摘" " 要:柑橘黑點(diǎn)病是由柑橘間座殼菌(Diaporthe citri)引起的一種重要柑橘病害,在全球柑橘主產(chǎn)區(qū)均有發(fā)生,主要危害葉片、枝梢和果實(shí),嚴(yán)重影響柑橘的品質(zhì)和鮮銷商品價值。柑橘間座殼菌可以侵染所有當(dāng)前栽培的柑橘品種,其中以葡萄柚和檸檬最易感病。噴施代森錳鋅和銅制劑等殺菌劑是防控柑橘黑點(diǎn)病的重要方法,但柑橘間座殼菌在自然條件下有性生殖頻繁,具有豐富的遺傳多樣性,需加強(qiáng)監(jiān)測柑橘間座殼菌種群對代森錳鋅等藥劑的敏感性變化。近年來,關(guān)于柑橘間座殼菌的基因組信息、快速檢測技術(shù)、遺傳分化、致病機(jī)制以及防治方法等方面的研究取得較為顯著的進(jìn)展。就國內(nèi)外近年來柑橘黑點(diǎn)病的危害癥狀與分布、病原種類、遺傳多樣性、生物學(xué)特性、侵染過程、致病機(jī)制、發(fā)生規(guī)律以及防治方法等方面的最新研究進(jìn)展進(jìn)行綜述,并對柑橘黑點(diǎn)病的未來重點(diǎn)研究方向進(jìn)行展望,以期為柑橘黑點(diǎn)病的防控策略提供科學(xué)依據(jù)。
關(guān)鍵詞:柑橘黑點(diǎn)?。桓涕匍g座殼菌;遺傳多樣性;致病機(jī)制;發(fā)生規(guī)律;病害防治
中圖分類號:S666.6" S436.661 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2024)10-2106-11
Research progress in citrus melanose
LU Songmao, LIN Xiuxiang
(Fujian Institute of Tropic Crops, Zhangzhou 363001, Fujian, China)
Abstract: Citrus (Citrus spp.) is the world’s largest category of fruit, including many species, such as C. reticulata, C. sinensis, C. grandis, C. limon and C. paradisi, etc.. They are deeply popular with consumers, because of their rich nutrition (vitamins, polysaccharides, organic acids, proteins, dietary fiber and antioxidants) and delicious flavor. The global citrus production for 2019 was estimated at almost 144 million metric tons. In China, the citrus production for 2021 was 55.96 million metric tons, and its annual value of production was more than 200 billion yuan. Therefore, it is the vital major industry of agriculture in China. However, in recent years, the citrus melanose has seriously occurred in major citrus production regions all over the world, including China, India, Brazil, Spain and Mexico, etc.. In China, the citrus melanose was widely distributed in Guangxi, Hunan, Hubei, Zhejiang, Jiangxi, Fujian, Yunnan provinces and other major citrus production areas, and the disease incidences in some orchards were up to 100%. The typical disease symptoms including melanose, gummosis and stem-end rot form on leaves, shoots or fruits. The diseased fruits usually show many black to reddish-brown raised spots on the fruit surface or stem-end rot, which seriously affects the appearance and economic value of fresh fruit, causing major economic losses. Diaporthe citri (anamorph: Phomopsis citri) is the dominant species of citrus melanose pathogen all over the world, which could infect all citrus cultivars. At present, the genome information of D. citri has been sequenced and annotated, which provides an important reference for studying its infection mechanism and population genetic evolution, etc.. The genomes of D. citri (MAT1-1 and MAT1-2 strains) contains 15 977-16 622 genes, including 1231-1287 putative pathogenicity genes, 1837-1885 secretion proteins, and many carbohydrate-active enzymes (CAZymes), which may be associated with the pathogenicity of D. citri. The populations of D. citris are abundant in genetic diversity, due to its frequent sexual reproduction in nature. And the genetic differentiation of D. citris is closely related to geographic separation, whereas it has weak correlation with its host. The species-specific primers have been designed for the PCR method to distinguish D. citri from related Diaporthe species, based on the sequences of rDNA internal transcribed spacer, translation elongation factor 1-alpha, beta-tubulin, histone H3, and calmodulin gene, which contribute to monitoring and forecasting the citrus melanose in the field. It has been reported that the successful infection host by D. citris is related to its pectinase secretion, and the infection of leaves can cause an increase in the population of antagonistic microorganisms in the citrus leaves. The RNA-Seq analysis results performed by Li et al. profiled the defense response pattern of citrus leaves against D. citri infection, including high induction expression of plant cell wall biogenesis-related genes at 3 days post infection (dpi), and high upregulation expression of the CYP83B1 genes, pectin methylesterase gene, and phytoalexin coumarin synthesis-related genes at 14 dpi. After the infected shoots became withered, a large number of alpha conidia (non-septate), beta conidia (long, slender) and a small number of ascospores (ellipsoid to cylindrical, septate) were produced on dead wood, using as the source of infection. Conidia were carried by raindrops and dispersed to nearby citrus, which contributed obviously to the citrus melanose severity in an orchard, whereas the ascospores were carried by the wind for a long distance spread. Under high humidity and warm climatic conditions (at 25 ℃), the young leaves, shoots and young fruits (within 12 weeks after flowering) were seriously infected by D. citri, however the mature citrus tissues were more resistant to this pathogen attack. Therefore, these phenological periods of citrus are also a critical stage for the prevention and control of citrus melanose. The copper fungicide can act as a good preventative against citrus melanose, but it is susceptible to rain erosion, and is phytotoxic to citrus plant when it is used in hot weather. The other pesticides such as mancozeb and strobilurin etc., play a good control effect on citrus melanose, but they are also facing the risk of increasing resistance to D. citris, because of long-term use of the same fungicides. Some antagonistic microorganisms such as Burkholderia gladioli, Pseudomonas pudia, P. fluorescens, Bacillus subtilis, B. velezensis, B. amyloliquefaciens, Trichoderma asperellum, and T. asperelloides etc., all play a strong inhibitory effect on the mycelial growth or conidia germination of D. citrus, which could provide a reference for commercial application on management approaches of citrus melanose in the field. The above results indicate that, in recent years, some progresses such as species identification and detection, genetic diversity, genomic information, infection cycle, pathogenic mechanism, occurrence patterns, prevention and control measures of D. citris have been made by many researchers at home and abroad, but the following issues still need to be further explored. (1) Whether the D. citris forms a special infection structure to successfully penetrate the leaves and peels of citrus with a waxy layer. (2) The pectinase secreted by D. citris is an important virulence factor, but the types, encoding genes and functions of pectinase still need to be clarified. In addition, the presence of other important virulence factors such as toxins, effector proteins etc., needs to be further analyzed. (3) The propagules of D. citris only form on dead wood, but not on non-dead branches, so the molecular regulation mechanism of asexual spores and ascospores development needs to be studied in D. citris. (4) The community of antagonistic microorganisms increases in the citrus leaves, when they are attacked by D. citris. So, how the citrus plant recognizes the molecular signals of D. citris to regulate autoimmunity, and the molecular interactions between citrus and D. citris remain to be understood. In conclusion, an in-depth understanding of the infection structure, virulence factors, molecular mechanisms of sporogenesis of D. citris, and the molecular signaling pathway of the recognition of D. citris by host will help to provide resources for citrus disease resistance-breeding, and also provide new targets for accelerating the development and application of fungicides for the prevention and control of citrus melanose. At the same time, the population of D. citris is abundant, and it is a heterogeneous fungus, with frequent sexual reproduction. So it is necessary to strengthen the monitoring of its sensitivity to pesticides such as mancozeb, etc.. And these measurements such as mixing pesticides scientifically and reasonably, using biocontrol agents and plant resistance inducers, will reduce the case of fungicide resistance against D. citris, and improve the comprehensive prevention and control ability of citrus melanose.
