)生物信息學(xué)分析""原始測(cè)序數(shù)據(jù)首先通過(guò)Trimmomatic軟件[20](v0.33)進(jìn)行質(zhì)量篩選,去除低質(zhì)量的序列;利用Cutadapt[21](v1.9.1)識(shí)別并剪除引物序列;利用USEARCH[22](v10)對(duì)成對(duì)的序列進(jìn)行合并,并使用UCHIME[23](v8.1)去除嵌合體,獲得純凈的高質(zhì)量序列。
使用QIIME2[24](v2020.6)中的DADA2[25]算法對(duì)經(jīng)過(guò)質(zhì)量控制的數(shù)據(jù)進(jìn)行去噪處理。以測(cè)序所得序列總數(shù)的0.005%作為閾值,用于篩選和過(guò)濾掉異常序列變體。使用RDP"classifier工具對(duì)擴(kuò)增的序列變體(ASV)進(jìn)行序列比對(duì)分析,細(xì)菌的序列與RDP"Bacterial"16S"rRNA數(shù)據(jù)庫(kù)[26]進(jìn)行匹配,真菌的序列與UNITE"Fungal"ITS數(shù)據(jù)庫(kù)[27]進(jìn)行比對(duì),確保準(zhǔn)確識(shí)別其分類。"
在完成測(cè)序數(shù)據(jù)的質(zhì)量控制后,共鑒定出327"794個(gè)細(xì)菌的序列變體(ASVs)和12"633個(gè)真菌的ASVs。Chao1和ACE指數(shù)用于評(píng)估微生物群落的物種豐富度,而Shannon和Invsimpson指數(shù)則用于衡量群落的多樣性。采用基于Bray-Curtis距離矩陣的主坐標(biāo)分析(PCoA)和層次聚類分析測(cè)定微生物群落的Beta多樣性,并通過(guò)多元置換方差分析(PERMANOVA)來(lái)檢驗(yàn)不同群落間的差異是否具有統(tǒng)計(jì)學(xué)意義。每個(gè)ASV的相對(duì)豐度以其在樣本中序列數(shù)占總序列數(shù)的百分比來(lái)表示。
利用randomForest包分析輪作作物間差異特異富集的核心微生物。網(wǎng)絡(luò)分析部分使用ggCluster Net包制圖,篩選出相關(guān)系數(shù)(r)gt;0.8且Plt;0.05
的數(shù)據(jù)點(diǎn)構(gòu)建微生物間的相關(guān)性網(wǎng)絡(luò)圖。以上分析均在R軟件中完成。
采用Duncan’s新復(fù)極差法統(tǒng)計(jì)分析不同處理間的病原菌豐度、微生物多樣性指數(shù)、微生物門和屬水平的組成,以及土壤理化因子之間的差異顯著性;利用R語(yǔ)言中的vegan包進(jìn)行線性擬合,探究病原菌與微生物多樣性、群落結(jié)構(gòu)及組成之間的關(guān)系;采用一般線性模型(逐步回歸分析)的方法評(píng)估細(xì)菌和真菌群落及其多樣性和核心物種在抑制病原菌方面的潛力。
ITS測(cè)序結(jié)果發(fā)現(xiàn),與撂荒(CK)和香草蘭連作(X)處理相比,輪作胡椒(H)、斑蘭葉(B)和糯米香茶(C)后根際土壤中的鐮刀菌屬(Fusarium)相對(duì)豐度均無(wú)顯著差異,但輪作斑蘭葉后呈降低趨勢(shì),且輪作斑蘭葉顯著低于輪作糯米香茶處理(Plt;0.05,圖1A)。qPCR熒光定量結(jié)果則表明,與撂荒和香草蘭連作處理相比,輪作斑蘭葉和糯米香茶后則能顯著降低土壤中病原菌尖孢鐮刀菌(F."oxysporum)的拷貝數(shù)(Plt;0.05,圖1B)。以上結(jié)果表明,輪作斑蘭葉能有效降低土壤中病原菌的數(shù)量。
"
"
由表1可知,與香草蘭連作處理相比,輪作斑蘭葉和糯米香茶均能顯著提高土壤細(xì)菌群落的豐富度和多樣性(Plt;0.05),但二者之間無(wú)顯著差異;輪作胡椒能顯著提高土壤細(xì)菌群落的豐富度。對(duì)真菌群落而言,與撂荒和香草蘭連作處理相比,輪作斑蘭葉能顯著降低根際土壤微生物細(xì)菌群落的豐富度和多樣性(Plt;0.05);而與香草蘭連作處理相比,輪作胡椒顯著降低土壤真菌群落的豐富度。
