【摘要】 目的:探究熊果酸-法尼基焦磷酸合酶交聯(lián)納米粒(FPP@UA NPs)對(duì)HeLa細(xì)胞凋亡的影響及機(jī)制研究。方法:在2022年1月—2023年12月展開FPP@UA NPs對(duì)子宮頸癌HeLa細(xì)胞活性的探究,收集HeLa細(xì)胞株并制備納米粒子UA NPs及FPP@UA NPs,將其分為對(duì)照組及FPP@UA NPs納米粒載體4 μmol/L、8 μmol/L、16 μmol/L組。采用電感耦合等離子體發(fā)射光譜儀檢測(cè)HeLa細(xì)胞對(duì)FPP@UA NPs的吸收量,采用流式細(xì)胞儀檢測(cè)HeLa細(xì)胞凋亡情況,采用細(xì)胞計(jì)數(shù)試劑盒-8(CCK-8)檢測(cè)HeLa細(xì)胞增殖情況,采用克隆形成法測(cè)定FPP@UA NPs對(duì)HeLa細(xì)胞存活的影響。結(jié)果:8 μmol/L組HeLa細(xì)胞中納米粒子數(shù)量高于4 μmol/L組,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05);
16 μmol/L組HeLa細(xì)胞中納米粒子數(shù)量高于8 μmol/L組,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05)。與對(duì)照組比較,4 μmol/L組的HeLa細(xì)胞凋亡率升高、增殖率降低、克隆數(shù)量減少,差異均有統(tǒng)計(jì)學(xué)意義(Plt;0.05);與4 μmol/L組比較,8 μmol/L組HeLa細(xì)胞凋亡率升高、增殖率降低、克隆數(shù)量減少,差異均有統(tǒng)計(jì)學(xué)意義(Plt;0.05);與8 μmol /L組比較,16 μmol/L組HeLa細(xì)胞凋亡率升高、增殖率降低、克隆數(shù)量減少,差異均有統(tǒng)計(jì)學(xué)意義(Plt;0.05)。結(jié)論:FPP@UA NPs可能對(duì)促進(jìn)子宮頸癌細(xì)胞的凋亡,抑制其克隆和增殖具有一定意義。
【關(guān)鍵詞】 子宮頸癌 FPP@UA NPs 細(xì)胞凋亡 影響機(jī)制
Effect of Ursolic Acid-farnesyl Pyrophosphate Synthase Crosslinked Nanoparticles on Apoptosis of Cervical Cancer HeLa Cells and Its Mechanism/YOU Yanqiu, DIAO Zhihong, CAO Buqing, XIE Longkuan, MA Zhenli, TANG Fangmei, LI Fujun. //Medical Innovation of China, 2024, 21(36): -157
[Abstract] Objective: Effect of ursolic acid-farnesyl pyrophosphate synthase crosslinked nanoparticles (FPP@UA NPs) on apoptosis of HeLa cells and its mechanism. Method: From January 2022 to December 2023, the study on FPP@UA NPs activity of HeLa cells in cervical cancer were carried out. HeLa cell lines were collected and nanoparticles UA NPs and FPP@UA NPs were prepared, and divided into control group and FPP@UA NPs nanoparticle carrier groups of 4 μmol/L, 8 μmol/L and 16 μmol/L. Inductively coupled plasma emission spectrometer was used to detect the uptake of FPP@UA NPs by HeLa cells, the apoptosis of HeLa cells was detected by flow cytometry, and the proliferation of HeLa cells was detected by cell counting kit 8 (CCK-8). The effect of FPP@UA NPs on HeLa cell survival was determined by clonal formation method. Result: The number of nanoparticles in HeLa cells in 8 μmol/L group was higher than that in 4 μmol/L group, the difference was statistically significant (Plt;0.05). The number of nanoparticles in HeLa cells in 16 μmol/L group was higher than that in 8 μmol/L group, the difference was statistically significant (Plt;0.05). Compared with control group, HeLa cell apoptosis rate increased, proliferation rate decreased and number of clones decreased in 4 μmol/L group, the differences were statistically significant (Plt;0.05). Compared with 4 μmol/L group, the apoptosis rate increased, proliferation rate decreased and number of clones decreased in HeLa cells in 8 μmol/L group, the differences were statistically significant (Plt;0.05). Compared with the 8 μmol/L group, the apoptosis rate was increased, the proliferation rate was decreased, and the number of clones was decreased in HeLa cells in the 16 μmol/L group, the differences were statistically significant (Plt;0.05). Conclusion: FPP@UA NPs may have certain significance in promoting the apoptosis of cervical cancer cells and inhibiting their cloning and proliferation.