Key words: Citrus melanose; Diaporthe citri; Genetic diversity; Pathogenic mechanism; Occurrence regularity; Disease control
柑橘(Citrus)是全球第一大類水果,富含維生素、多糖、有機(jī)酸、蛋白質(zhì)、膳食纖維以及抗氧化物等成分,深受廣大消費(fèi)者喜愛[1-4]。2019年世界柑橘產(chǎn)量為1.4億t[5]。在中國,2021年柑橘產(chǎn)量達(dá)5 595.6萬t,年產(chǎn)值超2000億元,是中國農(nóng)業(yè)的重要支柱產(chǎn)業(yè)[6]。近年來,隨著柑橘栽培面積的不斷擴(kuò)大以及栽培生態(tài)環(huán)境變化等因素的影響,柑橘黑點(diǎn)?。–itrus melanose)的發(fā)生和流行等問題越來越突出,在中國的柑橘主產(chǎn)區(qū),包括廣西、湖南、湖北、浙江、江西、福建、云南等地普遍發(fā)生,發(fā)病嚴(yán)重的地區(qū)病果率達(dá)100%,影響柑橘鮮果外觀和商品價格,嚴(yán)重制約中國柑橘產(chǎn)業(yè)的健康發(fā)展[7-9]。
柑橘黑點(diǎn)病也稱柑橘砂皮病,由間座殼菌屬Diaporthe引起,其病原菌也會引起柑橘樹脂病或柑橘褐色蒂腐病。其中柑橘間座殼菌Diaporthe citri為優(yōu)勢種,無性態(tài)為柑橘擬莖點(diǎn)霉Phomopsis citri[10]。柑橘間座殼菌可侵染所有柑橘栽培品種,其中檸檬和葡萄柚易感病[11],目前尚未發(fā)現(xiàn)對其完全免疫的柑橘品種。近年來,已有多個柑橘品種以及柑橘間座殼菌的基因組信息被成功測序和注釋[12-17],為進(jìn)一步分析柑橘間座殼菌的侵染機(jī)制以及挖掘柑橘抗病基因提供了重要參考。針對柑橘黑點(diǎn)病發(fā)生流行的嚴(yán)重性以及其對柑橘產(chǎn)業(yè)健康發(fā)展的影響,筆者就國內(nèi)外近年來柑橘黑點(diǎn)病的危害癥狀與分布、病原種類、遺傳多樣性、生物學(xué)特性、侵染過程、致病機(jī)制、流行規(guī)律以及防治措施等方面的研究進(jìn)展進(jìn)行綜述,并對未來柑橘黑點(diǎn)病的研究方向及防控策略進(jìn)行展望。
1 柑橘黑點(diǎn)病的癥狀與分布
1.1 癥狀
柑橘黑點(diǎn)病的癥狀可能因地理位置、寄主品種、發(fā)生季節(jié)、生理因素和感染嚴(yán)重程度而異[18]。柑橘果實(shí)發(fā)病后,果面散生黑色至紅褐色小點(diǎn)(圖1-A),或黑點(diǎn)連成片,果實(shí)表皮細(xì)胞木栓化并開裂,形成堅(jiān)硬的黑色裂紋區(qū)(圖1-B),與銹螨危害后引起果皮光滑的斑紋明顯不同[19]。儲藏期病果的果蒂及果肉等部位出現(xiàn)褐色腐爛[20]。柑橘新葉發(fā)病初期呈水浸狀褐色斑點(diǎn),周圍呈半透明黃色暈圈,后期病葉表皮破裂并形成褐色或黑色堅(jiān)硬的小粒點(diǎn)突起(圖1-C)。柑橘新梢發(fā)病后在表面形成黃褐色或黑褐色的粒點(diǎn)突起(圖1-D),柑橘主干發(fā)病后常引起流膠或干枯[21],并且病原菌在枯死枝條上產(chǎn)生大量的分生孢子或少量的子囊孢子[11]。
1.2 分布
柑橘黑點(diǎn)病在世界各地柑橘產(chǎn)區(qū)均有發(fā)生[18],包括中國、菲律賓、日本、韓國、泰國、緬甸、柬埔寨、斐濟(jì)、毛里求斯、美國、墨西哥、海地、古巴、多米尼加、巴拿馬、波多黎各、委內(nèi)瑞拉、特立尼達(dá)和多巴哥、巴西、塞浦路斯、葡萄牙(亞速爾群島)、新西蘭、紐埃、薩摩亞、湯加、庫克群島、科特迪瓦和津巴布韋等國家[22-25]。在中國,柑橘黑點(diǎn)病在多個柑橘產(chǎn)區(qū),包括廣西、湖南、湖北、浙江、江西、福建、云南、貴州、重慶、廣東、四川以及上海等地均普遍發(fā)生[7,9,11]。
2 病原種類、遺傳多樣性及生物學(xué)特性
2.1 病原種類
間座殼菌屬(Diaporthe)真菌具有豐富的物種多樣性,包含植物病原菌、內(nèi)生菌和腐生菌[26]。寄主?;圆粡?qiáng),同一種間座殼菌可寄生在多種寄主植物上,或在同一種寄主植物上也常被多種間座殼菌復(fù)合寄生[26-30]。截至目前,寄生在柑橘屬植物的間座殼菌屬真菌數(shù)量達(dá)33種[22],包含內(nèi)生菌和致病菌[18,22,31]。在中國,柑橘間座殼菌(Diaporthe citris)是引起柑橘黑點(diǎn)病的重要病原菌,致病力強(qiáng),可以侵染所有栽培柑橘,包括寬皮柑橘(Citrus reticulata)、甜橙(C. sinensis)、柚子(C. grandis)、檸檬(C. limon)和葡萄柚(C. paradisi)等。柑橘間座殼菌(D. citris)也是引起國外柑橘黑點(diǎn)病的優(yōu)勢種[30]。此外,在中國柑橘產(chǎn)區(qū)還分布D. citriasiana和D. citrichinensis菌株,他們能引起柑橘果實(shí)的蒂腐病[30]。其中,D. citrichinensis與柑橘間座殼菌之間的基因組平均核苷酸同一性(average nucleotide identity,ANI)達(dá)91%,說明這兩個物種具有密切的親緣關(guān)系[16],但D. citrichinensis的致病力較柑橘間座殼菌弱[22,30],造成他們致病力分化的原因還有待進(jìn)一步研究?;诙嗷蛭稽c(diǎn)包括核糖體內(nèi)轉(zhuǎn)錄間隔區(qū)(rDNA internal transcribed spacer,ITS)、轉(zhuǎn)錄延伸因子1-α(translation elongation factor 1-alpha,TEF1-α)、β-微管蛋白(beta-tubulin,TUB)、組蛋白-H3(histone H3,HIS)、鈣調(diào)蛋白(calmodulin,CAL)和交配型MAT1基因等序列進(jìn)行的系統(tǒng)發(fā)育分析,為柑橘間座殼菌的準(zhǔn)確、快速鑒定以及檢測技術(shù)開發(fā)利用提供了重要參考[24,26,32-36]。
2.2 遺傳多樣性