土壤細(xì)菌方面,通過(guò)PCoA分析發(fā)現(xiàn),根際土壤細(xì)菌群落變異形成了撂荒、香草蘭連作及輪
"
作(胡椒/斑蘭葉/糯米香茶)3種不同典型栽培模式的結(jié)構(gòu)(圖2A)。而基于置換多元方差分析(PERMANOVA)表明,撂荒、連作和輪作分組間的群落結(jié)構(gòu)呈顯著差異(R2=0.34,"Plt;0.01)。進(jìn)一步層次聚類分析也表明,撂荒處理和連作香草蘭處理樣本間重復(fù)性良好,均能獨(dú)立聚為一簇,胡椒輪作也能聚為一簇,但輪作斑蘭葉和輪作糯米香茶群落結(jié)構(gòu)極為相似,無(wú)明顯分區(qū)(圖2B)。細(xì)菌高通量測(cè)序結(jié)果表明,與連作香草蘭相比,輪作在優(yōu)勢(shì)門水平上顯著增加酸酐菌門(Acidoba cteria)、綠彎菌門(Chloroflexi)及Rokubacteria門類群的相對(duì)豐度(Plt;0.05,圖3A)。屬水平分析則發(fā)現(xiàn),與連作香草蘭相比,輪作胡椒/斑蘭葉/糯米香茶處理則不同程度上顯著增加類諾卡氏屬(No cardioides)微生物,其增幅分別達(dá)到64.26%、98.54%和63.07%(圖2B)。
土壤真菌方面,通過(guò)PCoA分析表明,根際真菌土壤微生物群落也形成了撂荒、香草蘭連作及輪作(胡椒/斑蘭葉/糯米香茶)3種不同的結(jié)構(gòu)(圖2C)。且經(jīng)過(guò)置換多元方差檢驗(yàn)也證實(shí)3種不同的群落結(jié)構(gòu)呈顯著差異(R2=0.32,"Plt;0.01)。層次聚類結(jié)果表明,撂荒處理和香草蘭連作處理單獨(dú)聚為一類,輪作胡椒/斑蘭葉/糯米香茶的群落結(jié)構(gòu)相似,錯(cuò)綜交叉聚集,無(wú)明顯區(qū)分(圖2D)。基于ITS高通量測(cè)序則發(fā)現(xiàn),與連作香草蘭相比,輪作在優(yōu)勢(shì)門水平上顯著增加子囊菌門(Ascomycota)類群的相對(duì)豐度(Plt;0.05,圖3B)。屬水平分析則發(fā)現(xiàn),與連作香草蘭相比,輪作處理能特異顯著增加Ascobolus屬微生物的相對(duì)豐度,輪作胡椒、斑蘭葉和糯米香茶處理的Ascobolus屬相對(duì)豐度分別為4.69%、4.85%、1.75%,而連作香草蘭處理的相對(duì)豐度僅為0.01%(圖2D)。
線性回歸分析結(jié)果表明,土壤細(xì)菌微生物群落豐富度(Chao指數(shù))、多樣性(Shannon指數(shù))及群落結(jié)構(gòu)(PCoA1)均與香草蘭枯萎病病原菌F."oxysporum拷貝數(shù)存在顯著負(fù)相關(guān)關(guān)系(Plt;"0.05,圖4A~圖4C);而土壤細(xì)菌中僅有門水平上的放線菌門(Actinobacteria)和綠彎菌門(Chloroflex)類群的相對(duì)豐度與病原菌F."oxysporum拷貝數(shù)呈顯著負(fù)相關(guān)(Plt;0.05,圖4D~圖4K);土壤真菌方面,真菌群落結(jié)構(gòu)(PCoA1)、群落豐富度(Chao指數(shù))及真菌組成子囊菌門(Ascomycota)類群相對(duì)豐度均與病原菌F."oxysporum拷貝數(shù)呈顯著負(fù)相關(guān)(Plt;0.05,圖4L~圖4O)。
為了識(shí)別撂荒、連作和輪作樣本間的差異關(guān)鍵核心物種,采用隨機(jī)森林分析并根據(jù)物種的貢獻(xiàn)度權(quán)重高低進(jìn)行排序,排名前10的ASV物種如圖5所示。在細(xì)菌中,與連作香草蘭處理相比,輪作斑蘭葉和糯米香茶能特異富集ASV122517、ASV8386及ASV275757物種(Plt;0.05),且均與病原菌F."oxysporum呈顯著負(fù)相關(guān)(Plt;0.05,圖5A~圖5B)。而在真菌中,與連作香草蘭相比,輪作斑蘭葉能特異顯著富集ASV5998及ASV7292物種(Plt;0.05),且與病原菌F."oxysporum呈顯著負(fù)相關(guān)(Plt;0.05);而輪作糯米香茶后則能顯著富集ASV5434(Plt;"0.05),與病原菌F."oxysporum同樣呈顯著負(fù)相關(guān)關(guān)系(Plt;0.05,圖5C~圖5D)。
