摘 要 為探究干旱脅迫下不同施鉀水平對馬鈴薯生長、光合熒光參數(shù)、抗性生理以及產(chǎn)量品質(zhì)的影響,以‘隴薯7號’為研究對象,采用盆栽控水法進(jìn)行干旱脅迫,鉀肥用量分別為0 g/株(CK)、1.5 g/株(T1)、3.0" "g/株(T2)、4.5 g/株(T3)、6.0 g/株(T4),共5個處理,并進(jìn)行相關(guān)性與主成分分析。結(jié)果表明:干旱脅迫下施鉀有利于馬鈴薯植株生長,增加株高和莖粗,以T2處理效果最佳;葉綠素a+b含量、凈光合速率(Pn)、氣孔導(dǎo)度(Gs)和蒸騰速率(Tr)亦在T2處理最高,分別較CK增加22.50%、62.30%、27.66%和37.98%,而胞間CO2濃度(Ci)最低;施鉀也可以提高馬鈴薯葉片的最大量子效率(Fv/Fm)、光化學(xué)猝滅系數(shù)(qP)、非光化學(xué)猝滅系數(shù)(NPQ)和脯氨酸(Proline)含量,降低熱耗散量子比率(Fo/Fm)和丙二醛(MDA)含量,其中以T2和T3處理效果最明顯;同時,施鉀處理提高超氧化物歧化酶(SOD)、過氧化物酶(POD)和過氧化氫酶(CAT)活性;T1、T2、T3和T4與CK相比分別增產(chǎn)14.80%、36.38%、24.98%和9.77%,其中T2產(chǎn)量最高,達(dá) "35 209.06 kg·hm-2;施鉀顯著提高干旱脅迫下塊莖中淀粉、蛋白質(zhì)和維生素C含量,T2處理提升效果最優(yōu),同時降低還原糖含量,其中T3處理還原糖含量最低。相關(guān)性分析結(jié)果表明,馬鈴薯產(chǎn)量與葉片Pn顯著正相關(guān),淀粉與葉片Gs顯著正相關(guān)。依據(jù)主成分得分排序,不同水平鉀肥對干旱脅迫的緩解能力為T2gt;T3gt;T1gt;T4gt;CK。因此,T2處理可更好促進(jìn)干旱脅迫下馬鈴薯的生長,增強葉片光合熒光特性、抗氧化能力,減緩葉片衰老速率,進(jìn)而提高產(chǎn)量改善品質(zhì),緩解干旱脅迫的不利影響。
關(guān)鍵詞 鉀肥;干旱;馬鈴薯;生理特性;產(chǎn)量;品質(zhì)
干旱是影響世界各地農(nóng)業(yè)生產(chǎn)的主要環(huán)境問題,也是限制農(nóng)業(yè)發(fā)展的重要因素[1]。干旱脅迫會干擾植物正常的生長發(fā)育以及生理生化反應(yīng),如植株矮化、細(xì)胞或組織提前衰老、光合作用減弱、呼吸強度改變和生物膜穩(wěn)定性下降等[2]。適宜的養(yǎng)分供應(yīng)可以促進(jìn)作物生長發(fā)育[3],改善其生長狀況,進(jìn)而提高對不利環(huán)境的抗性[4]。如硅肥可以通過提高葉片光合能力來緩解干旱脅迫,促進(jìn)茄子幼苗的生長[5];鈣肥可以促進(jìn)花生植株生長,提高光合能力,最終緩解鹽堿脅迫,保證產(chǎn)量[6]。而鉀作為植物生長的重要元素,能促進(jìn)光合產(chǎn)物的轉(zhuǎn)運、提高抗氧化酶活性以及蛋白質(zhì)、碳水化合物的合成,同時對植物的生長以及不良環(huán)境的耐受性也具有重要作用[7-8]。前人研究表明,施用適宜濃度鉀肥可以顯著提高鹽脅迫下不同品種馬鈴薯的產(chǎn)量[9]、有效緩解干旱對油菜根系生長的抑制,提升油菜籽粒的產(chǎn)量和營養(yǎng)品質(zhì)[10];水分充足條件下施鉀會導(dǎo)致葉綠素含量和熒光參數(shù)降低,而缺水條件下施鉀則會顯著提高光合性能[11];干旱脅迫下施鉀可以促進(jìn)甘薯的干物質(zhì)向塊根分配,提高單薯質(zhì)量來增加產(chǎn)量[12],施鉀及葉面施ZnSO4可以提高干旱脅迫下雙季晚稻的光合速率及蒸騰速率[13];馬鈴薯對鉀素營養(yǎng)的需求較高,合理施用鉀肥可以提高干旱脅迫下馬鈴薯的根系活力和含水量[14]。因此,施鉀可以緩解不良環(huán)境對作物生長造成的影響[15]。
馬鈴薯(Solanum" tuberosum L.)是中國重要的糧食作物[16],具有極高的營養(yǎng)和經(jīng)濟(jì)價值,并且甘肅為馬鈴薯種植大省,全省種植面積約 "68.67萬hm2[17],但由于該地區(qū)馬鈴薯多種植于半干旱區(qū),生長過程中常受到土壤水分虧缺和高溫干旱的影響[18],導(dǎo)致塊莖產(chǎn)量和品質(zhì)下降,制約了當(dāng)?shù)伛R鈴薯生產(chǎn)。目前,有關(guān)鉀對馬鈴薯抗旱性影響的研究鮮見報道,因此,本試驗以‘隴薯7號’為材料,研究不同施鉀水平對干旱脅迫下馬鈴薯生長、光合參數(shù)、抗性生理以及產(chǎn)量和品質(zhì)的影響,篩選出緩解馬鈴薯干旱脅迫的適宜施鉀水平,以期為馬鈴薯抗旱栽培提供一定的理論依據(jù)。