[Key words] Cervical cancer FPP@UA NPs Cell apoptosis Impact mechanism
First-author's address: Laboratory Department, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning 530011, China
doi:10.3969/j.issn.1674-4985.2024.36.036
全球范圍內(nèi)子宮頸癌是女性最常見的惡性腫瘤之一[1-2]。由于其早期癥狀較隱匿因而容易被忽視并導(dǎo)致晚期診斷較多,因此,也是造成死亡率較高的癌癥類型之一[3]。而發(fā)展中國(guó)家的子宮頸癌發(fā)病率和死亡率較高,這主要?dú)w因于資源匱乏、醫(yī)療條件差等原因?qū)е碌娜巳轭^瘤病毒(HPV)感染篩查和疫苗接種覆蓋率低下[4-5]。子宮頸癌產(chǎn)生的主要原因是HPV感染,其中高危型HPV(如HPV16和HPV18)感染最為常見[6-7]。其他可能的風(fēng)險(xiǎn)因素還包括長(zhǎng)期使用口服避孕藥、有多個(gè)性伴侶、早期性行為及免疫系統(tǒng)受損等。而HeLa細(xì)胞作為一種人類子宮頸癌細(xì)胞系可無限制地進(jìn)行增殖,其細(xì)胞倍增時(shí)間較短,約為24 h,這使得它成了研究細(xì)胞增殖、凋亡、轉(zhuǎn)化等過程的重要模型[8-9]。熊果酸-法尼基焦磷酸合酶交聯(lián)納米粒(FPP@UA NPs)為一種納米顆粒,由法尼基焦磷酸合酶(FPP)修飾的腫瘤特異性抗體組成。其中,F(xiàn)PP是一種生物活性化合物,它在細(xì)胞內(nèi)可參與脂類代謝和信號(hào)傳導(dǎo)等重要過程[10]。熊果酸(UA)則是一種天然產(chǎn)物,具有多種生物活性,包括抗氧化、抗炎、抗腫瘤和抗菌等作用[11]。它們被設(shè)計(jì)用于靶向腫瘤細(xì)胞并在細(xì)胞內(nèi)發(fā)揮治療效果。而FPP@UA NPs的干預(yù)機(jī)制可能涉及靶向調(diào)節(jié)、內(nèi)吞作用、釋放機(jī)制、效應(yīng)步驟等,但現(xiàn)階段臨床上對(duì)于FPP@UA NPs在相關(guān)癌癥領(lǐng)域及對(duì)癌細(xì)胞的影響研究相對(duì)較少,基于此,本文于2022年1月—2023年12月展開FPP@UA NPs對(duì)子宮頸癌HeLa細(xì)胞活性的探究,現(xiàn)報(bào)道如下。
1 材料與方法
1.1 儀器與試劑
子宮頸癌HeLa細(xì)胞株由武漢普諾賽生命科技有限公司提供;納米粒凍干粉(本實(shí)驗(yàn)室自制);培養(yǎng)基(上海圻明生物科技有限公司,貨號(hào)MDA-MB-468);胎牛血清(賽默飛世爾科技,貨號(hào)10099141);胰蛋白酶消化液(上海愛必信生物科技有限公司,貨號(hào)abs47048223);細(xì)胞凋亡檢測(cè)試劑盒(北京普利萊基因技術(shù)有限公司,貨號(hào)C0003-20 C0004-50);潔凈工作臺(tái)(武漢益普生物科技有限公司,貨號(hào)OptiClean 1300);氧化碳恒溫培養(yǎng)箱(上海帝博思生物科技有限公司,貨號(hào)PY-16);倒置顯微鏡(上海儀景通光學(xué)科技有限公司,型號(hào)IX3-ICSI/IMSI);酶標(biāo)儀(上海聯(lián)邁生物工程有限公司,貨號(hào)Multiskan FC);低速臺(tái)式離心機(jī)(上海賽弗生物科技有限公司,貨號(hào)L-530A);流式細(xì)胞儀(上海賽百慷儀器科技有限公司,貨號(hào)SR 300);DMEM細(xì)胞培養(yǎng)基(上海一基實(shí)業(yè)有限公司,貨號(hào)YIJ100141);0.4%臺(tái)盼藍(lán)(上海翌圣生物科技股份有限公司,貨號(hào)40207ES20);CO2培養(yǎng)箱(上海博奧思生物技術(shù)有限公司,貨號(hào)B6011040);數(shù)顯加熱磁力攪拌器(上??