撂荒、連作及輪作處理的根際細(xì)菌和真菌相關(guān)性網(wǎng)絡(luò)具有明顯差異(圖6)。每個(gè)圓點(diǎn)代表1個(gè)ASV物種,并被注釋到門水平;橘黃色代表物種間呈正相關(guān),藍(lán)色代表物種間呈負(fù)相關(guān)。每個(gè)處理的網(wǎng)絡(luò)拓?fù)湫再|(zhì)如表2所示。結(jié)果表明,在細(xì)菌中,與連作香草蘭負(fù)相關(guān)連接數(shù)(43.55%)相比,輪作胡椒處理節(jié)點(diǎn)的負(fù)相關(guān)連接為38.89%,而輪作斑蘭葉和糯米香茶的則分別為45.45%和50.00%。連作與輪作之間的節(jié)點(diǎn)平均度差異不顯著,但輪作斑蘭葉和糯米香茶處理的平均聚類系數(shù)高于連作處理,特別是輪作斑蘭葉后平均聚類系數(shù)達(dá)0.50,而連作香草蘭的僅為0.19(圖6A)。
在真菌中(表2),與連作香草蘭相比,輪作胡椒/斑蘭葉/糯米香茶均不同程度地減少了節(jié)點(diǎn)負(fù)相關(guān)的連接數(shù),增加了平均度和平均聚類系數(shù)。與連作香草蘭負(fù)相關(guān)連接數(shù)(9.89%)相比,輪作胡椒處理的負(fù)相關(guān)連接數(shù)為2.68%,輪作斑蘭葉的僅為1.23%,而輪作糯米香茶的為3.47%,表明輪作后根際土壤真菌群落結(jié)構(gòu)更穩(wěn)定。與連作香草蘭節(jié)點(diǎn)平均度相比,輪作胡椒/斑蘭葉/糯米香茶的節(jié)點(diǎn)平均度均不同程度的增加,特別是輪作斑蘭葉后的真菌網(wǎng)絡(luò)節(jié)點(diǎn)平均度達(dá)到5.74,增加了2倍,菌群連接更緊密。此外,真菌類群在微生物網(wǎng)絡(luò)中的節(jié)點(diǎn)平均度普遍高于細(xì)菌類群,特別是子囊菌門(Ascomycota)類群(圖6B),表明子囊菌門在微生物互作中具有更重要的生態(tài)位。
綜合分析表明,在長(zhǎng)期連作的香草蘭土壤上輪作胡椒/斑蘭葉/糯米香茶均會(huì)不同程度地增加細(xì)菌和真菌群落物種間互惠共生的正向作用,且輪作斑蘭葉效果更好。"
通過(guò)測(cè)定輪作不同香料作物后的土壤理化性質(zhì),結(jié)果表明,與連作香草蘭處理相比,輪作胡椒/斑蘭葉/糯米香茶均能顯著提高土壤pH,以及土壤有機(jī)質(zhì)、堿解氮、速效磷和速效鉀的含量(Plt;0.05),但輪作斑蘭葉和糯米香茶后的pH和速效鉀含量無(wú)顯著差異(表3)。
將有效的土壤理化因子與尖孢鐮刀菌構(gòu)建一般線性模型,用于評(píng)估土壤理化因子抑制病原菌增殖的可能性大小及預(yù)測(cè)其相對(duì)重要性。結(jié)果表明,5個(gè)土壤理化因子解釋了總模型變量的87.33%,其中,pH是影響病原菌濃度的一個(gè)顯著且關(guān)鍵的微生物生態(tài)指標(biāo)(Plt;0.05),它對(duì)模型總變量的解釋度達(dá)到26.72%(表4)。
將對(duì)病原菌具有顯著負(fù)相關(guān)關(guān)系的微生物指"
示因子與病原菌再次構(gòu)建線性模型,用于預(yù)測(cè)微生物因子抑制病原菌濃度的相對(duì)重要性。結(jié)果表明,細(xì)菌群落、真菌群落及子囊菌門(Ascomycota)類群相對(duì)豐度是抑制病原菌的顯著指示因子(Plt;0.05),分別解釋了17.01%、8.05%和11.22%的模型總變量(表4)。