目前,已對多個柑橘間座殼菌的菌株(包含MAT1-1和MAT1-2交配型菌株)以及近緣種的基因組信息進(jìn)行測序和注釋[16-17],柑橘間座殼菌的基因組大小為52.06~63.61 Mb,包含15 977~16 622個蛋白編碼基因,柑橘間座殼菌不同菌株的基因組平均核苷酸同一性達(dá)99%[16],這些基因組信息為進(jìn)一步分析柑橘間座殼菌的產(chǎn)孢調(diào)控、致病力分化以及群體遺傳進(jìn)化等相關(guān)的分子機(jī)制奠定了重要基礎(chǔ)。Xiong等[11]研究表明,來源于中國南方5個省份的339個柑橘間座殼菌株群體中,具有不同交配型(MAT1-1-1和MAT1-2-1)和不同多位點(diǎn)基因型(multilocus genotypes,MLG)的菌株經(jīng)常從相同的病葉和病果分離出來,說明柑橘間座殼菌的有性繁殖和基因重組在自然條件下頻繁發(fā)生,因此他們具有較高的遺傳多樣性;同時,他們的遺傳分化與其地理隔離(geographic separation)密切相關(guān),而與他的寄主類別和寄主的不同組織相關(guān)性較差[11]??傊涕匍g座殼菌是一種異宗配合(heterothallism)真菌,在自然環(huán)境條件下有性繁殖頻繁發(fā)生,意味著他的有性孢子——子囊孢子在病害侵染循環(huán)中可能發(fā)揮著極其重要的作用[11,37],今后應(yīng)重點(diǎn)關(guān)注柑橘間座殼菌子囊孢子的形成規(guī)律及其侵染過程,有利于對柑橘黑點(diǎn)病的有效防控。
2.3 生物學(xué)特性
柑橘間座殼菌的菌絲生長和產(chǎn)孢過程與其代謝物變化密切相關(guān),其中氧化脂類代謝物是柑橘間座殼菌產(chǎn)孢的關(guān)鍵代謝物[38]。此外,菌絲生長、菌落形態(tài)、產(chǎn)孢與營養(yǎng)條件、溫度、光照、pH等因素密切相關(guān)。柑橘間座殼菌在PDA培養(yǎng)基上生長的菌落邊緣白色,氣生菌絲蓬松,菌落背面呈淡黃色(圖2-A~B);而在MEA和OA培養(yǎng)基上生長的菌落正面呈白色,扁平,培養(yǎng)后期菌落背面呈黃色[39]。柑橘間座殼菌生長的最適溫度為26~30 ℃,最適pH為6~9,在光暗交替條件下有利于菌絲生長[40]。
柑橘間座殼菌在PDA培養(yǎng)基上僅形成α型分生孢子[30],但來源于印度檸檬上的柑橘間座殼菌在相似條件下生長,不僅可以產(chǎn)生α型分生孢子,還可以產(chǎn)生β型分生孢子[23],這可能與不同地域來源的菌株相關(guān)。將柑橘間座殼菌接種至無菌的柑橘枝條上,置于水瓊脂平板上26 ℃培養(yǎng)30 d,可見許多黃色分生孢子液滴形成(圖2-C),α型分生孢子含有1~2個油滴,呈橢圓形(圖2-D);β型分生孢子呈直線或彎鉤狀(圖2-E)。據(jù)報道,柑橘間座殼菌的分生孢子能在含柚子成分的培養(yǎng)液中萌發(fā),最適溫度為29.2 ℃[41],但溫度低于17 ℃或高于35 ℃時,其不能成功侵染寄主[42]。
3 侵染過程及致病機(jī)制
柑橘間座殼菌的分生孢子與寄主葉片接觸后,萌發(fā)形成的芽管直接穿透柑橘葉片的角質(zhì)層,并且菌絲在相鄰表皮細(xì)胞的側(cè)壁之間向下延伸至葉片的柵欄薄壁組織中,并分枝生長[10]。柑橘間座殼菌分泌的果膠酶(pectinase)降解薄壁細(xì)胞的細(xì)胞壁,瓦解細(xì)胞后從破裂的葉片角質(zhì)層中滲出黏性膠狀物質(zhì),變硬后形成粗糙的黑色或棕色突起[10,42]。此外,在柑橘果實(shí)成熟期或貯藏期,其分泌的果膠酶對促進(jìn)果實(shí)腐爛癥狀的形成也具有明顯作用[10,43-44]。Gai等[16]測序和分析了柑橘間座殼菌的基因組信息,預(yù)測其含有1231~1287個PHI (pathogen-host interaction)基因,具有1837~1885個分泌蛋白以及1600多個碳水化合物活性酶(carbohydrate-active enzymes,CAZymes),包括糖苷水解酶(glycoside hydrolases)、糖基轉(zhuǎn)移酶(glycosyl transferases)、碳水化合物酯酶(carbohydrate esterases)、多糖裂解酶(polysaccharide lyases)等,他們可能與柑橘間座殼菌的致病性相關(guān),但這些蛋白的功能有待進(jìn)一步分析和驗(yàn)證。此外,有關(guān)柑橘間座殼菌是否形成特殊的侵染結(jié)構(gòu)、形成哪些果膠酶種類以及如何調(diào)控果膠酶合成的分子調(diào)控機(jī)制等科學(xué)問題仍有待進(jìn)一步研究。
Li等[45]研究表明,柑橘間座殼菌侵染柑橘葉片后,葉際微生物組的群落均勻度顯著降低,但對其具有拮抗活性的泛菌Pantoea asv90和甲基桿菌Methylobacterium asv41的群落增加,這可能與柑橘植物的免疫反應(yīng)相關(guān)。早期,有學(xué)者基于顯微觀察和高效液相色譜分析檢測的方法,證明了柑橘葉片在受到柑橘間座殼菌侵染后會激活植物防御反應(yīng),包括誘導(dǎo)植物保衛(wèi)素——6,7-二甲氧基香豆素(6,7-dimethoxy coumarin)的形成等,限制柑橘間座殼菌在寄主細(xì)胞的進(jìn)一步侵染和擴(kuò)展[46-48]。Li等[49]采用RNA-Seq方法分析了柑橘間座殼菌侵染柑橘葉片3 d后和14 d后的轉(zhuǎn)錄組數(shù)據(jù),發(fā)現(xiàn)與柑橘葉片細(xì)胞壁生物發(fā)生(cell wall biogenesis)相關(guān)的基因在侵染3 d后被大量誘導(dǎo)表達(dá),而參與胼胝質(zhì)沉淀反應(yīng)相關(guān)的基因、果膠甲基酯酶(pectin methylesterase,PME)基因以及香豆素及其衍生物合成的關(guān)鍵酶——阿魏酰輔酶A 6'-羥化酶1(Feruloyl-CoA 6'-Hydroxylase1)和東莨菪素8-羥化酶(scopoletin 8-hydroxylase)基因等在侵染14 d后被大量誘導(dǎo)表達(dá),進(jìn)一步從分子水平上證明了柑橘葉片被柑橘間座殼菌侵染后,激活了柑橘的防御反應(yīng)。然而,有關(guān)柑橘如何利用其抗性蛋白或者其他受體蛋白識別柑橘間座殼菌的侵染,進(jìn)而抑制病原菌的進(jìn)一步擴(kuò)展,以及柑橘間座殼菌如何逃避寄主的免疫反應(yīng)的分子互作機(jī)制等問題仍有待進(jìn)一步研究。
4 柑橘黑點(diǎn)病發(fā)生規(guī)律及防治措施
4.1 發(fā)生規(guī)律
柑橘間座殼菌的寄主范圍僅限于柑橘屬植物[22]。柑橘黑點(diǎn)病的發(fā)生流行與侵染源的數(shù)量、氣候條件、柑橘品種、樹齡以及果園栽培管理措施等密切相關(guān)[9,42,50-51]。柑橘枯死枝條是柑橘間座殼菌越冬和繁殖的重要場所[42,51],也是田間柑橘黑點(diǎn)病發(fā)生的重要侵染源[9]。枯死枝條上形成分生孢子器或分生孢子的數(shù)量與柑橘黑點(diǎn)病發(fā)生的嚴(yán)重程度、濕度、溫度和樹枝大小等相關(guān)[19,52]。有意思的是,尚未枯死的感病枝條不形成任何分生孢子器或分生孢子[52]。因此,感病枯死枝條在柑橘黑點(diǎn)病菌產(chǎn)孢方面起主要作用[11]。然而,有關(guān)調(diào)控柑橘間座殼菌無性孢子和子囊孢子發(fā)育成熟的分子調(diào)控通路有待進(jìn)一步明確。