茽柵聊瑑x器有限公司,型號(hào)04807-62);激光粒度分析儀(珠海真理光學(xué)儀器有限公司,型號(hào)LT2200),全自動(dòng)細(xì)胞計(jì)數(shù)器(上海然哲儀器設(shè)備有限公司,貨號(hào)RZ-Cr)。
1.2 納米粒制備
制備UA NPs:取10 mL去離子水?dāng)嚢杈c后添加1 mmol/L氯金酸溶液5 mL,加熱至溶80 ℃時(shí)添加混合液(0.1 mol/L硼氫化鈉0.5 mL+1 mmol/L檸檬酸鈉5 mL)混勻取得合成的UA NPs。制備FPP修飾的UA NPs:取50 mmol/L脂肪酸甲酯磺酸鹽
7 mL和1-(3-二甲氨基丙基)-3-乙基碳二亞胺鹽酸鹽7 mg、N-羥基琥珀酰亞胺10.5 mg,充分混勻,加0.01 mol/L 3-巰基丙酸3 mL,混勻靜置30 min,加氨基-聚乙二醇-氨基(NH2-PEG-NH)90 mg,混勻后加120 mL的UA NPs繼續(xù)搖勻,完成后將溶液密封放于無菌水中,72 h后收集FPP@UA NPs。
1.3 HeLa細(xì)胞培養(yǎng)及分組
將HeLa細(xì)胞以2×104個(gè)/mL接種并培養(yǎng)24 h,于倒置顯微鏡下觀察生長(zhǎng)情況。取對(duì)數(shù)生長(zhǎng)期的細(xì)胞經(jīng)胰酶并離心后使用培養(yǎng)基稀釋,細(xì)胞計(jì)數(shù)完成后以1×104個(gè)/mL接種于96孔板,加入FPP@UA NPs,制備為100 μmol/L的溶液,培養(yǎng)基稀釋濃度后將其分為對(duì)照組、FPP@UA NPs納米粒載體組,F(xiàn)PP@UA NPs納米粒載體組分別設(shè)濃度為4、8、16 μmol/L,每濃度設(shè)6個(gè)復(fù)孔,對(duì)照組以同體積空白培養(yǎng)基處理。
1.4 檢測(cè)方法
1.4.1 HeLa細(xì)胞對(duì)FPP@UA NPs的吸收量 HeLa細(xì)胞經(jīng)磷酸鹽緩沖液(PBS)清洗,胰酶消化,吹打?yàn)榧?xì)胞懸液,將細(xì)胞懸液以1 mL/孔接種于六孔板培養(yǎng)。待細(xì)胞鋪滿孔底80%后,分別以含F(xiàn)PP@UA NPs濃度為4、8、16 μmol/L的培養(yǎng)基培養(yǎng),每組設(shè)3個(gè)復(fù)孔。24 h后棄培養(yǎng)基并洗滌,胰酶消化后加3 mL培養(yǎng)基吹打?yàn)榧?xì)胞懸液,與0.4%臺(tái)盼藍(lán)染液(1︰1)混勻,在計(jì)數(shù)板中用全自動(dòng)細(xì)胞計(jì)數(shù)器測(cè)每孔細(xì)胞的濃度。離心收集細(xì)胞,依照文獻(xiàn)[12]檢測(cè)細(xì)胞對(duì)FPP@UA NPs的吸收情況。
1.4.2 流式細(xì)胞儀檢測(cè)HeLa細(xì)胞凋亡 取對(duì)數(shù)生長(zhǎng)的HeLa細(xì)胞,經(jīng)胰酶消化,PBS重懸后每孔分別加入5 μL的AnnexinV-FITC及碘化丙啶(PI),避光孵育30 min,采用流式細(xì)胞儀檢測(cè)細(xì)胞凋亡水平。