連作障礙是指在同一片土地上連續(xù)種植相同作物,導(dǎo)致土壤養(yǎng)分失衡、病原菌累積和微生物群落失衡,進(jìn)而限制作物生長(zhǎng),降低產(chǎn)量和品質(zhì)的現(xiàn)象。香草蘭是一種熱帶多年生藤本植物,尤其容易受到連作障礙的影響。本團(tuán)隊(duì)前期研究表明,通過(guò)輪作種植多年生作物胡椒可以有效改善土壤真菌群落結(jié)構(gòu)及其組成,增強(qiáng)香草蘭的抗病性[11]。進(jìn)一步篩選出熱帶特色、種植周期短且經(jīng)濟(jì)效益高的香料作物斑蘭葉和糯米香茶進(jìn)行輪作盆栽試驗(yàn),結(jié)果顯示,輪作斑蘭葉能顯著降低土壤中鐮刀菌屬的相對(duì)豐度,特別是減少了尖孢鐮刀菌的數(shù)量。這一發(fā)現(xiàn)與先前的輪作研究相符,證實(shí)了輪作可以有效控制病原菌的增長(zhǎng)[11]。此外,類似的通過(guò)輪作減少作物土傳病害的研究亦廣泛開(kāi)展。如辣椒-香蕉輪作[12]、茄子-香蕉輪作[28]和菠蘿-香蕉輪作[29]模式均能有效降低根際土壤中尖孢鐮刀菌的數(shù)量,增強(qiáng)香蕉的抗病性。輪作改變了植物宿主,打斷了病原菌的營(yíng)養(yǎng)循環(huán)[3],這可能是提升香草蘭抗病能力的關(guān)鍵因素。
土壤微生物的多樣性和豐富度在植物應(yīng)對(duì)環(huán)境壓力時(shí)發(fā)揮著關(guān)鍵作用,它們協(xié)助植物抵御外來(lái)侵害并促進(jìn)植物恢復(fù)[3]。本研究發(fā)現(xiàn),輪作周期短且經(jīng)濟(jì)價(jià)值高的斑蘭葉和糯米香茶顯著提高了土壤細(xì)菌群落的豐富度和多樣性,而降低了土壤真菌群落的豐富度和多樣性。前期研究也發(fā)現(xiàn),輪作多年生胡椒和咖啡能提高土壤真菌群落的豐富度和多樣性[11]。表明不同作物的輪作模式對(duì)細(xì)菌和真菌群落的豐富度和多樣性的影響有差異。特定的輪作作物通過(guò)激發(fā)特定的有益微生物類群的繁殖和生長(zhǎng),進(jìn)而影響土壤微生物群落結(jié)構(gòu)。而這些微生物與病原菌爭(zhēng)奪植物根部的生態(tài)位資源,限制了病原菌的營(yíng)養(yǎng)來(lái)源,從而能有效控制其增長(zhǎng)[30]。
已有研究表明,長(zhǎng)期作物輪作后微生物群落結(jié)構(gòu)和組成與連作栽培模式間有顯著差異[10]。本研究中,無(wú)論細(xì)菌還是真菌群落結(jié)構(gòu),撂荒、連作和輪作均能顯著區(qū)分,形成3種完全不同的群落結(jié)構(gòu),但輪作胡椒/斑蘭葉/糯米香茶之間的群落結(jié)構(gòu)很相似,無(wú)法區(qū)分。這一發(fā)現(xiàn)與前期的輪作研究結(jié)果[11]一致。推測(cè)可能是輪作的時(shí)長(zhǎng)不夠,還不足以富集到更多特異的微生物。由于輪作效應(yīng),微生物群落的變化將影響特定微生物的響應(yīng)。進(jìn)一步研究發(fā)現(xiàn),輪作能顯著富集細(xì)菌門水平上的酸桿菌門(Acidobacteria)和綠彎菌門(Chloroflexi)微生物,屬水平則顯著富集類諾卡氏屬(Nocar dioides)微生物,且與病原菌呈顯著負(fù)相關(guān);而真菌則顯著富集門水平上的子囊菌門(Ascomy cota)和屬水平上的Ascobolus屬微生物。雖然目前尚無(wú)足夠的證據(jù)表明這些微生物具有直接的抗病功能。但值得注意的是,這些微生物都是土壤中的優(yōu)勢(shì)菌門,可能是通過(guò)間接影響其他微生物的定殖而發(fā)揮抗病功能[31]。
為鑒定識(shí)別出各輪作作物特異富集且對(duì)病原菌有潛在拮抗功能的核心微生物,采用專業(yè)尋找生物標(biāo)志物的隨機(jī)森林分析,研究發(fā)現(xiàn),輪作斑蘭葉后能特異富集Terriglobus屬、克雷伯桿菌屬(Kribbella)和粘球菌屬(Myxococcus)核心細(xì)菌類群,以及枝頂孢霉屬(Acremonium)和帚枝霉屬(Sarocladium)真菌核心類群,且均與病原菌呈顯著負(fù)相關(guān)關(guān)系。值得注意的是,前期的胡椒輪作能顯著富集有益的拮抗真菌類群木霉屬(Trichoderma)和青霉屬(Penicillium),表明不同的輪作作物根系代謝物有差異,富集的特定有益微生物類群也有差異[32]。已有研究表明,克雷伯桿菌屬和粘球菌屬的微生物在土壤中廣泛分布,而枝頂孢霉屬及帚枝霉屬均屬于叢梗孢科(Hypomycetes)真菌微生物,均能產(chǎn)生多樣的次級(jí)代謝產(chǎn)物,而這些產(chǎn)物具有抗菌、抗生素和其他活性物質(zhì),是生物防治方面重要的微生物資源[33-35]。因此推測(cè):這些具備生物防治特性的微生物種群豐度的變化可能影響了輪作過(guò)程中的病原菌數(shù)量,進(jìn)而增強(qiáng)了香草蘭對(duì)病害的抵抗力。