柑橘間座殼菌的分生孢子隨雨水傳播,具有從上至下和傳播距離較短等特點(diǎn),而子囊孢子通過自身的彈射力從子囊孔口釋放,并通過氣流傳播擴(kuò)散,具有傳播距離較遠(yuǎn)的特點(diǎn)[9]。他們能否成功侵染寄主與柑橘的感病期、環(huán)境條件(溫度、濕度)等密切相關(guān)。柑橘的嫩葉、嫩枝以及謝花后12周內(nèi)的幼果均處于易感病期,也是預(yù)防和防控柑橘黑點(diǎn)病發(fā)生的關(guān)鍵時期。柑橘新葉完全展開后或者謝花后12周以上的幼果對柑橘間座殼菌的抗性逐漸增強(qiáng)。人工接種試驗(yàn)結(jié)果表明,在25 ℃條件下柑橘間座殼菌分生孢子成功侵染柑橘需要10~12 h的濕潤條件[42],柑橘葉片黑點(diǎn)病的發(fā)生潛育期為4~7 d[9]。在自然條件下,當(dāng)平均氣溫大于22 ℃、葉片維持濕度超過80 h(每周)時,柑橘黑點(diǎn)病發(fā)病率將明顯增加[53]。此外,柑橘果實(shí)生長期的平均溫度為20 ℃,該時期的降雨量與柑橘黑點(diǎn)病的發(fā)生密切相關(guān)[9]。在不同的國家或地區(qū),由于氣候條件以及柑橘品種的差異,發(fā)病的嚴(yán)重程度或高峰期也存在差異,但與柑橘的易感物候期密切相關(guān)[21,52,54]。
4.2 防治方法
4.2.1 化學(xué)防治 施用殺菌劑是當(dāng)前防治柑橘黑點(diǎn)病的主要方法。銅制劑和代森錳鋅等保護(hù)性殺菌劑對柑橘黑點(diǎn)病具有較好的預(yù)防和保護(hù)作用[8,55-59],但銅制劑的保護(hù)作用容易因雨水沖刷喪失[22],同時高溫(大于35 ℃)條件下使用銅制劑容易產(chǎn)生藥害[42,60]。用100 μg·mL-1的二氧化硅和200 μg·mL-1的季銨化合物(季銨鹽)的復(fù)合物替換銅制劑使用可降低對植物的毒性[61]。此外,在中國柑橘黑點(diǎn)病發(fā)病嚴(yán)重的果園中,代森錳鋅的使用量(4 g·L-1)已明顯大于推薦的使用量(1.34 g·L-1)[62],長期大量使用殺菌劑也容易造成環(huán)境污染。0.1 g·L-1的醚菌酯(kresoxim-methyl)和1 g·L-1的代森錳鋅混合使用防治效果與2.66 g·L-1的代森錳鋅的防效相當(dāng)[62]。代森錳鋅與礦物油(綠穎)或乙氧基改性聚三硅氧烷(GE公司)混合使用也可以提高對柑橘黑點(diǎn)病的防效[9]。此外,由惡唑烷二酮和代森錳鋅復(fù)配而成的殺菌劑對柑橘黑點(diǎn)病的防效超過73%,在生產(chǎn)上具有推廣應(yīng)用前景[63]。
具有治療性的甲氧基丙烯酸酯類(strobilurin)對柑橘黑點(diǎn)病具有較好的防效,但該類藥劑如吡唑醚菌酯(pyraclostrobin)、嘧菌酯(azoxystrobin)等易產(chǎn)生抗藥性,在1年內(nèi)該類型藥劑的使用次數(shù)不能超過2次[42]。苯醚菌酯(E-2-[2-(2,5-dimethyl-phenoxy)-phenylmethyl]-3-methoxyacrylic acid methylester)是中國自主研發(fā)的苯醌外部抑制劑(quinone outside inhibitor,QoI)類殺菌劑,當(dāng)前中國的柑橘間座殼菌種群對其仍然敏感,可用于柑橘黑點(diǎn)病的防治[64]。同時,0.1 μg·mL-1的醚菌酯和肟菌酯(trifloxystrobin)能完全抑制柑橘間座殼菌分生孢子的萌發(fā)[62]。此外,肟菌酯(trifloxystrobin)和吡唑醚菌酯(pyraclostrobine)分別與銅制劑混合使用均可提高對柑橘黑點(diǎn)病的防治效果[65-66]。然而,有關(guān)抑制柑橘間座殼菌分生孢子器形成的殺菌劑的報道較少[52],僅苯并咪唑類的苯菌靈(benomyl)可以抑制柑橘間座殼菌在枯死枝條上的產(chǎn)孢,但對柑橘果實(shí)和葉片黑點(diǎn)病的防治效果較差[67]。
4.2.2 生物防治 利用拮抗微生物防治植物病害可以減少因過度使用農(nóng)藥造成的環(huán)境污染等問題,并且一些拮抗微生物還可促進(jìn)植物生長及增強(qiáng)植物抗性[22]。研究表明,唐菖蒲伯克霍爾德菌(Burkholderia gladioli)、惡臭假單胞菌(Pseudomonas pudia)和熒光假單胞菌(P. fluorescens)對柑橘間座殼菌具有拮抗活性[68],如抑制分生孢子萌發(fā),引起病原菌致病力明顯降低[69]??莶菅挎邨U菌(Bacillus subtilis)[70]、貝氏芽孢桿菌(B. velezensis)[71]、淀粉芽孢桿菌(B. amyloliquefaciens)[72]等對柑橘間座殼菌的菌絲生長或分生孢子萌發(fā)均有較強(qiáng)的抑制作用,部分拮抗菌株已應(yīng)用于柑橘黑點(diǎn)病的田間防治,防效達(dá)74%[73]。此外,硫桿菌(Thiobacillus species)產(chǎn)生的生物硫(bio-sulfur)能顯著抑制柑橘黑點(diǎn)病的發(fā)生[74]。棘孢木霉(Trichoderma asperellum)和類棘孢木霉(T. asperelloides)生防菌不僅能抑制柑橘間座殼菌的生長,還可以分泌漆酶(laccase)降解柑橘枯枝,減少感染枯枝上侵染源的形成[75]。然而,這些具有生防潛力的菌株在防控柑橘黑點(diǎn)病的商業(yè)化應(yīng)用方面還有待進(jìn)一步研究和推廣。
4.2.3 農(nóng)業(yè)防治及誘導(dǎo)植物抗性 加強(qiáng)柑橘果園的栽培管理,合理密植與修剪枝條,降低果園濕度,增施有機(jī)肥和磷鉀肥,提高寄主的抗病性,并且及時防治害蟲等措施可顯著降低柑橘黑點(diǎn)病的發(fā)生率[21,76]。同時,部分抗性誘導(dǎo)化合物(Oxycom、Serenade、ReZist、Aliette、Nutriphite、Actigard和Benlate)的使用,可顯著提高柑橘的抗病性[77]。不過,目前抗性誘導(dǎo)劑在防治柑橘黑點(diǎn)病方面的商業(yè)化應(yīng)用還較少。
5 展 望
中國是柑橘生產(chǎn)大國,柑橘產(chǎn)業(yè)在提高農(nóng)民收入、實(shí)現(xiàn)鄉(xiāng)村振興以及促進(jìn)農(nóng)業(yè)發(fā)展等方面具有重要作用,但柑橘黑點(diǎn)病的流行和危害嚴(yán)重影響了柑橘鮮銷和出口創(chuàng)匯,制約著柑橘產(chǎn)業(yè)的健康發(fā)展。近年來,針對柑橘黑點(diǎn)病的病原檢測、種類鑒定、基因組信息、遺傳多樣性、生物學(xué)特性、侵染循環(huán)、致病機(jī)制、發(fā)生規(guī)律和防控措施等方面取得了一些進(jìn)展。然而,以下幾個問題仍有待進(jìn)一步深入的探究:(1)柑橘間座殼菌是否形成特殊的侵染結(jié)構(gòu)以便順利穿透具有蠟質(zhì)層的柑橘葉片和果皮。(2)柑橘間座殼菌分泌的果膠酶是其重要的致病因子,所形成的果膠酶種類、編碼基因以及功能仍有待明確。同時,柑橘間座殼菌的基因組分析預(yù)測結(jié)果顯示,其含有大量假定的致病基因、分泌蛋白以及碳水化物活性酶,他們是否參與其致病過程仍有待進(jìn)一步探析。(3)柑橘間座殼菌僅在枯死的柑橘枝條上形成繁殖體,而在未枯死的枝條上不產(chǎn)孢,其無性孢子和子囊孢子發(fā)育調(diào)控的分子機(jī)制有待研究。(4)柑橘葉片受到柑橘間座殼菌侵染后,會增加葉片拮抗微生物的群落[43],寄主是如何識別柑橘間座殼菌的分子信號來調(diào)節(jié)自身免疫的,以及柑橘間座殼菌如何逃逸植物的防御反應(yīng)的分子互作關(guān)系仍有待明確。