1 材料與方法
1.1 試驗地點與試驗材料
試驗于甘肅農(nóng)業(yè)大學(xué)遮雨棚(N 36°3′~ "38°1′,E 105°89′~107°33′)內(nèi)進(jìn)行,供試馬鈴薯品種為‘隴薯7號’,由甘肅省定西市農(nóng)業(yè)科學(xué)院提供。采用盆栽種植,試驗用盆規(guī)格:上直徑35.0 cm,下直徑21.0 cm,高23.5 cm,基質(zhì)按蛭石∶珍珠巖∶營養(yǎng)土=3∶1∶1(體積比)進(jìn)行配比,含有機(jī)質(zhì)14.50 g/kg,堿解氮16.90 mg/kg,有效磷 "13.10 mg/kg,有效鉀67.61 mg/kg。裝盆前用多菌靈消毒。供試肥料為尿素(含N 46%),過磷酸鈣(含P2O5 16%)和硫酸鉀(含K2O 52%),由甘肅盛華威商貿(mào)有限公司提供。
1.2 試驗設(shè)計
試驗共設(shè)5個處理,分別為干旱脅迫+0" "g/株鉀肥(CK)、干旱脅迫+1.5 g/株鉀肥(T1)、干旱脅迫+3.0 g/株鉀肥(T2)、干旱脅迫+4.5" "g/株鉀肥(T3)和干旱脅迫+6.0 g/株鉀肥(T4),每個處理設(shè)置9盆。采用稱重法控制土壤含水量進(jìn)行干旱脅迫處理,使盆內(nèi)土壤持水量始終保持在50%±5%,直至塊莖成熟。氮肥(6.1 g/株)和磷肥(8.7 g/株)于播種前一次性施入。于現(xiàn)蕾期之前,晴天上午10:00左右在根系周圍土壤均勻施入硫酸鉀,其他管理同田間生產(chǎn)。
1.3 測定項目與方法
1.3.1 生長指標(biāo)的測定 株高:用卷尺測量馬鈴薯地上部最低點至頂端垂直高度的距離;莖粗:用游標(biāo)卡尺測量植株主莖最粗部位的直徑。
1.3.2 光合色素及光合熒光參數(shù)的測定 在晴天上午9:00—11:00,采用LI-6400光合儀(LI-COR,Lincoln,NE,USA)選取同一節(jié)位的功能葉測定光合特性(凈光合速率、蒸騰速率、胞間CO2濃度和氣孔導(dǎo)度)。光合色素含量(葉綠素a、葉綠素b、類胡蘿卜素)采用分光光度法測定[19]。熒光參數(shù)的測定部位與氣體交換參數(shù)相同,暗處理30 min,確保PSII反應(yīng)中心完全打開,用LI-6400光合儀(LI-COR,Lincoln,NE,USA)測定,并計算最大量子效率、熱耗散量子比率、光化學(xué)猝滅系數(shù)和非光化學(xué)猝滅系數(shù)[20]。
1.3.3 抗氧化酶活性及滲透調(diào)節(jié)物質(zhì)的測定 超氧化物歧化酶活性的測定采用氮藍(lán)四唑光化還原法,過氧化物酶活性的測定采用愈創(chuàng)木酚法,過氧化氫酶活性的測定采用紫外吸收法[21],丙二醛含量采用硫代巴比妥酸法測定,脯氨酸含量采用酸性茚三酮法[22]測定。
1.3.4 產(chǎn)量的測定 收獲時,每個處理隨機(jī)選5株進(jìn)行考種,同時記錄單株薯數(shù)、單株薯質(zhì)量和商品薯率。
1.3.5 品質(zhì)的測定
馬鈴薯塊莖收獲后于4 ℃條件下貯藏,采用近紅外品質(zhì)分析儀(丹麥FOSS,NIRS DS 2500)測定塊莖中淀粉、還原糖、維生素C和蛋白質(zhì)含量[23]。
1.4 數(shù)據(jù)處理
采用Microsoft Excel 2010進(jìn)行試驗數(shù)據(jù)統(tǒng)計,通過SPSS 26. 0軟件用Duncan’s新復(fù)極差法(P≤0.05)對試驗數(shù)據(jù)進(jìn)行方差分析,數(shù)據(jù)表示形式為“平均數(shù)±標(biāo)準(zhǔn)誤”,利用Excel 2016和Origin 2022進(jìn)行繪圖。
2 結(jié)果與分析
2.1 干旱脅迫下不同施鉀水平對馬鈴薯株高和莖粗的影響
如圖1所示,干旱脅迫下,隨著鉀肥水平的增加,馬鈴薯株高和莖粗呈先升后降的變化趨勢。與CK相比,T1、T2、T3和T4處理的馬鈴薯株高分別增加11.23%、22.68%、18.13%和1.15%, T1~T4處理的莖粗分別增加4.74%~9.53%。T2處理株高和莖粗顯著高于CK。
2.2 干旱脅迫下不同施鉀水平對馬鈴薯葉片光合色素含量及光合熒光特性的影響
2.2.1 對馬鈴薯葉片光合色素含量的影響 如表1所示,T2處理的葉綠素a、葉綠素b、葉綠素 "a+b及類胡蘿卜素含量均為最高,分別比CK顯著增加16.46%、49.60%、22.50%和16.24%。當(dāng)鉀肥量為6.0 g/株(T4)時,葉綠素a和葉綠素a+b含量均顯著低于T2處理,葉綠素b與類胡蘿卜素含量無顯著差異。