基于數(shù)學(xué)算法構(gòu)建的微生物共發(fā)生關(guān)系網(wǎng)絡(luò),可用于研究微生物群落的多樣性、復(fù)雜性及穩(wěn)定性,近年來(lái)已被廣泛應(yīng)用[36-38]?;诖耍瑢?duì)撂荒、連作、輪作胡椒、輪作斑蘭葉及輪作糯米香茶5個(gè)處理的根際土壤細(xì)菌和真菌分別構(gòu)建了微生物網(wǎng)絡(luò),通過(guò)綜合考量網(wǎng)絡(luò)特征系數(shù),如正相關(guān)連接邊數(shù)、平均度、平均聚類系數(shù)等,發(fā)現(xiàn)輪作斑蘭葉后的細(xì)菌和真菌物種間互惠共生的正相關(guān)作用更強(qiáng),可能通過(guò)ASV物種間更緊密的互作關(guān)系提高了根際微生物多樣性[39],從而提升了菌群協(xié)同抵抗病原菌入侵根際的能力。
前期研究得出,在高發(fā)枯萎病的香蕉園輪作辣椒后,通過(guò)提高土壤pH可重塑微生物組成,富集有益的假單胞菌屬(Pseudomonas)微生物,增強(qiáng)了香蕉的抗病性[14]。本研究也發(fā)現(xiàn),輪作斑蘭葉和糯米香茶能顯著提升根際土壤pH,而土壤pH是限制病原菌的最顯著因子,可解釋模型變量的26.72%。進(jìn)一步利用一般線性模型分析揭示了細(xì)菌群落、真菌群落以及子囊菌門的相對(duì)豐度在抑制病原菌方面起著顯著的作用。這與TAO等[40]的研究結(jié)果相符合,即根際細(xì)菌群落的變化對(duì)于抑制香蕉土傳枯萎病至關(guān)重要。
在土傳病害頻發(fā)的香草蘭園輪作斑蘭葉可顯著降低鐮刀菌屬的相對(duì)豐度和尖孢鐮刀菌的拷貝數(shù),增加細(xì)菌群落的豐富度和多樣性。通過(guò)特異富集細(xì)菌Terriglobus屬、克雷伯桿菌屬(Krib bella)和粘球菌屬(Myxococcus)核心類群,以及真菌枝頂孢霉屬(Acremonium)及帚枝霉屬(Sarocladium)核心類群可重塑微生物群落組成。輪作斑蘭葉作物后可顯著提高土壤pH,土壤pH提升的同時(shí)影響了細(xì)菌和真菌的群落結(jié)構(gòu),從而抑制了病原菌的定殖,推測(cè)這些變化是輪作提高香草蘭抗病能力的重要原因。
參考文獻(xiàn)
[1]"MINOO"D,"JAYAKUMAR"V,"VEENA"S,"VIMALA"J,"BASHA"A,"SAJI"K,"BABU"K"N,"PETER"K."Genetic"variations"and"interrelationships"in"Vanilla"planifolia"and"few"related"species"as"expressed"by"RAPD"polymorphism[J]."Genetic"Resources"and"Crop"Evolution,"2008,"55(3):"459-470.
[2]"XIONG"W,"ZHAO"Q"Y,"ZHAO"J,"XUN"W,"LI"R,"ZHANG"R,"WU"H,"SHEN"Q."Different"continuous"cropping"spans"significantly"affect"microbial"community"membership"and"structure"in"a"vanilla-grown"soil"as"revealed"by"deep"pyrosequencing[J]."Microbial"Ecology,"2015,"70(1):"209-218.