總之,深入認(rèn)識柑橘間座殼菌的侵染結(jié)構(gòu)、致病因子、產(chǎn)孢調(diào)控分子機(jī)制以及寄主識別柑橘間座殼菌的分子信號通路等方面的內(nèi)容,將有助于為柑橘的抗病育種提供資源,也可為柑橘黑點(diǎn)病防治藥劑的研發(fā)和應(yīng)用提供新的靶標(biāo)。同時,柑橘間座殼菌的種群豐富,是異宗配合真菌,有性繁殖頻繁,應(yīng)加強(qiáng)監(jiān)測其對代森錳鋅等農(nóng)藥的敏感性,科學(xué)合理混配農(nóng)藥,結(jié)合生防制劑以及植物抗性誘導(dǎo)物的使用,延緩其抗藥性的形成,共同提高柑橘黑點(diǎn)病的綜合防控能力。
參考文獻(xiàn) References:
[1] 李勛蘭,洪林,楊蕾,王武,韓國輝,農(nóng)江飛,譚平. 11個柑橘品種果實(shí)營養(yǎng)成分分析與品質(zhì)綜合評價[J]. 食品科學(xué),2020,41(8):228-233.
LI Xunlan,HONG Lin,YANG Lei,WANG Wu,HAN Guohui,NONG Jiangfei,TAN Ping. Analysis of nutritional components and comprehensive quality evaluation of citrus fruit from eleven varieties[J]. Food Science,2020,41(8):228-233.
[2] ZOU Z,XI W P,HU Y,NIE C,ZHOU Z Q. Antioxidant activity of citrus fruits[J]. Food Chemistry,2016,196:885-896.
[3] 鄧秀新. 世界柑橘品種改良的進(jìn)展[J]. 園藝學(xué)報,2005,32(6):1140-1146.
DENG Xiuxin. Advances in worldwide Citrus breeding[J]. Acta Horticulturae Sinica,2005,32(6):1140-1146.
[4] 丁曉波,張華,劉世堯,廖益均,周志欽. 柑橘果品營養(yǎng)學(xué)研究現(xiàn)狀[J]. 園藝學(xué)報,2012,39(9):1687-1702.
DING Xiaobo,ZHANG Hua,LIU Shiyao,LIAO Yijun,ZHOU Zhiqin. Current status of the study in Citrus nutriology[J]. Acta Horticulturae Sinica,2012,39(9):1687-1702.
[5] FAO. Citrus fruit statistical compendium 2020[M]. Rome,2021.
[6] 國家統(tǒng)計(jì)局. 中國統(tǒng)計(jì)年鑒[M]. 北京:中國統(tǒng)計(jì)出版社,2022.
National Bureau of Statistics of China. China Statistical Yearbook[M]. Beijing:China Statistics Press,2022.
[7] 何永林,黃曉琴,黎起秦,陸溫,林緯,袁高慶. 柑橘砂皮病菌鑒定及室內(nèi)藥劑篩選試驗(yàn)[J]. 廣東農(nóng)業(yè)科學(xué),2019,46(11):92-97.
HE Yonglin,HUANG Xiaoqin,LI Qiqin,LU Wen,LIN Wei,YUAN Gaoqing. Pathogenic identification of citrus melanose and indoor screening of fungicides[J]. Guangdong Agricultural Sciences,2019,46(11):92-97.
[8] 陳國慶,姜麗英,徐法三,李紅葉. 防治柑橘黑點(diǎn)病藥劑的離體和田間篩選[J]. 浙江大學(xué)學(xué)報(農(nóng)業(yè)與生命科學(xué)版),2010,36(4):440-444.
CHEN Guoqing,JIANG Liying,XU Fasan,LI Hongye. In vitro and in vivo screening of fungicides for controlling citrus melanose caused by Diaporthe citri[J]. Journal of Zhejiang University (Agriculture and Life Sciences),2010,36(4):440-444.
[9] 姜麗英,徐法三,黃振東,黃峰,陳國慶,李紅葉. 柑橘黑點(diǎn)病的發(fā)病規(guī)律和防治[J]. 浙江農(nóng)業(yè)學(xué)報,2012,24(4):647-653.
JIANG Liying,XU Fasan,HUANG Zhendong,HUANG Feng,CHEN Guoqing,LI Hongye. Occurrence and control of citrus melanose caused by Diaporthe citri[J]. Acta Agriculturae Zhejiangensis,2012,24(4):647-653.
[10] BACH W J,WOLF F A. The isolation of the fungus that causes citrus melanose and the pathological anatomy of the host[J]. Journal of Agricultural Research,1928,37(4):243-252.
[11] XIONG T,ZENG Y T,WANG W,LI P D,GAI Y P,JIAO C,ZHU Z R,XU J P,LI H Y. Abundant genetic diversity and extensive differentiation among geographic populations of the citrus pathogen Diaporthe citri in southern China[J]. Journal of Fungi,2021,7(9):749.