2.2.2 對馬鈴薯葉片光合特性的影響 隨著施鉀水平提高,馬鈴薯葉片凈光合速率呈先升后降的趨勢(圖2-A),T1~T4處理分別較CK增加15.00%~62.30%,T2處理增幅最大;氣孔導(dǎo)度和蒸騰速率呈先升后降再升的波動趨勢(圖2-B,2-D),兩者均以T2處理最大,其次為T4處理;而胞間CO2濃度變化趨勢與凈光合速率相反(圖2-C),干旱脅迫下增施鉀肥使胞間CO2濃度降低,其中,T2和T3處理與CK存在顯著性差異。
2.2.3 對馬鈴薯葉片熒光參數(shù)的影響 如表2所示,熱耗散量子比率、光化學(xué)猝滅系數(shù)和非光化學(xué)猝滅系數(shù)均以T2處理最高,最大量子比率則以T3處理最高,T1和T4處理下的最大量子比率、熱耗散量子比率、光化學(xué)猝滅系數(shù)和非光化學(xué)猝滅系數(shù)與CK無顯著性差異。
2.3 干旱脅迫下不同施鉀水平對馬鈴薯滲透調(diào)節(jié)物質(zhì)及抗氧化酶活性的影響
2.3.1 對馬鈴薯丙二醛和脯氨酸含量的影響 如圖3-A所示,馬鈴薯植株葉片的丙二醛(MDA)含量隨鉀肥水平增加先降后升。各施鉀處理的丙二醛含量低于CK,其中,T2和T3處理顯著低于CK,分別較CK降低23.27%和19.50%。脯氨酸含量變化趨勢則與丙二醛相反(圖3-B),施鉀后脯氨酸含量較CK增加,以T3處理增加最為明顯,T2處理次之。
2.3.2 對抗氧化酶活性的影響 干旱脅迫下,施鉀對馬鈴薯葉片超氧化物歧化酶、過氧化物酶和過氧化氫酶活性有明顯影響(圖4)。T3處理的超氧化物歧化酶和過氧化物酶活性最強(圖4-A,4-B),分別較CK增加14.25%和61.33%。干旱脅迫下,各施鉀處理的過氧化氫酶活性均出現(xiàn)不同程度增加,T2處理的過氧化氫酶活性最強(圖4-C),其次為T4處理,分別較CK顯著增加 "59.56%和31.06%。
2.4 干旱脅迫下不同施鉀水平對馬鈴薯產(chǎn)量和產(chǎn)量構(gòu)成的影響
不同鉀肥水平處理對干旱脅迫下馬鈴薯產(chǎn)量有明顯影響(圖5),各處理產(chǎn)量均高于對照。與CK相比,T1~T4處理分別增加14.80%、 "36.38%、24.98%和9.77%,其中,T2處理增產(chǎn)最高。
如表3所示,隨著鉀肥水平的增加,商品薯率、單株薯質(zhì)量和單株薯數(shù)均呈先增加后降低的趨勢。與其他處理相比,T2處理的商品薯率和單株薯質(zhì)量均為最高,分別比CK顯著增加 "28.33%、20.17%,T3處理單株薯數(shù)優(yōu)于CK。當(dāng)鉀肥水平為6.0 g/株(T4)時,單株薯質(zhì)量顯著低于T2處理,商品薯率和單株薯數(shù)無顯著差異。
2.5 干旱脅迫下不同施鉀水平對馬鈴薯品質(zhì)的影響
干旱脅迫下不同施鉀水平對塊莖品質(zhì)有顯著提升作用(圖6)。圖6-A中,與CK相比,T1~T4處理淀粉含量分別增加7.77%~30.26%,其中T2處理增幅最大;圖6-B中,T3處理還原糖含量最低,為0.14%,且與CK存在顯著性差異;圖6-C中,T2處理蛋白質(zhì)含量最高,T3處理次之,與CK相比,T1~T4處理蛋白質(zhì)含量分別增加3.03%~16.36%;圖6-D中, T2處理維生素C含量(16.05 μg/g)最高,表現(xiàn)為T2gt;T3gt; "T4gt;T1gt;CK。
2.6 馬鈴薯生長生理指標(biāo)及產(chǎn)量的相關(guān)性分析
皮爾遜相關(guān)性分析表明(圖7),塊莖產(chǎn)量、商品薯率和淀粉含量與胞間CO2濃度、熱耗散量子比率和丙二醛含量均呈顯著負(fù)相關(guān)關(guān)系,與其余各指標(biāo)均呈顯著正相關(guān)關(guān)系。
2.7 馬鈴薯生長生理指標(biāo)、光合及熒光參數(shù)與產(chǎn)量品質(zhì)的主成分分析
對本試驗中馬鈴薯葉片及塊莖中所測定的27個指標(biāo)進(jìn)行主成分分析(表4)。提取特征值gt;1的2個主成分,其方差貢獻(xiàn)率分別為78.28%和12.63%,累計方差貢獻(xiàn)率達(dá)到90.91%,符合分析要求。綜合得分(F)為每個主成分得分與相應(yīng)貢獻(xiàn)率乘積的和,即F=Z1×0.594 8 + Z2× "0.311 1 + Z3×0.066 7。由表4可知,不同施鉀水平對干旱脅迫下馬鈴薯生理各指標(biāo)的效應(yīng)依次為T2gt;T3gt;T1gt;T4gt;CK。