[3]"TRIVEDI"P,"LEACH"J"E,"TRINGE"S"G,"SA"T"M,"SINGH"B"K."Plant-microbiome"interactions:"from"community"assembly"to"plant"health[J]."Nature"Reviews"Microbiology,"2020,"18(11):"607-621.
[4]"PEDRINHO"A,"MENDES"L,"DE"ARAUJO"PEREIRA"A,"VAISHNV"A,"KARPOUZAS,"SINGH"B"K."Soil"microbial"diversity"plays"an"important"role"in"resisting"and"restoring"degraded"ecosystems[J]."Plant"and"Soil,"2024,"500(1):"325-"349.
[5]"ROMERO"F,"HILFIKER"S,"EDLINGER"A,"HELD"A,"HARTMAN"K,"LABOUYRIE"M,"VAN"DER"M."Soil"microbial"biodiversity"promotes"crop"productivity"and"agro-"ecosystem"functioning"in"experimental"microcosms[J]."Science"of"The"Total"Environment,"2023,"885:"163683.
[6]"YARZáBAL"R,"áLVAREZ"P,"GUNDE-CIMERMAN"N,"CIANCAS"J,"GUTIéRREZ-CEPEDA"A,"OCA?A"A,"BATISTA-GARCíA"R."Exploring"extremophilic"fungi"in"soil"mycobiome"for"sustainable"agriculture"amid"global"change[J]."Nature"Communications,"2024,"15(1):"6951.
[7]"HARTMANN"M,"SIX"J."Soil"structure"and"microbiome"functions"in"agroecosystems[J]."Nature"Reviews"Earth"amp;"Environment,"2023,"4(1):"4-18.
[8]"LONGEPIERRE"M,"WIDMER"F,"KELLER"T,"WEISSKOPF"P,"COLOMBI"T,"SIX"J,"HARTMANN"M."Limited"resilience"of"the"soil"microbiome"to"mechanical"compaction"within"four"growing"seasons"of"agricultural"management[J]."ISME"Communications,"2021,"1(1):"44.
[9]"YANG"T"K,"SIDDIQUE"H"M,"LIU"K."Cropping"systems"in"agriculture"and"their"impact"on"soil"health:"a"review[J]."Global"Ecology"and"Conservation,"2020,"23:"e01118.
[10]"ZHOU"Y,"YANG"Z,"LIU"J,"LI"X,"WANG"X,"DAI"C,"ZHANG"T,"CARRION"V"J,"WEI"Z,"CAO"F."Crop"rotation"and"native"microbiome"inoculation"restore"soil"capacity"to"suppress"a"root"disease[J]."Nature"Communications,"2023,"14(1):"8126.
[11]"XIONG"W,"ZHAO"Q"Y,"XUE"C,"XUN"W"B,"ZHAO"J,"WU"H"S,"LI"R,"SHEN"Q"R."Comparison"of"fungal"community"in"black"pepper-vanilla"and"vanilla"monoculture"systems"associated"with"vanilla"Fusarium"wilt"disease"[J]."Frontiers"in"Microbiology,"2016,"7:"117.
[12]"HONG"S,"YUAN"X"F,"YANG"J"M,"YANG"Y,"JV"H"L,"LI"R,"JIA"Z"J,"RUAN"Y"Z."Selection"of"rhizosphere"communities"of"diverse"rotation"crops"reveals"unique"core"microbiome"associated"with"reduced"banana"Fusarium"wilt"disease[J]."New"Phytologist,"2023,"238(5):"2194-2209.
[13]"XIONG"W,"LI"R,"REN"Y,"LIU"C,"ZHAO"Q"Y,"WU"H"S,"JOUSSET"A,"SHEN"Q"R."Distinct"roles"for"soil"fungal"and"bacterial"communities"associated"with"the"suppression"of"vanilla"Fusarium"wilt"disease[J]."Soil"Biology"and"Biochemistry,"2017,"107:"198-207.
[14]"HONG"S,"JV"H"L,"LU"M,"WANG"B"B,"ZHAO"Y,"RUAN"Y"Z."Significant"decline"in"banana"Fusarium"wilt"disease"is"associated"with"soil"microbiome"reconstruction"under"chilli"pepper-banana"rotation[J]."European"Journal"of"Soil"Biology,"2020,"97:"103154.
[15]"CHEN"Y,"BONKOWSKI"M,"SHEN"Y,"GRIFFITHS"B"S,"JIANG"Y,"WANG"X,"SUN"B."Root"ethylene"mediates"rhizosphere"microbial"community"reconstruction"when"chemi cally"detecting"cyanide"produced"by"neighbouring"plants[J]."Microbiome,"2020,"8:"4.