[12] LIU H,WANG X,LIU S J,HUANG Y,GUO Y X,XIE W Z,LIU H,TAHIR UL QAMAR M,XU Q,CHEN L L. Citrus pan-genome to breeding database (CPBD):A comprehensive genome database for citrus breeding[J]. Molecular Plant,2022,15(10):1503-1505.
[13] WU G A,PROCHNIK S,JENKINS J,SALSE J,HELLSTEN U,MURAT F,PERRIER X,RUIZ M,SCALABRIN S,TEROL J,TAKITA M A,LABADIE K,POULAIN J,COULOUX A,JABBARI K,CATTONARO F,DEL FABBRO C,PINOSIO S,ZUCCOLO A,CHAPMAN J,GRIMWOOD J,TADEO F R,ESTORNELL L H,MU?OZ-SANZ J V,IBANEZ V,HERRERO-ORTEGA A,ALEZA P,PéREZ-PéREZ J,RAMóN D,BRUNEL D,LURO F,CHEN C X,F(xiàn)ARMERIE W G,DESANY B,KODIRA C,MOHIUDDIN M,HARKINS T,F(xiàn)REDRIKSON K,BURNS P,LOMSADZE A,BORODOVSKY M,REFORGIATO G,F(xiàn)REITAS-ASTúA J,QUETIER F,NAVARRO L,ROOSE M,WINCKER P,SCHMUTZ J,MORGANTE M,MACHADO M A,TALON M,JAILLON O,OLLITRAULT P,GMITTER F,ROKHSAR D. Sequencing of diverse mandarin,pummelo and orange genomes reveals complex history of admixture during citrus domestication[J]. Nature Biotechnology,2014,32:656-662.
[14] LI Q,QI J J,QIN X J,DOU W F,LEI T G,HU A H,JIA R R,JIANG G J,ZOU X P,LONG Q,XU L Z,PENG A H,YAO L X,CHEN S C,HE Y R. CitGVD:A comprehensive database of citrus genomic variations[J]. Horticulture Research,2020,7:12.
[15] WU G A,TEROL J,IBANEZ V,LóPEZ-GARCíA A,PéREZ-ROMáN E,BORREDá C,DOMINGO C,TADEO F R,CARBONELL-CABALLERO J,ALONSO R,CURK F,DU D L,OLLITRAULT P,ROOSE M L,DOPAZO J,GMITTER F G,ROKHSAR D S,TALON M. Genomics of the origin and evolution of Citrus[J]. Nature,2018,554:311-316.
[16] GAI Y P,XIONG T,XIAO X E,LI P D,ZENG Y T,LI L,RIELY B K,LI H Y. The genome sequence of the citrus melanose pathogen Diaporthe citri and two citrus-related Diaporthe species[J]. Phytopathology,2021,111(5):779-783.
[17] LIU X Y,CHAISIRI C,LIN Y,YIN W X,LUO C X. Whole-genome sequence of Diaporthe citri isolate NFHF-8-4,the causal agent of Citrus melanose[J]. Molecular Plant-Microbe Interactions,2021,34(7):845-847.
[18] UDAYANGA D,CASTLEBURY L A,ROSSMAN A Y,HYDE K D. Species limits in Diaporthe:Molecular re-assessment of D. citri,D. cytosporella,D. foeniculina and D. rudis[J]. Persoonia,2014,32:83-101.
[19] MONDAL S N,VICENT A,REIS R F,TIMMER L W. Saprophytic colonization of citrus twigs by Diaporthe citri and factors affecting pycnidial production and conidial survival[J]. Plant Disease,2007,91(4):387-392.
[20] 周娜,胡軍華,姚廷山,王雪蓮,王娟,彭鳳格,洪棋斌,江東. 柑橘種質(zhì)抗柑橘蒂腐病菌擴(kuò)展能力的評價[J]. 園藝學(xué)報,2015,42(10):1889-1898.
ZHOU Na,HU Junhua,YAO Tingshan,WANG Xuelian,WANG Juan,PENG Fengge,HONG Qibin,JIANG Dong. Evaluation of anti-expansion capacity of different Citrus germplasm against Diaporthe citri[J]. Acta Horticulturae Sinica,2015,42(10):1889-1898.
[21] 郭鄂平,陸學(xué)忠,楊樹國,王婭. 十堰市柑橘樹脂病的發(fā)生特點(diǎn)與綜合防治[J]. 中國南方果樹,2013,42(2):94-95.
GUO E’ping,LU Xuezhong,YANG Shuguo,WANG Ya. Occurrence characteristics and comprehensive prevention and control of citrus melanose in Shiyan City [J]. South China Fruits,2013,42(2):94-95.
[22] CHAISIRI C,LIU X Y,LIN Y,LUO C X. Diaporthe citri:A fungal pathogen causing melanose disease[J]. Plants,2022,11(12):1600.
[23] MAHADEVAKUMAR S,YADAV V,TEJASWINI G S,SANDEEP S N,JANARDHANA G R. First report of Phomopsis citri associated with Dieback of Citrus lemon in India[J]. Plant Disease,2014,98(9):1281.
[24] CHAISIRI C,LIU X Y,LIN Y,LI J B,XIONG B,LUO C X. Phylogenetic analysis and development of molecular tool for detection of Diaporthe citri causing melanose disease of Citrus[J]. Plants,2020,9(3):329.
[25] AGUILERA-COGLEY V,VICENT A. Etiology and distribution of foliar fungal diseases of citrus in Panama[J]. Tropical Plant Pathology,2019,44(6):519-532.
[26] GOMES R R,GLIENKE C,VIDEIRA S I R,LOMBARD L,GROENEWALD J Z,CROUS P W. Diaporthe:A genus of endophytic,saprobic and plant pathogenic fungi[J]. Persoonia,2013,31:1-41.
[27] 王先洪,姜佳琦,洪霓,王國平. 貴州梨芽枯間座殼菌屬Diaporthe的種類[J]. 菌物學(xué)報,2022,41(8):1151-1164.
WANG Xianhong,JIANG Jiaqi,HONG Ni,WANG Guoping. Diaporthe species causing pear bud witherings in Guizhou,Southwest China[J]. Mycosystema,2022,41(8):1151-1164.
[28] ZHANG Q M,YU C L,LI G F,WANG C X. First report of Diaporthe eres causing twig canker on Zizyphus jujuba (jujube) in China[J]. Plant Disease,2018,102(7):1458.
[29] 柴思睿. 中國江西省柑橘黑點(diǎn)病菌種群結(jié)構(gòu)研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2018.
Chai Sirui. Characterization of the populations of Diaporthe species on citrus in Jiangxi province,China[D]. Wuhan:Huazhong Agricultural University,2018.
[30] HUANG F,HOU X,DEWDNEY M M,F(xiàn)U Y S,CHEN G Q,HYDE K D,LI H Y. Diaporthe species occurring on citrus in China[J]. Fungal Diversity,2013,61(1):237-250.
[31] CUI M J,WEI X,XIA P L,YI J P,YU Z H,DENG J X,LI Q L. Diaporthe taoicola and D. siamensis,two new records on Citrus sinensis in China[J]. Mycobiology,2021,49(3):267-274.
[32] UDAYANGA D,LIU X Z,CROUS P W,MCKENZIE E H C,CHUKEATIROTE E,HYDE K D. A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis)[J]. Fungal Diversity,2012,56(1):157-171.