1.4.3 HeLa細(xì)胞增殖檢測(cè) 將HeLa細(xì)胞向96孔板最外側(cè)孔內(nèi)添加PBS,加入藥物后,放入培養(yǎng)箱繼續(xù)培養(yǎng),分別在24、48、72 h后終止培養(yǎng),每孔加入20 μL細(xì)胞計(jì)數(shù)試劑盒-8(CCK-8)試液并培養(yǎng),在酶標(biāo)儀450 nm波長(zhǎng)下測(cè)定吸光值。根據(jù)測(cè)定的吸光值并計(jì)算增殖。
1.4.4 Transwell檢測(cè)HeLa細(xì)胞克隆形成情況 取對(duì)數(shù)生長(zhǎng)期的HeLa細(xì)胞,接種于6孔板中,在37℃ 5% CO環(huán)境中培養(yǎng),觀察細(xì)胞形態(tài),培養(yǎng)皿中有克隆產(chǎn)生時(shí)采用4%多聚甲醛固并以0.1%結(jié)晶紫進(jìn)行染色,顯微鏡下觀察細(xì)胞克隆數(shù)目。
1.5 統(tǒng)計(jì)學(xué)處理
本研究數(shù)據(jù)采用SPSS 21.0統(tǒng)計(jì)學(xué)軟件進(jìn)行分析和處理,計(jì)量資料以(x±s)表示,采用單因素方差分析,組間比較采用t檢驗(yàn),多組間兩兩比較采用LSD-t檢驗(yàn);計(jì)數(shù)資料以率(%)表示,采用字2檢驗(yàn)。以Plt;0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 不同濃度FPP@UA NPs在HeLa細(xì)胞中的吸收量對(duì)比
16 μmol/L組HeLa細(xì)胞中納米粒子量為(4.75±0.25)×104,高于4 μmol/L組、8 μmol/L組的(1.50±0.10)×104、(2.34±0.19)×104,差異均有統(tǒng)計(jì)學(xué)意義(LSD-t=38.170、24.270,Plt;0.05);且8 μmol/L組HeLa細(xì)胞中納米粒子量高于4 μmol/L組,差異有統(tǒng)計(jì)學(xué)意義(LSD-t=12.370,Plt;0.05)。
2.2 不同濃度FPP@UA NPs對(duì)HeLa細(xì)胞增殖的影響
培養(yǎng)24、48、72 h后,16 μmol/L組HeLa細(xì)胞增殖率均低于對(duì)照組、4 μmol/L組、8 μmol/L組,且8 μmol/L組HeLa細(xì)胞增殖率低于對(duì)照組、4 μmol/L組;4 μmol/L組HeLa細(xì)胞增殖率低于對(duì)照組,差異均有統(tǒng)計(jì)學(xué)意義(Plt;0.05),見表1。
2.3 不同濃度FPP@UA NPs對(duì)HeLa細(xì)胞凋亡、克隆的影響
流式細(xì)胞儀檢測(cè)HeLa細(xì)胞在不同濃度FPP@UA NPs中的凋亡情況見圖1;HeLa細(xì)胞克隆形成情況見圖2。16 μmol/L組HeLa細(xì)胞凋亡率高于對(duì)照組、4 μmol/L組、8 μmol/L組,8 μmol/L組HeLa細(xì)胞凋亡率高于對(duì)照組、4 μmol/L組,4 μmol/L組HeLa細(xì)胞凋亡率高于對(duì)照組,差異均有統(tǒng)計(jì)學(xué)意義(Plt;0.05);16 μmol/L組HeLa細(xì)胞克隆數(shù)量低于對(duì)照組、4 μmol/L組、8 μmol/L組,且8 μmol/L組HeLa細(xì)胞克隆量低于對(duì)照組、4 μmol/L組,4 μmol/L組HeLa細(xì)胞克隆量低于對(duì)照組,差異均有統(tǒng)計(jì)學(xué)意義(Plt;0.05)。見表2。