[16]"鮑士旦."土壤農(nóng)化分析[M]."3"版."北京:"中國(guó)農(nóng)業(yè)出版社,"2000.BAO"S"D."Soil"analysis"in"agricultural"chemistry[M]."3rd"ed."Beijing:"China"Agricultural"Press,"2000."(in"Chinese)
[17]"CAPORASO"J"G,"LAUBER"C"L,"WALTERS"W"A,"BERG"L"D,"LOZUPONE"C"A,"TURNBAUGH"P"J,"FIERER"N,"KNIGHT"R."Global"patterns"of"16S"rRNA"diversity"at"a"depth"of"millions"of"sequences"per"sample[J]."Proceedings"of"the"National"Academy"of"Sciences"of"the"United"States"of"America,"2011,"108:"4516-4522.
[18]"SCHOCH"C"L,"SEIFERT"K"A,"HUHNDORF"S,"ROBERT"V,"SPOUGE"J"L,"LEVESQUE"C"A,"CHEN"W."Nuclear"ribosomal"internal"transcribed"spacer"(ITS)"region"as"a"universal"DNA"barcode"marker"for"fungi[J]."Proceedings"of"the"National"Academy"of"Sciences"of"the"United"States"of"America,"2012,"109(16):"6241-6246.
[19]"BOLGER"A"M,"LOHSE"M,"USADEL"B."Trimmomatic:"a"flexible"trimmer"for"Illumina"sequence"data[J]."Bioinformatics,"2014,"30(15):"2114-2120.
[20]"MARTIN"M."Cutadapt"removes"adapter"sequences"from"high-throughput"sequencing"reads[J]."EMBnet"Journal,"2011,"17(1):"10-12.
[21]"EDGAR"R"C."UPARSE:"highly"accurate"OTU"sequences"from"microbial"amplicon"reads[J]."Nature"Methods,"2013,"10(10):"996-999
[22]"EDGAR"R"C,"HAAS"B"J,"CLEMENTE"J"C,"QUINCE"C,"KNIGHT"R."UCHIME"improves"sensitivity"and"speed"of"chimera"detection[J]."Bioinformatics,"2011,"27(16):"2194-"2200.
[23]"BOLYEN"E,"RIDEOUT"J"R,"DILLON"M"R,"BOKULICH"N"A,"ABNET"C"C,"GHALITH"G"A,"ALEXANDER"H,"ALM"E"J,"ARUMUGAM"M,"ASNICAR"F."Reproducible,"interactive,"scalable"and"extensible"microbiome"data"science"using"QIIME"2[J]."Nature"Biotechnology,"2019,"37(8):"852-857.
[24]"CALLAHAN"B"J,"MCMURDIE"P"J,"ROSEN"M"J,"HAN"A"W,"JOHNSON"A"J"A,"HOLMES"S"P."DADA2:"high-resolu tion"sample"inference"from"Illumina"amplicon"data[J]."Nature"Methods,"2016,"13(7):"581-583.
[25]"WANG"Q,"GARRITY"G"M,"TIEDJE"J"M,"COLE"J"R."Naive"bayesian"classifier"for"rapid"assignment"of"rRNA"sequences"into"the"new"bacterial"taxonomy[J]."Applied"and"Environmental"Microbiology,"2007,"73(16):"5261-5267.
[26]"K?LJALG"U,"NILSSON"R"H,"ABARENKOV"K,"TEDERSOO"L,"TAYLOR"A"F"S,"BAHRAM"M,"BATES"S"T,"BRUNS"T"D,"BENGTSSON-PALME"J,"CALLAGHAN"T"M."Towards"a"unified"paradigm"for"sequence-based"identification"of"fungi[J]."Molecular"Ecology,"2013,"22(21):"5271-"5277.
[27]"趙娜,"李榮,"辛侃,"趙艷,"阮云澤,"符常明."茄科蔬菜輪作對(duì)高發(fā)枯萎病蕉園土壤可培養(yǎng)微生物的影響[J]."熱帶作物學(xué)報(bào),"2014,"35(8):"1469-1474.ZHAO"N,"LI"R,"XIN"K,"ZHAO"Y,"RUAN"Y"Z,"FU"C"M."Effects"of"different"Solanaceae"crop"rotations"on"the"soil"culturable"microbes"in"an"orchard"with"serious"Fusarium"wilt"disease[J]."Chinese"Journal"of"Tropical"Crops,"2014,"35(8):"1469-1474."(in"Chinese)"
[28]"YUAN"X"F,"WANG"B"B,"HONG"S,"XIONG"W,"SHEN"Z"Z,"RUAN"Y"Z,"LI"R,"SHEN"Q"R,"DINI-ANDREOTE"F."Promoting"soil"microbial-mediated"suppressiveness"against"Fusarium"wilt"disease"by"the"enrichment"of"specific"fungal"taxa"via"crop"rotation[J]."Biology"and"Fertility"of"Soils,"2021,"57(8):"1137-1153.