3 討" 論
株高和莖粗在一定程度上可以反映植株生長狀況[24]。本試驗中,干旱脅迫下,各施鉀處理的馬鈴薯株高及莖粗均呈增加趨勢,其中T2處理顯著高于CK,這可能是因為干旱脅迫下充足的鉀肥可以提高馬鈴薯根系通過細(xì)胞質(zhì)膜K+轉(zhuǎn)運蛋白和K+通道從環(huán)境中吸收K+的效率,然后將其有效地轉(zhuǎn)運到地上部[25],進(jìn)而增強馬鈴薯長勢,提高抗旱能力,這與Egilla 等[26]在扶桑上的研究結(jié)果一致。
光合作用是作物產(chǎn)量形成的基礎(chǔ),光合作用受到抑制,產(chǎn)量也會有所降低[27]。研究表明,合理的鉀肥供應(yīng)可以影響玉米葉片利用光能的效率和干物質(zhì)的積累,有助于緩解植株應(yīng)對高溫的能力[28]。而本研究中,干旱脅迫下,施不同水平鉀肥后,各處理中馬鈴薯葉片的葉綠素a+b含量、凈光合速率、氣孔導(dǎo)度和蒸騰速率較CK升高,而胞間CO2濃度降低,均以T2處理差異最為顯著。并且相關(guān)性分析表明,葉綠素a+b含量與塊莖產(chǎn)量和品質(zhì)顯著正相關(guān)(圖7),說明施鉀可以緩解干旱脅迫對馬鈴薯功能葉片光合作用的影響,使光合產(chǎn)物的輸出速率保持在正常水平[29]。同時適宜施鉀量可以提高馬鈴薯對干旱脅迫的適應(yīng)性,使葉片利用更多的光能,從而在一定程度上可以緩解干旱脅迫對馬鈴薯葉片的傷害[30]。此外,葉綠素?zé)晒鈪?shù)能直接反應(yīng)光系統(tǒng)Ⅱ?qū)饽艿奈铡鬟f和耗散情況,可作為植株的抗逆性指標(biāo)之一[31]。本研究中,不同水平鉀肥可提高干旱脅迫下馬鈴薯葉片的最大量子效率、光化學(xué)猝滅系數(shù)和非光化學(xué)猝滅系數(shù),降低熱耗散量子比率,其中以T2或T3處理改善效果最明顯,表明施鉀可以使得光系統(tǒng)Ⅱ反應(yīng)中心吸收的光能充分用于光合系統(tǒng)的電子傳遞[32],提高馬鈴薯的光合效率,從而維持光合系統(tǒng)和葉片光合功能的穩(wěn)定性以及對干旱的耐受能力。
干旱脅迫下,丙二醛和脯氨酸含量受到影響,植物活性氧積累,滲透平衡遭到破壞,加劇生物膜脂過氧化作用,從而對植物造成傷害[33-34]。而抗氧化酶在逆境條件可以緩解活性氧急劇積累對植株造成的危害[35]。有研究發(fā)現(xiàn),干旱脅迫下,充足的鉀供應(yīng)可以使向日葵抗氧化能力增強,丙二醛含量減少[36];適宜施鉀可以增強馬鈴薯根系在逆境環(huán)境下的抗氧化酶活性[14];水分脅迫下,施鉀可以使玉米體內(nèi)脯氨酸含量增加[11]。本試驗結(jié)果表明,干旱脅迫下增施不同水平鉀肥可以不同程度提高抗氧化酶活性和脯氨酸含量,且隨著施鉀水平增加,抗氧化酶活性和脯氨酸含量增加后減少,丙二醛含量與之相反,其中以T2或T3處理最佳,這與劉穎等[37]在大豆葉片上的研究結(jié)果相似,說明干旱脅迫下施鉀可以減輕細(xì)胞膜受到的傷害,促進(jìn)清除活性氧的能力,減緩細(xì)胞的衰老和解體,以此增加植株在干旱條件下的適應(yīng) "能力。
干旱脅迫會使植株水分吸收和散失的平衡失調(diào),影響生長發(fā)育,從而降低塊莖產(chǎn)量,而合理補充鉀素會改善土壤養(yǎng)分條件,增強植株長勢,最終實現(xiàn)優(yōu)質(zhì)高產(chǎn)[38]。前人研究表明,合理施肥有利于馬鈴薯生長,促進(jìn)營養(yǎng)元素吸收,使得塊莖產(chǎn)量增加,蛋白質(zhì)和維生素C含量得到改善[39];適量施鉀,甘薯的產(chǎn)量和品質(zhì)均有所提高[40],缺水條件下施鉀后大豆產(chǎn)量分別顯著提高[41],本試驗中,干旱脅迫下施鉀可以提高塊莖產(chǎn)量,其中以T2處理產(chǎn)量最高,達(dá)35 209.06 kg/hm2,與此同時,T2處理下商品薯率和單株薯質(zhì)量均為最大,表明鉀在干旱脅迫下對馬鈴薯產(chǎn)量的影響主要是通過商品薯率提高和單株薯質(zhì)量增加來實現(xiàn)的[42]。此外,馬鈴薯屬于典型的喜鉀作物,在生長過程中對鉀的需求較大[43],但是隨著施鉀量增加,產(chǎn)量沒有進(jìn)一步提升,可能是因為干旱脅迫下過多鉀產(chǎn)生滲透脅迫而限制了產(chǎn)量增加[44]。同時,隨著施鉀水平增加,馬鈴薯塊莖淀粉、蛋白質(zhì)和維生素C的含量先增加后降低,T2處理均為最高,而還原糖含量則先降后升,T3處理最低,這與朱波等[10]的研究結(jié)果相符。淀粉含量增加,還原糖含量降低,塊莖品質(zhì)得到進(jìn)一步提升。主要是由于干旱條件下適宜鉀肥量可以促進(jìn)光合作用和光合產(chǎn)物轉(zhuǎn)運以及增強其向淀粉和蛋白質(zhì)的轉(zhuǎn)化,進(jìn)而提高塊莖品質(zhì)[45]。因此,干旱環(huán)境下,合理的施鉀水平可以改善馬鈴薯生長過程中的水分狀況以及水分脅迫下馬鈴薯塊莖的產(chǎn)量與品質(zhì)。
