亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        新鮮和老化生物質(zhì)炭應(yīng)用對(duì)農(nóng)田溫室氣體減排的研究進(jìn)展

        2024-12-31 00:00:00趙讀鳳羅佳徐燁紅馬艷
        江蘇農(nóng)業(yè)科學(xué) 2024年11期
        關(guān)鍵詞:溫室氣體減排農(nóng)田

        摘要:近年來,溫室氣體減排成為全球關(guān)注的熱點(diǎn),而農(nóng)田是溫室氣體排放的重要來源之一。大量研究結(jié)果表明,生物質(zhì)炭具有溫室氣體減排的潛力,但長(zhǎng)期施用后,自然環(huán)境造成的生物質(zhì)炭老化會(huì)使其本身的理化性質(zhì)發(fā)生變化,進(jìn)而影響溫室氣體的減排效果,因而比較新鮮和老化生物質(zhì)炭對(duì)農(nóng)田溫室氣體排放的影響具有重要意義。綜述生物質(zhì)炭的不同老化方式及其理化性質(zhì)的變化,以及新鮮和老化生物質(zhì)炭施用對(duì)農(nóng)田溫室氣體排放的影響及機(jī)制,發(fā)現(xiàn)與新鮮生物質(zhì)炭相比,老化生物質(zhì)炭對(duì)農(nóng)田溫室氣體排放效果并不統(tǒng)一,這與生物質(zhì)炭的老化方式、老化時(shí)間和土壤類型等密切相關(guān),老化生物質(zhì)炭不僅會(huì)改變自身的理化性質(zhì),還會(huì)改變土壤的理化性質(zhì)與微生物活性,從而影響農(nóng)田土壤溫室氣體排放。而生物質(zhì)炭田間老化對(duì)溫室氣體排放的影響多為短期的,對(duì)于長(zhǎng)期影響還有待進(jìn)一步研究,可以利用同位素示蹤技術(shù)進(jìn)一步探究新鮮和老化生物質(zhì)炭施用對(duì)溫室氣體排放影響的機(jī)制。

        關(guān)鍵詞:新鮮生物質(zhì)炭;老化生物質(zhì)炭;溫室氣體;減排;同位素示蹤技術(shù);農(nóng)田

        中圖分類號(hào):X131.1文獻(xiàn)標(biāo)志碼:A

        文章編號(hào):1002-1302(2024)11-0001-09

        氣候變暖是亟待解決的全球性問題之一,根據(jù)聯(lián)合國(guó)政府間氣候變化專門委員會(huì)(Intergovernmental Panel on Climate Change,IPCC)第6次評(píng)估報(bào)告,與1850—1900年相比,2011—2020年全球大氣溫度增加1.09℃,2021—2040年增溫趨勢(shì)將達(dá)1.5 ℃,氣候變暖不僅會(huì)使冰川融化、海平面上升,也會(huì)對(duì)農(nóng)業(yè)生產(chǎn)、人體健康等造成負(fù)面影響[1-2]。而氣候變暖與溫室氣體的排放密切相關(guān),其中CO2、CH4和N2O對(duì)溫室效應(yīng)的貢獻(xiàn)達(dá)80%[3]。在各種排放源中,農(nóng)田是N2O和CH4最大的人為排放源,分別貢獻(xiàn)了78%、50%[4]。而生物質(zhì)炭具有含碳量高、比表面積大、疏松多孔、吸附性能好[5]等特點(diǎn),是農(nóng)田固碳減排的熱點(diǎn),具有減輕全球變暖效應(yīng)、提高作物產(chǎn)量和碳封存[6]的巨大潛力。楊傳文等對(duì)我國(guó)秸稈資源的碳減排潛力進(jìn)行分析,發(fā)現(xiàn)2020年我國(guó)可收集農(nóng)作物秸稈資源可制備成生物質(zhì)炭2.04×108 t,溫室效應(yīng)緩解凈潛力可減排的CO2當(dāng)量為5.86×108 t[7]。但生物質(zhì)炭的制備條件,如熱解溫度、時(shí)間、原材料、施用量等可能會(huì)影響其減排效果,由于生物質(zhì)炭在田間施用時(shí)間、方式和培養(yǎng)方法等不同,生物質(zhì)炭對(duì)土壤溫室氣體的減排效應(yīng)可能增強(qiáng)或減弱,甚至消失[8]。目前對(duì)于新鮮生物質(zhì)炭和老化生物質(zhì)炭對(duì)溫室氣體的影響對(duì)比研究較少,其影響機(jī)制尚不明確,因此本研究分析新鮮和老化生物質(zhì)炭應(yīng)用對(duì)農(nóng)田溫室氣體減排的研究進(jìn)展,以期為農(nóng)田溫室氣體減排提供理論依據(jù)。