3 討論
子宮頸癌作為一種惡性腫瘤,起源于宮頸上皮細(xì)胞的異常增殖[13-14]。而納米顆粒不僅可以通過控制釋放速率來延長(zhǎng)藥物的作用時(shí)間使其效果更持久,還可以通過調(diào)整其大小、表面修飾或靶向遞送系統(tǒng)實(shí)現(xiàn)對(duì)特定細(xì)胞或組織的靶向遞送,進(jìn)而提高治療相關(guān)并減少副作用[15-16]。
FPP@UA NPs納米顆粒是將FPP和UA封裝到納米顆粒中的一種技術(shù)。這種納米顆粒具有一定的穩(wěn)定性、控釋性、靶向性、組合效應(yīng)等特點(diǎn)。FPP@UA NPs納米顆??梢詫⑺蝗苄缘乃幬镛D(zhuǎn)化為水溶性的納米顆粒,提高藥物的溶解度和生物利用度。這對(duì)那些溶解度有限的抗癌藥物來說尤為重要,可一定程度上增加其在體內(nèi)的吸收和分布。文中結(jié)果顯示,與未進(jìn)行干預(yù)的對(duì)照組相比,加入FPP@UA NPs干預(yù)的HeLa細(xì)胞中粒子活性顯著升高,其中,16 μmol/L組HeLa細(xì)胞中納米粒子數(shù)量升高的最為明顯。分析原因可能為,F(xiàn)PP@UA NPs納米顆粒在過程中可通過表面修飾或控制釋放機(jī)制實(shí)現(xiàn)了對(duì)癌細(xì)胞的靶向性,而通過選擇適當(dāng)?shù)谋砻嫘揎椢锘蜻\(yùn)載系統(tǒng)使納米顆粒更容易富集在癌細(xì)胞附近,并提高了其對(duì)癌細(xì)胞的吸收。同時(shí),由于納米顆粒的濃度可以影響其對(duì)癌細(xì)胞的吸收和滲透能力,而較高濃度的納米顆粒可能具有更大的表面積和更好的穿透性,因而可能更容易被癌細(xì)胞所攝取[17-18]。由此分析高劑量的FPP@UA NPs納米顆??赡芫哂懈叩陌┘?xì)胞吸收率。反之,癌細(xì)胞的生理狀態(tài)和表達(dá)的受體類型也可能會(huì)影響FPP@UA NPs納米顆粒對(duì)其的吸收作用。而FPP@UA NPs納米顆粒被癌細(xì)胞攝取的途徑可能包括內(nèi)吞作用(如細(xì)胞胞吞作用和細(xì)胞內(nèi)液相內(nèi)吞作用)和特定受體介導(dǎo)的吸收。分析原因可能為,部分癌細(xì)胞常具有特定的受體或過表達(dá)某種受體,而這些受體則可與靶向修飾的納米顆粒結(jié)合,且納米顆粒表面的修飾和組分通過進(jìn)一步影響其在細(xì)胞內(nèi)的攝取途徑從而影響其吸收效果增加其吸收率。
由于FPP@UA NPs納米顆粒中的UA成分具有抗腫瘤活性,可通過多種機(jī)制抑制腫瘤細(xì)胞的生長(zhǎng)和增殖。且有研究表明,UA可以抑制腫瘤細(xì)胞的增殖、誘導(dǎo)細(xì)胞凋亡及抑制血管生成并對(duì)抑制腫瘤發(fā)展具有積極意義[19]。文中結(jié)果也發(fā)現(xiàn),與對(duì)照組相比加入LFPP@UA NPs后的HeLa細(xì)胞凋亡率均有所升高,其中以16 μmol/L組的HeLa細(xì)胞增殖、克隆數(shù)量降低和凋亡升高得更為顯著。分析原因可能為,F(xiàn)PP與UA的組合在過程中可能通過產(chǎn)生協(xié)同效應(yīng)阻礙了癌細(xì)胞的活性,而納米顆粒則能在此基礎(chǔ)上持續(xù)保護(hù)FPP和UA免受外界環(huán)境的影響,進(jìn)一步提高其穩(wěn)定性和生物利用度。