4 結(jié)" 論
本試驗中,干旱條件下,施用不同水平鉀肥可以增強馬鈴薯在干旱脅迫下的適應(yīng)性,改善馬鈴薯植株長勢,增強葉片光合性能、提高滲透調(diào)節(jié)能力和抗氧化能力,進(jìn)而提高塊莖產(chǎn)量。主成分分析表明,當(dāng)施鉀水平為3.0 g/株時,對干旱脅迫的緩解效果最優(yōu)。因此,當(dāng)土壤含水量為50%±5%時,施3.0 g/株鉀肥可有效提升馬鈴薯對干旱脅迫的耐受性。
參考文獻(xiàn) Reference:
[1]DAI A.Increasing drought under global warming in observations and models[J].Nature Climate Change,2013, "3(2):171-171.
[2]TABASSUM T,F(xiàn)AROOQ M,AHMAD R,et al.Terminal drought and seed priming improves drought tolerance in wheat[J].Physiology and Molecular Biology of Plants,2018,24(5):845-856.
[3]陳光榮.旱作馬鈴薯施鉀與補水效應(yīng)的研究[D].蘭州:甘肅農(nóng)業(yè)大學(xué),2008.
CHEN G R.Effect ofpotassium fertilizer and water supplement for dry land potato[D].Lanzhou:Gansu Agricultural University,2008.
[4]劉義國,萬雪潔,張 艷,等.干旱鍛煉對小麥幼苗期形態(tài)指標(biāo)的影響[J].西北農(nóng)業(yè)學(xué)報,2022,31(2):157-163.
LIU Y G,WAN X J,ZHANG Y,et al.Effect of drought priming on morphological indices of wheat seedlings[J].Acta Agriculturae Boreali-occidentalis Sinica,2022, "31(2):157-163.
[5]范小玉,趙躍鋒,張清華,等.硅肥對干旱脅迫下茄子幼苗生長及生理特性的影響[J].江蘇農(nóng)業(yè)科學(xué),2022,50(9):122-127.
FAN X Y,ZHAO Y F,ZHANG Q H,et al.Impacts of silicon fertilizer on growth and physiological characteristics of eggplant seedlings under drought stress[J].Jiangsu Agricultural Science,2022,50(9):122-127.
[6]史曉龍,戴良香,宋文武,等.施用鈣肥對鹽脅迫條件下花生生長發(fā)育和產(chǎn)量的影響[J].花生學(xué)報,2017,46(2):40-46.
SHI X L,DAI L X,SONG W W,et al.Effects of calcium fertilizer application on development and yield of peanut under salt stress[J].Journal of Peanut Science,2017,46(2):40-46.
[7]SINGH A,CHAHAL H S,CJINNA G S.Influence of potassium on the productivity and quality of potato:a review[J].Environment Conservation Journal,2020,21(3):79-88.
[8]趙澤茹,魏永勝.干旱脅迫下施鉀水平與煙草葉片主要滲透調(diào)節(jié)物質(zhì)的關(guān)系[J].西北農(nóng)業(yè)學(xué)報,2009,18(6):356-360.