[33] FARR D F,CASTLEBURY L A,ROSSMAN A Y. Morphological and molecular characterization of Phomopsis vaccinii and additional isolates of Phomopsis from blueberry and cranberry in the eastern United States[J]. Mycologia,2002,94(3):494-504.
[34] FARR D F,CASTLEBURY L A,ROSSMAN A Y,PUTNAM M L. A new species of Phomopsis causing twig dieback of Vaccinium vitis-idaea (lingonberry)[J]. Mycological Research,2002,106(6):745-752.
[35] 賴寶春,姚錦愛. 蜜柚間座殼黑點(diǎn)病菌(Diaporthe citri)LAMP可視化檢測技術(shù)的建立[J]. 福建農(nóng)業(yè)學(xué)報,2022,37(11):1470-1475.
LAI Baochun,YAO Jin’ai. Establishment of a LAMP assay for rapid detecting Diaporthe citri on pomelo[J]. Fujian Journal of Agricultural Sciences,2022,37(11):1470-1475.
[36] 曾雅婷,熊桃,李紅葉. 柑橘黑點(diǎn)病菌(Diaporthe citri)快速分子檢測技術(shù)[J]. 浙江農(nóng)業(yè)學(xué)報,2022,34(7):1457-1465.
ZENG Yating,XIONG Tao,LI Hongye. Rapid molecular detection of Diaporthe citri,the pathogen of citrus melanose[J]. Acta Agriculturae Zhejiangensis,2022,34(7):1457-1465.
[37] 熊桃. 柑橘間座殼菌的群體遺傳結(jié)構(gòu)和有性生殖研究[D]. 杭州:浙江大學(xué),2021.
XIONG Tao. Population genetic structure and sexual reproduction of Diaporthe citri[D]. Hangzhou:Zhejiang University,2021.
[38] 蒲占湑,朱莉,杜丹超,胡秀榮,鹿連明,黃振東. 基于超高效液相色譜-串聯(lián)質(zhì)譜技術(shù)的柑橘黑點(diǎn)病菌(Diaporthe citri)發(fā)育關(guān)聯(lián)代謝物分析[J]. 微生物學(xué)報,2023,63(6):2472-2487.
PU Zhanxu,ZHU Li,DU Danchao,HU Xiurong,LU Lianming,HUANG Zhendong. Development-associated metabolites of Diaporthe citri:A metabolomics analysis based on UPLC-MS/MS[J]. Acta Microbiologica Sinica,2023,63(6):2472-2487.
[39] VLADIMIRO G,CROUS PEDRO W. Species of Diaporthe on camellia and citrus in the Azores Islands[J]. Phytopathologia Mediterranea,2018,57(2):307-319.
[40] 方天露. 柑橘砂皮病菌的分離鑒定及生物學(xué)特性研究[D]. 長沙:湖南農(nóng)業(yè)大學(xué),2017.
FANG Tianlu. Isolation,identification and biological characteristics of Diaporthe citri[D]. Changsha:Hunan Agricultural University,2017.
[41] HONG S J,YUN S C. Effects of dryness,moisture interruption,and temperature on germination of Diaporthe citri pycnidiospores on Yuzu[J]. Research in Plant Disease,2018,24(2):132-137.
[42] GOPAL K,LAKSHMI L M,SARADA G,NAGALAKSHMI T,SANKAR T G,GOPI V,RAMANA K T V. Citrus melanose (Diaporthe citri Wolf):A review[J]. International Journal of Current Microbiology and Applied Sciences,2014,3(4):113-124.
[43] BAHGAT M. The action of Phomopsis californica in producing a stem-end decay of citrus fruits[J]. Hilgardia,1928,3(6):153-181.
[44] PRUSKY D,ALKAN N,MENGISTE T,F(xiàn)LUHR R. Quiescent and necrotrophic lifestyle choice during postharvest disease development[J]. Annual Review of Phytopathology,2013,51:155-176.
[45] LI P D,ZHU Z R,ZHANG Y Z,XU J P,WANG H K,WANG Z Y,LI H Y. The phyllosphere microbiome shifts toward combating melanose pathogen[J]. Microbiome,2022,10(1):56.
[46] ARIMOTO Y,HOMMA Y,OHSAWA T. Studies on citrus melanose and citrus stem-end rot by Diaporthe citri (Faw.) Wolf. Part 5. Identification of a phytoalexin in melanose spot[J]. Japanese Journal of Phytopathology,1986,52(4):620-625.
[47] ARIMOTO Y,HOMMA Y,MISATO T. Studies on citrus melanose and citrus stem-end rot by Diaporthe citri (Faw.) Wolf. Part 4. Antifungal substance in melanose spot[J]. Japanese Journal of Phytopathology,1986,52(1):39-46.
[48] ARIMOTO Y,HOMMA Y,MISATO T. Studies on citrus melanose and citrus stem-end rot by Diaporthe citri (Faw.) wolf. Part 3. Mode of reaction in citrus fruit and leaf against infection of D. citri[J]. Japanese Journal of Phytopathology,1982,48(5):559-569.
[49] LI P D,XIAO X E,WANG J R,NIU F,HUANG J N,XIE B Y,YE L,ZHANG C F,WANG D L,WU Q,ZHENG X L,GAI Y P,LI H Y,JIAO C. Transcriptional insights of citrus defense response against Diaporthe citri[J]. BMC Plant Biology,2023,23(1):614.
[50] DAVIS R M,WILHITE H S. Relationships between melanose incidence and dead wood in Texas grapefruit[J]. Journal of the Rio Grande Valley Horticultural Society,1983,36:41-49.
[51] KIM K H,KIM G H,SON K I,KOH Y J. Outbreaks of Yuzu dieback in Goheung area:Possible causes deduced from weather extremes[J]. The Plant Pathology Journal,2015,31(3):290-298.
[52] MONDAL S N,AGOSTINI J P,ZHANG L,TIMMER L W. Factors affecting pycnidium production of Diaporthe citri on detached citrus twigs[J]. Plant Disease,2004,88(4):379-382.
[53] AGOSTINI J P,BUSHONG P M,BHATIA A,TIMMER L W. Influence of environmental factors on severity of citrus scab and melanose[J]. Plant Disease,2003,87(9):1102-1106.
[54] 蔣飛,張喜喜,肖小娥,李紅葉,祝增榮. 上海柑橘黑點(diǎn)病田間流行與降雨關(guān)系研究[J]. 植物保護(hù),2022,48(2):139-144.
JIANG Fei,ZHANG Xixi,XIAO Xiaoe,LI Hongye,ZHU Zengrong. Relationship between citrus melanose and precipitation in Shanghai[J]. Plant Protection,2022,48(2):139-144.
[55] IDREES M,NAZ S,EHETISHAM-UL-HAQ M,MEHBOOB S,KAMRAN M,ALI S,IQBAL M. Protectant and curative efficacy of different fungicides against citrus melanose caused by Phomopsis citri under in vivo conditions[J]. International Journal of Biosciences,2019,15(2):194-199.
[56] ANWAR U,MUBEEN M,IFTIKHAR Y,ZESHAN M A,SHAKEEL Q,SAJID A,UMER M,ABBAS A. Efficacy of different fungicides against citrus melanose disease in Sargodha,Pakistan[J]. Pakistan Journal of Phytopathology,2021,33(1):67-74.