由此分析,F(xiàn)PP@UA NPs可能伴隨具有腫瘤特異性抗體并可選擇性的與癌細(xì)胞上表達(dá)的特定抗原進(jìn)行結(jié)合以實(shí)現(xiàn)精確靶向。且一旦與腫瘤細(xì)胞表面的抗原結(jié)合,F(xiàn)PP@UA NPs會(huì)通過內(nèi)吞作用進(jìn)入細(xì)胞內(nèi)部,而在細(xì)胞內(nèi)部FPP@UA NPs會(huì)被癌細(xì)胞的溶酶體或內(nèi)質(zhì)網(wǎng)降解從而釋放出FPP。且當(dāng)FPP被釋放后,可能被細(xì)胞內(nèi)的特定酶活化成為熒光素酶進(jìn)一步發(fā)揮熒光成像,且激活的熒光素酶也可能在細(xì)胞內(nèi)產(chǎn)生高能量的光并通過氧化反應(yīng)引發(fā)細(xì)胞損傷,如氧化脂質(zhì)、蛋白質(zhì)和DNA等,最終發(fā)揮了促癌細(xì)胞凋亡和抑制其增殖、克隆的作用。同時(shí),F(xiàn)PP@UA NPs納米顆粒還可以作為一種藥物遞送系統(tǒng)通過將其他抗癌藥物載入納米顆粒,并利用其靶向性和控釋性質(zhì)將藥物精確地輸送到腫瘤組織,這樣不僅可能提高抗癌藥物在腫瘤組織內(nèi)的濃度進(jìn)而增強(qiáng)其治療效果,還可能減少對(duì)健康組織的毒副作用。
綜上所述,F(xiàn)PP@UA NPs可能對(duì)于抑制HeLa細(xì)胞的增殖、克隆及促進(jìn)其凋亡均有一定積極意義,并可能在FPP@UA NPs納米顆粒在藥物傳遞和治療領(lǐng)域可能具有一定的應(yīng)用潛力。而通過合理設(shè)計(jì)和優(yōu)化納米顆粒的性質(zhì)可能對(duì)提高藥物的穩(wěn)定性、生物利用度和治療效果、促進(jìn)藥物研發(fā)和臨床轉(zhuǎn)化均具有一定的積極意義。然而,過程可能會(huì)受納米顆粒的性質(zhì)、藥物的配比、靶向遞送系統(tǒng)等因素影響。因此,在相關(guān)癌癥的治療上還需進(jìn)一步的研究和實(shí)驗(yàn)驗(yàn)證。
參考文獻(xiàn)
[1]裴波,呂鵬,賴琳,等.同步放化療后多西他賽聯(lián)合洛鉑治療局部晚期宮頸癌的療效[J].華南國(guó)防醫(yī)學(xué)雜志,2021,35(12):920-922.
[2] ALFARO K, MAZA M , CREMER M,et al.Removing global barriers to cervical cancer prevention and moving towards elimination[J].Nat Rev Cancer,2021,21(10):607-608.
[3] ALBERTON D , SALCEDO M , ZEN R P ,et al.Conservative treatment of stage ia1 cervical carcinoma without lymphovascular space invasion: a 20-year retrospective study in brazil[J].Rev Bras Ginecol Obstet,2023,45(4):201-206.
[4] NASIOUDIS D , LATIF N A , GIUNTOLI R L ,et al.Role of adjuvant radiation therapy after radical hysterectomy in patients with stage IB cervical carcinoma and intermediate risk factors[J].Int J Gynecol Cancer,2021,31(6):829-834.