ZHAO Z R,WEI Y SH.Correlation between potassium application and the main osmotic regulation substances in leaves of tobacco under drought stress[J].Acta Agriculturae Boreali-occidentalis Sinica,2009,18(6):356-360.
[9]ELKHATIB H A ,ELKHATIB E A ,KHALAF ALLAH A M ,et al.Yield response of salt-stressed potato to potassium fertilization:a preliminary mathematical model[J].Journal of Plant Nutrition,2004,27(1):111-122.
[10]朱 波,徐綺雯,馬淑敏,等.干旱脅迫下施鉀水平對油菜生長特性、籽粒品質(zhì)和鉀素利用的影響[J].植物營養(yǎng)與肥料學(xué)報,2021,27(6):1016-1026.
ZHU B,XU Q W,MA SH M,et al.Effects of potassium fertilizer rate on growth,seed quality and potassium use efficiency in brassica napus under drought stress[J].Journal of Plant Nutrition and Fertilizers,2021,27(6):1016-1026.
[11]ANOKYE E,LOWOR S T,DOGBATSE J A,et al.Potassium application positively modulates physiological responses of cocoa seedlings to drought stress[J].Agronomy,2021,11(3):563.
[12]孫 哲,史春余,陳路路,等.干旱脅迫下鉀素對甘薯碳水化合物及內(nèi)源激素含量的影響[J].植物營養(yǎng)與肥料學(xué)報,2019,25(9):1550-1559.
SUN ZH,SHI CH Y,CHEN L L,et al.Effects of potassium nutrition on carbohydrate and endogenous hormone contents of sweet potato under drought stress[J].Journal of Plant Nutrition and Fertilizers,2019,25(9):1550-1559.
[13]關(guān)賢交,彭春瑞,陳先茂,等.分蘗期干旱脅迫下養(yǎng)分管理對雙季晚稻生長及產(chǎn)量的調(diào)控效應(yīng)[J].干旱地區(qū)農(nóng)業(yè)研究,2017,35(3):7-12.
GUAN X J,PENG CH R,CHEN X M,et al.Effect of nutrient management on the growth and yield of double cropping late rice under drought stress during tillering stage[J].Agricultural Research in the Arid Areas,2017, "35(3):7-12.
[14]張舒涵,張俊蓮,王 文,等.氯化鉀對干旱脅迫下馬鈴薯根系生理及形態(tài)的影響[J].中國土壤與肥料,2018(5):77-84.
ZHANG SH H,ZHANG J L,WANG W,et al.Influence of potassium chloride on the root physiology and morphology of potato under drought stress[J].Soil and Fertilizer Sciences in China,2018(5):77-84.
[15]SHABALA S,POTTOSIN I.Regulation of potassium transport in plants under hostile conditions:implications for abiotic and biotic stress tolerance[J].Physiologia Plantarum,2014,151(3):257-279.
[16]ALI M M E,PETROPOULOS S A,SELIM D A F F H, "et al.Plant growth,yield and quality of potato crop in relation to potassium fertilization[J].Agronomy,2021, "11(4):675.
[17]孫毓民.甘肅馬鈴薯主栽品種種植現(xiàn)狀的調(diào)查與分析[J].農(nóng)業(yè)開發(fā)與裝備,2022 (9):49-51.
SUN Y M.Survey and analysis of the current situation of potato cultivation in Gansu[J].Agricultural Development amp; Equipments,2022(9):49-51.
[18]馮雨露,張森昱,楊成存,等.秸稈帶狀覆蓋對半干旱雨養(yǎng)區(qū)馬鈴薯光合特性及產(chǎn)量的影響[J].核農(nóng)學(xué)報,2023, "37(7):1442-1451.
FENG Y L,ZHANG S Y,YANG CH C,et al.Effects of straw strip mulching on potato photosynthetic characteristics and yield in Semi-arid rainfed areas[J].Journal of Nuclear Agricultural Sciences,2023,37(7):1442-1451.
[19]張志良,瞿偉菁.植物生理學(xué)實驗指導(dǎo)[M].北京:高等教育出版社,2003:14.
ZHANG ZH L,QU W J.Experimental Guidance of Plant Physiology[M].Beijing:Higher Education Press,2003:14.
[20]ZHANG R,ZHANG W,KANG Y,et al.Application of different foliar iron fertilizers for improving the photosynthesis and tuber quality of potato (Solanum tuberosum L.) and enhancing iron biofortification[J].Chemical and Biological Technologies in Agriculture,2022,9(1):79.
[21]周勝男,陸 寧.馬鈴薯中多酚類物質(zhì)提取方法的研究[J].食品工業(yè)科技,2009,30(9):217-219,222.
ZHOU SH N,LU N.Study on extraction methods of polyphenols from potatoes[J].Science and Technology of Food Industry,2009,30(9):217-219,222.
[22]陳建勛,王曉峰.植物生理學(xué)實驗指導(dǎo)[M].廣州:華南理工大學(xué)出版社,2013.
CHEN J X,WANG X F.Experimental Instruction in Plant Physiology[M].Guangzhou:South China University of Technology Press,2013.