[29]"CHA"J"Y,"HAN"S,"HONG"H"J,"CHO"H,"KIM"D,"KWON"Y,"KWON"S"K,"CRüSEMANN"M,"LEE"Y"B,"KIM"J"F."Microbial"and"biochemical"basis"of"a"Fusarium"wilt-suppressive"soil[J]."The"ISME"Journal,"2016,"10(1):"119-129.
[30]"WEN"T,"DING"Z,"THOMASHOW"L"S,"HALE"L,"YANG"S,"XIE"P,"LIU"X,"WANG"H,"SHEN"Q,"YUAN"J."Deciphering"the"mechanism"of"fungal"pathogen-induced"disease-suppres sive"soil[J]."New"Phytologist,"2023,"238(6):"2634-2650.
[31]"HUBER"K"J,"PESTER"M,"EICHORST"S"A,"NAVARRETE"A"A,"FOESEL"B"U."Acidobacteria:"towards"unraveling"the"secrets"of"a"widespread,"though"enigmatic,"phylum[J]."Frontiers"in"Microbiology,"2022,"13:"960602.
[32]"WEN"T,"XIE"P"H,"LIU"H"W,"LIU"T,"ZHAO"M"L,"YANG"S"D,"NIU"G"Q,"HALE"L,"SINGH"B"K,"KOWALCHUK"G"A,"SHEN"Q"R,"YUAN"J."Tapping"the"rhizosphere"metabolites"for"the"prebiotic"control"of"soil-borne"bacterial"wilt"disease[J]."Nature"Communications,"2023,"14:"4497.
[33]"VIRUéS-SEGOVIA"J"R,"REYES"F,"RUíZ"S,"MARTíN"J,"FERNáNDEZ-PASTOR"I,"JUSTICIA"C,"DE"M,"DíAZ"C,"MACKENZIE"T"A,"GENILLOUD"O."Kribbellichelins"A"and"B,"two"new"antibiotics"from"Kribbella"sp."CA-293567"with"activity"against"several"human"pathogens[J]."Molecules"(Basel,"Switzerland),"2022,"27(19):"6355.
[34]"SAGGU"S"K,"NATH"A,"KUMAR"S."Myxobacteria:"biology"and"bioactive"secondary"metabolites[J]."Research"in"Microbiology,"2023,"174(7):"104079.
[35]"PERDOMO"H,"SUTTON"D"A,"GARCíA"D,"FOTHERGILL"A"W,"CANO"J,"GENé"J,"SUMMERBELL"R"C,"RINALDI"M"G,"GUARRO"J."Spectrum"of"clinically"relevant"Acremonium"species"in"the"United"States[J]."Journal"of"Clinical"Microbiology,"2011,"49(1):"243-256.
[36]"XIONG"C,"ZHU"Y"G,"WANG"J"T,"SINGH"B,"HAN"L"L,"SHEN"J"P,"LI"P"P,"WANG"G"B,"WU"C"F,"GE"A"H."Host"selection"shapes"crop"microbiome"assembly"and"network"complexity[J]."New"Phytologist,"2021,"229(2):"1091-1104.
[37]"DE"VRIES"F"T,"GRIFFITHS"R"I,"BAILEY"M,"CRAIG"H,"GIRLANDA"M,"GWEON"H"S,"HALLIN"S,"KAISERMANN"A,"KEITH"A"M,"KRETZSCHMAR"M."Soil"bacterial"networks"are"less"stable"under"drought"than"fungal"networks[J]."Nature"Communications,"2018,"9:"3033.
[38]"GUSEVA"K,"DARCY"S,"SIMON"E,"ALTEIO"L"V,"MONTESINOS-NAVARRO"A,"KAISER"C."From"diversity"to"complexity:"microbial"networks"in"soils[J]."Soil"Biology"and"Biochemistry,"2022,"169:"108604.
[39]"WU"H,"GAO"T"H,"HU"A,"WANG"J"J."Network"complexity"and"stability"of"microbes"enhanced"by"microplastic"diversity[J]."Environmental"Science"amp;"Technology,"2024,"58:"4334-4345.
[40]"TAO"C"Y,"LI"R,"XIONG"W,"SHEN"Z"Z,"LIU"S"S,"WANG"B"B,"RUAN"Y"Z,"GEISEN"S"F,"SHEN"Q"R,"KOWALCHUK"G"A."Bio-organic"fertilizers"stimulate"indigenous"soil"Pseudomonas"populations"to"enhance"plant"disease"suppression[J]."Microbiome,"2020,"8(1):"137.
"