[5] LI F,ZHU W P.LINC00460 promotes angiogenesis by enhancing NF-κB-mediated VEGFA expression in cervical cancer cells[J].Biochem Biophys Res Commun,2023,671:146-152.
[6]林彤彤,王新宇.人乳頭瘤病毒基因分型檢測(cè)在宮頸癌篩查中的應(yīng)用進(jìn)展[J].腫瘤學(xué)雜志,2021,27(1):27-30.
[7] GOROSTIDI M.Correspondence on \"Oncologic outcomes of surgical para-aortic lymph node staging in patients with advanced cervical carcinoma undergoing chemoradiation\" by Nasioudis et al[J].Int J Gynecol Cancer,2022,32(10):1351.
[8] SI C,OU Y,MA D,et al.Cytotoxic effect of the essential oils from Erigeron Canadensis L. on human cervical cancer HeLa cells in vitro[J/OL].Chem Biodivers,2022,19(9):e202200436[2024-04-18].https://pubmed.ncbi.nlm.nih.gov/36005296/.DOI: 10.1002/cbdv.202200436.
[9] ZHANG Y,PAN D,YANG H,et al.Effects of arsenic trioxide combined with platinum drugs in treatment of cervical cancer: a protocol for systematic review and meta-analysis of randomized controlled trials[J/OL].Medicine (Baltimore),2020,99(45):e22950[2024-04-18].https://pubmed.ncbi.nlm.nih.gov/33157935/.DOI:10.1097/MD.0000000000022950.
[10] HUA C,LIPING L,SISI F,et al.Zinc oxide nanoparticles synthesized from Aspergillus terreus induces oxidative stress-mediated apoptosis through modulating apoptotic proteins in human cervical cancer HeLa cells[J].J Pharm Pharmacol,2021,73(2):221-232.
[11] ZHANG L,ALIMU G,DU Z,et al.Functionalized magnetic nanoparticles for nir-induced photothermal therapy of potential application in cervical cancer[J].ACS Omega,2023,8(24):21793-21801.
[12] GU Y J,CHENG J P,LIN C C,et al.Nuclear penetrtion of surface functionlized gold nanoparticles[J].Toxicology and Applied Pharmcology,2009,237(2):198-204.
[13] CHEN Y D,CAI F Y,MAO Y Z,et al.The anti-neoplastic activities of aloperine in HeLa cervical cancer cells are associated with inhibition of the IL-6-JAK1-STAT3 feedback loop[J].Chin J Nat Med,2021,19(11):815-824.
[14] YAO Z L,XU X J,HUANG Y H,et al.Daidzin inhibits growth and induces apoptosis through the JAK2/STAT3 in human cervical cancer HeLa cells[J].Saudi J Biol Sci,2021,28(12):7077-7081.
[15] LAKSHMI B A,REDDY A S,SANGUBOTLA R,et al.
Ruthenium (Ⅱ)-curcumin liposome nanoparticles: synthesis, characterization, and their effects against cervical cancer[J].Colloids Surf B Biointerfaces,2021,204(1):111773.
[16] LV J W,HOU K,DING D F,et al.Gold nanowire chiral ultrathin films with ultrastrong and broadband optical activity[J].Angewandte Chemie,2017,129(18):5137-5142.
[17] DUMOGA S,RAI Y,BHATT A N,et al.Correction to \"block copolymer based nanoparticles for theranostic intervention of cervical cancer: synthesis,pharmacokinetics,and in vitro/in vivo evaluation in Hela xenograft models\"[J].ACS Appl Mater Interfaces,2021,13(45):54620.
[18] AL-NUAIRI A G,MOSA K A,MOHAMMAD M G,et al.
Biosynthesis,characterization,and evaluation of the cytotoxic effects of biologically synthesized silver nanoparticles from cyperus conglomeratus root extracts on breast cancer cell line MCF-7[J].Biol Trace Elem Res,2020,194(2):560-569.
[19] LI Q W,ZHU M,LI Y,et al.Estrone-targeted pegylated liposomal nanoparticles for cisplatin (DDP) delivery in cervical cancer[J].Eur J Pharm Sci,2022,174:106187.
(收稿日期:2024-05-09) (本文編輯:馬嬌)