[23]周春濤,張茹艷,石銘福,等.鐵肥形態(tài)對馬鈴薯塊莖內(nèi)源激素、產(chǎn)量及品質(zhì)的影響[J].西北農(nóng)林科技大學(xué)學(xué)報(自然科學(xué)版),2022,50(4):42-49.
ZHOU CH T,ZHANG R Y,SHI M F,et al.Effects of different forms of iron fertilizers on endogenous hormones,yield and quality of potato[J].Journal of Northwest A amp; F University (Natural Science Edition),2022,50(4):42-49.
[24]GHAFOOR I,HABIB-UR-RAHMAN M,ALI M,et al.Slow-release nitrogen fertilizers enhance growth,yield,NUE in wheat crop and reduce nitrogen losses under an arid environment[J].Environmental Science and Pollution Research,2021,28(32):43528-43543.
[25]DUAN H,ZHOU X,HU J,et al.Advances in understanding molecular mechanisms of K+ uptake and transport in higher plants[J].Acta Prataculturae Sinica,2019,28(9):174.
[26]EGILLA J,DAVIES F,BOUTTON T.Drought stress influences leaf water content,photosynthesis,and water–use efficiency of Hibiscus rosa–sinensis at three potassium concentrations[J].Photosynthetica,2005,43(1):135-140.
[27]WANG J D,WANG H,ZHANG Y,et al.Intraspecific variation in potassium uptake and utilization among sweet potato (Ipomoea batatas L.) genotypes[J].Field Crops Research,2015,170:76-82.
[28]XIA Z,WU M,BAI J,et al.Root zone temperature regulates potassium absorption and photosynthesis in maize (Zea mays) [J].Plant Physiology and Biochemistry,2023,198:107694.
[29]AMANULLAH,IQBAL A,IRFANULLAH,et al.Potassium management for improving growth and grain yield of maize (Zea mays" L.) under moisture stress condition[J].Scientific Reports,2016,6(1):34627.
[30]熊志豪,楊 丞,張 賡,等.不同生育期干旱脅迫條件下施鉀對水稻生理性狀和產(chǎn)量的影響[J].土壤學(xué)報,2024,61(1):140-150.
XIONG ZH H,YANG CH,ZHANG G,et al.Effects of potassium addition on physiological characteristics and grain yield under drought stress condition in different growth stages of rice[J].Acta Pedologica Sinica,2024, "61(1):140-150.
[31]黃麗芳,龍宇宙,李金芹,等.低溫脅迫對小粒種咖啡幼苗光合及葉綠素?zé)晒馓匦缘挠绊慬J].分子植物育種,2024,22(14):4706-4714.
HUANG L F,LONG Y ZH,LI J Q,et al.Effects of low temperature on photosynthetic and chlorophyll fluorescence parameters of coffea arabica[J].Molecular Plant Breeding,2024,22(14):4706-4714.
[32]DEMMIG-ADAMS B,ADAMS W W.An integrative approach to photoinhibition and photoprotection of photosynthesis[J].Environmental and Experimental Botany,2018,154:1-3.
[33]康利允,常高正,馬政華,等.不同氮鉀肥用量對甜瓜坐果節(jié)位葉片生理特性的影響[J].中國土壤與肥料,2019(4):96-104.
KANG L Y,CHANG G ZH,MA ZH H,et al.Effects of different nitrogen and potassium application amounts on physiological characteristics of fruiting node leaf of melon[J].Soil and Fertilizer Sciences in China,2019(4):96-104.
[34]HOSSEINZADEH S R,AMIRI H,ISMAILI A.Evaluation of photosynthesis,physiological,and biochemical responses of chickpea (Cicer arietinum L.cv.Pirouz) under water deficit stress and use of vermicompost fertilizer[J].Journal of Integrative Agriculture,2018,17(11):2426-2437.
[35]PANCHA I,CHOKSHI K,MAURYA R,et al.Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp.CCNM 1077[J].Bioresource Technology,2015,189:341-348.
[36]SOLEIMANZADEH H,HABIBI D,ARDAKANI M R, "et al.Effect of potassium levels on antioxidant enzymes and malondialdehyde content under drought stress in sunflower (Helianthus annuus L.) [J].American Journal of Agricultural and Biological Sciences,2010,5(1):56-61.
[37]劉 穎,張明怡,韓 光,等.干旱脅迫下鉀對大豆葉片保護(hù)酶活性及產(chǎn)量的影響[J].大豆科學(xué),2011,30(2):341-343,346.
LIU Y,ZHANG M Y,HAN G,et al.Effect of potassium on soybean leaf protective enzymes and yield under drought stress[J].Soybean Science,2011,30(2):341-343,346.
[38]VANDOORNE B,MATHIEU A" S,VAN DEN ENDE W,et al.Water stress drastically reduces root growth and inulin yield in Cichorium intybus (var.sativum) independently of photosynthesis[J].Journal of Experimental Botany,2012,63(12):4359-4373.
[39]陳 華,劉孟君,劉如霞.不同施肥水平對菜用馬鈴薯農(nóng)藝性狀及營養(yǎng)品質(zhì)的影響[J].西北農(nóng)業(yè)學(xué)報,2016,25(2):220-226.