[57] 劉欣,王明爽,梅秀鳳,姜麗英,韓國興,李紅葉. 柑橘黑點(diǎn)病菌種群對代森錳鋅的敏感性評價及其替代藥劑的篩選[J]. 植物保護(hù)學(xué)報,2018,45(2):373-381.
LIU Xin,WANG Mingshuang,MEI Xiufeng,JIANG Liying,HAN Guoxing,LI Hongye. Sensitivity evaluation of Diaporthe citri populations to mancozeb and screening of alternative fungicides for citrus melanose control[J]. Journal of Plant Protection,2018,45(2):373-381.
[58] INUMA T. Decreasing the frequency of conrol of citrus melanose by using the fungicides dithianon for Satsuma Mandarin cultivation[J]. Annual Report of the Kansai Plant Protection Society,2014,56:85-87.
[59] 李偉龍,周曉肖,郭巧慧,李辭海,李紅葉. 烯肟·丙森鋅等殺菌劑對柑橘黑點(diǎn)病的防治效果比較[J]. 中國果樹,2020(5):98-102.
LI Weilong,ZHOU Xiaoxiao,GUO Qiaohui,LI Cihai,LI Hong-
ye. Comparison of the prevention and control effects of fungicides such as oxime and prosenzinc on citrus melanose[J]. China Fruits,2020(5):98-102.
[60] GRAHAM J H,DEWDNEY M M,MYERS M E. Streptomycin and copper formulations for control of citrus canker on grapefruit[J]. Proceedings of the Florida State Horticultural Society,2010,123:92-99.
[61] YOUNG M,OZCAN A,RAJASEKARAN P,KUMRAH P,MYERS M E,JOHNSON E,GRAHAM J H,SANTRA S. Fixed-quat:An attractive nonmetal alternative to copper biocides against plant pathogens[J]. Journal of Agricultural and Food Chemistry,2018,66(50):13056-13064.
[62] LIU X Y,CHAISIRI C,LIN Y,F(xiàn)U Y P,YIN W X,ZHU F X,LI J B,XIONG B,WU H,XU A,LUO C X. Effective management of citrus melanose based on combination of ecofriendly chemicals[J]. Plant Disease,2023,107(4):1172-1176.
[63] 程小梅,龔碧涯,彭亞軍,孔佑涵,肖伏蓮,李先信. 礦物油-殺菌劑聯(lián)用防控柑橘砂皮病試驗(yàn)[J]. 中國果樹,2020(3):84-86.
CHENG Xiaomei,GONG Biya,PENG Yajun,KONG Youhan,XIAO Fulian,LI Xianxin. Test on prevention and control of citrus melanose by combination of mineral oil and fungicide[J]. China Fruits,2020(3):84-86.
[64] 侯欣,陳國慶,王興紅,朱麗,李紅葉. 3種柑橘病原真菌對苯醚菌酯和苯醚甲環(huán)唑敏感基線研究[J]. 浙江大學(xué)學(xué)報(農(nóng)業(yè)與生命科學(xué)版),2013,39(1):62-68.
HOU Xin,CHEN Guoqing,WANG Xinghong,ZHU Li,LI Hongye. Baseline sensitivities of three fungal pathogens of citrus to strobilurin fungicide and difenoconazole[J]. Journal of Zhejiang University (Agriculture and Life Sciences),2013,39(1):62-68.
[65] MUHAMMAD I,SUMERA N,SAIRA M,MUHAMMAD I. In vitro management of citrus melanose caused by Phomopsis citri through commercially available fungicides[J]. International Journal of Biosciences,2019,14(6):179-183.
[66] 趙霞,席亞東,夏麗娟. 4種吡唑醚菌酯復(fù)配劑對柑橘砂皮病的田間防效[J]. 現(xiàn)代農(nóng)藥,2022,21(2):65-68.
ZHAO Xia,XI Yadong,XIA Lijuan. Control effects of 4 types of pyraclostrobin mixtures on citrus melanose[J]. Modern Agrochemicals,2022,21(2):65-68.
[67] WHITESIDE J O. Sites of action of fungicides in the control of citrus melanose[J]. Phytopathology,1977,67(8):1067-1072.
[68] KO Y J,KANG S Y,JEUN Y C. Suppression of citrus melanose on the leaves treated with rhizobacterial strains after inoculation with Diaporthe citri[J]. Research in Plant Disease,2012,18(4):331-337.
[69] KO Y J,KIM J S,KIM K D,JEUN Y C. Microscopical observation of inhibition-behaviors against Diaporthe citri by pre-treated with Pseudomonas putida strain THJ609-3 on the leaves of citrus plants[J]. Journal of Microbiology,2014,52(10):879-883.
[70] NNAM M H,SHIN J H,CHOI J P,HONG S I,KIM Y G,KIM H T. Identification of rhizo-bacterium inhibiting Diaporthe citri causing citrus melanose[J]. The Korean Journal of Pesticide Science,2009,13(4):332-335.
[71] LEE D R,MAUNG C E H,CHOI T G,KIM K Y. Large scale cultivation of Bacillus velezensis CE 100 and effect of its culture on control of Citrus melanose caused by Diaporthe citri[J]. Korean Journal of Soil Science and Fertilizer,2021,54(3):297-310.
[72] LEE D R,CHAW E H M,AJUNA H,KIM K Y. Effect of large-scale cultivation of Bacillus amlyoliquefaciens Y1 using fertilizer based medium for control of citrus melanose causing Diaporthe citri[J]. Korean Journal of Soil Science and Fertilizer,2019,52(2):84-92.
[73] 李審微,洪艷云,李新文,何可佳,戴良英,盧曉鵬,宋娜,易圖永. 枯草芽孢桿菌M-23對柑橘砂皮病防效及 柑橘葉際細(xì)菌群落多樣性的影響[J]. 南方農(nóng)業(yè)學(xué)報,2020,51(7):1699-1705.
LI Shenwei,HONG Yanyun,LI Xinwen,HE Kejia,DAI Liang-ying,LU Xiaopeng,SONG Na,YI Tuyong. Effects of Bacillus subtilis M-23 on Diaporthe citri and diversity of bacterial community in the citrus phyllosphere[J]. Journal of Southern Agriculture,2020,51(7):1699-1705.
[74] SHIN Y H,KO E J,KIM S J,HYUN H N,JEUN Y C. Suppression of melanose caused by Diaporthe citri on citrus leaves pretreated with bio-sulfur[J]. The Plant Pathology Journal,2019,35(5):417-424.
[75] 劉常利. 柑橘黑點(diǎn)病生防菌篩選、鑒定和制劑開發(fā)[D]. 杭州:浙江大學(xué),2021.
LIU Changli. Biocontrol fungi screening,identification amp; formulation develpoment for citrus melanose[D]. Hangzhou:Zhejiang University,2021.
[76] 曾蓉,陸金萍,張學(xué)英,葉正文,戴富明. 農(nóng)業(yè)和化學(xué)措施對柑橘樹脂病和炭疽病的協(xié)同控制作用[J]. 上海農(nóng)業(yè)學(xué)報,2010,26(4):26-30.
ZENG Rong,LU Jinping,ZHANG Xueying,YE Zhengwen,DAI Fuming. Synergistic effects of agronomic and chemical measures on controlling citrus melanosis and anthracnose[J]. Acta Agriculturae Shanghai,2010,26(4):26-30.
[77] AGOSTINI J P,BUSHONG P M,TIMMER L W. Greenhouse evaluation of products that induce host resistance for control of scab,melanose,and Alternaria brown spot of citrus[J]. Plant Disease,2003,87(1):69-74.