CHEN H,LIU M J,LIU R X.Agronomic traits and nutrition qualities of table stock potato against different fertilizations.Acta Agriculturae Boreali-occidentalis Sinica,2016,25(2):220-226.
[40]CORREA C V,GOUVEIA A M D,LANAN N D L,et al.The split application of potassium influence the production,nutrients extraction,and quality of sweet potatoes[J].Journal of Plant Nutrition,2018,41(16):2048-2056.
[41]劉美玲,馮乃杰,鄭殿峰,等.不同土壤水分條件下吲哚丁酸鉀對大豆根系形態(tài)建成及生理代謝的影響[J].中國油料作物學(xué)報,2022,44(3):621-631.
LIU M L,F(xiàn)ENG N J,ZHENG D F,et al.Effects of potassium indole butyrate on root morphogenesis and physiological metabolism of soybean under different soil water conditions[J].Chinese Journal of Oil Crop Sciences,2022,44(3):621-631.
[42]石銘福.不同類型肥料追施對馬鈴薯生長特征、產(chǎn)量構(gòu)成及品質(zhì)的影響[D].蘭州:甘肅農(nóng)業(yè)大學(xué),2018.
SHI M F.Effects oftopdressing different types of fertilizers on growth characteristics,yield components and quality of potato[D].Lanzhou:Gansu Agricultural University,2018.
[43]CORREA C V,GOUVEIA A M D,MARTINS B N M, "et al.Effect of top-dressed potassium fertilization on the yield and quality of cucumber[J].Journal of Plant Nutrition,2018,41(10):1345-1350.
[44]靳 容,張愛君,史新敏,等.干旱脅迫下鉀對甘薯幼苗光合特性及根系活力的影響[J].江蘇農(nóng)業(yè)學(xué)報,2014, "30(5):992-996.
JIN R,ZHANG A J,SHI X M,et al.Photosynthetic characteristics and root activity of drought-stressed sweet potato exposed to potassium[J].Jiangsu Journal of Agricultural Sciences,2014,30(5):992-996.
[45]ZHANG SH" H,F(xiàn)AN J L,ZHANG F C,et al.Optimizing irrigation amount and potassium rate to simultaneously improve tuber yield,water productivity and plant potassium accumulation of drip-fertigated potato in northwest China[J].Agricultural Water Management,2022,264:107493.
Effect of Potassium Fertilization on Physiological Characteristics,Yield and Quality of Potato under Drought Stress
Abstract To investigate the effect of varying potassium levels on potato growth,photosynthetic fluorescence parameters,physiological resistance,yield,and quality under drought stress, ‘Longshu 7’" was utilized as the research subject. Drought stress was induced using potted plants with controlled water supply,and different potassium fertilizer dosages were applied:0 g/plant (CK),1.5 g/plant (T1),3.0 g/plant (T2),4.5 g/plant (T3),and 6.0 g/plant (T4). Correlation and principal component analyses were conducted the findings of the study indicated that applying potassium during drought stress had a positive effect on potato plant growth. Specifically,it resulted in increased plant height and stem thick,and T2 treatment showed the most significant effect. Additionally,the T2 treatment exhibited the highest levels of chlorophyll a+b content,net photosynthetic rate (Pn),stomatal conductance (Gs),and transpiration rate (Tr). These parameters increased by 22.50%,62.30%,27.66%,and" "37.98%,respectively,compared to the CK. Conversely,the intercellular CO2 concentration (Ci) was the lowest in the T2 treatment. Potassium application enhanced several important parameters in potato leaves. This included an increase in maximum quantum efficiency (Fv/Fm),photochemical quenching coefficient (qP),non-photochemical quenching coefficient (NPQ),and proline content. It led to a reduction in thermal dissipation quantum ratio (Fo/Fm) and malondialdehyde (MDA) content. Among the treatments,the T2 and T3 treatment exhibited the most noticeable effects. Moreover,the application of potassium also improved the activities of superoxide dismutase (SOD),peroxidase (POD),and catalase (CAT). Compared to the CK,T1,T2,T3" and T4 treatments increased the yield by 14.80%,36.38%,24.98%,and 9.77%,respectively. The highest yield was achieved in the T2 treatment,reaching 35 209.06" kg·hm-2. The potassium application had a significant positive effect on the starch,protein,and vitamin C contents of the tubers under drought stress. Among the treatments,the T2 treatment exhibited the most effective improvement and resulted in a reduction of reducing sugar content. It is worth mentioning that the lowest reducing sugar content was observed in the T3 treatment. The correlation analysis revealed significant positive correlations between potato yield and leaf Pn,as well as between starch content and leaf Gs. Based on the ranking of principal component scores,the effectiveness of different levels of potassium fertilizer in alleviating drought stress was T2gt;T3gt;T1gt;T4gt;CK.Therefore,T2 treatment exhibits the highest potential in enhancing potato growth under drought conditions,improves leaf photosynthetic fluorescence characteristics,antioxidant capacity,and decelerates leaf aging rate. As a result,it improves yield and quality,effectively mitigates the adverse effects of drought stress.
Key words Potassium fertilizer; Drought; Potato; Physiological characteristics; Yield; Quality