        1 生物質(zhì)炭的老化方式及老化過程的理化性質(zhì)變化

        生物質(zhì)炭的理化性質(zhì)對(duì)其環(huán)境行為和應(yīng)用有決定性的影響[9],需要通過自然或人工老化的方法來探索老化對(duì)生物質(zhì)炭特性的影響,還要考慮到生物質(zhì)炭固有特性和土壤理化性質(zhì)對(duì)生物質(zhì)炭老化的影響[10],這些因素可能影響生物質(zhì)炭老化程度和農(nóng)田固碳減排的效果。

        1.1 生物質(zhì)炭的老化方式

        生物質(zhì)炭的老化指生物質(zhì)炭施入土壤后,在自然條件(降水、土壤水分、溫度、空氣、微生物和植物根系等共同作用)下,其理化性質(zhì)隨時(shí)間延長(zhǎng)發(fā)生變化的過程[11-12]。但生物質(zhì)炭本身較穩(wěn)定,施入土壤后老化過程緩慢,田間自然老化試驗(yàn)周期較長(zhǎng),故國(guó)外學(xué)者通常選擇實(shí)驗(yàn)室模擬生物質(zhì)炭老化的方法進(jìn)行試驗(yàn)。

        生物質(zhì)炭老化的方式分為自然老化和人工老化,人工老化方法又分為物理老化、化學(xué)老化和生物老化。自然老化是指將生物質(zhì)炭施入田間土壤后,在自然環(huán)境下老化或?qū)⑼寥琅c生物質(zhì)炭混合后在實(shí)驗(yàn)室培養(yǎng)一段時(shí)間的老化方式。物理老化是指在實(shí)驗(yàn)室條件下通過控制溫度、濕度和光照等物理?xiàng)l件來模擬自然老化的過程,通常包括凍融循環(huán)、干濕交替和高溫老化等方法[13]。凍融循環(huán)的溫度通常設(shè)置為-20、40 ℃,在大多數(shù)研究中,高溫老化溫度通常設(shè)定為70 ℃,持續(xù)120 d[14-16],然而,如此高的溫度不能代表自然條件,建議的溫度應(yīng)該在40~50 ℃之間[17]。化學(xué)老化是指在實(shí)驗(yàn)室條件下添加各種氧化劑,如H2O2、HNO3/H2SO4、KOH、KMnO4等,通過非生物氧化降解生物質(zhì)炭,其中H2O2沒有帶來過多的外源元素,可能更適合做氧化劑[18]。生物老化通常是指在實(shí)驗(yàn)室條件下通過微生物或植物根系對(duì)生物質(zhì)炭進(jìn)行生物降解[19-21]。而Li等通過薈萃分析人工和自然生物質(zhì)炭老化方法對(duì)生物質(zhì)炭特性的影響,發(fā)現(xiàn)人工老化方法尚不能模擬生物質(zhì)炭田間自然老化,與自然老化相比,化學(xué)老化的生物質(zhì)炭表面的氧化程度較高,存在生物質(zhì)炭?jī)?nèi)部氧化和氧化劑外源元素向生物質(zhì)炭輸入的問題,凍融老化僅改變了生物質(zhì)炭的多孔結(jié)構(gòu),而元素組成沒有顯著變化,故比較田間自然老化生物質(zhì)炭和人工老化生物質(zhì)炭理化性質(zhì)的變化是必要的[22]。

        1.2 老化過程的理化性質(zhì)變化

        老化過程會(huì)改變生物質(zhì)炭的理化性質(zhì)如pH值、比表面積(SSA)、總孔隙體積、平均孔徑、表面結(jié)構(gòu)、陽離子交換量(CEC)、吸附能力、穩(wěn)定性和元素含量等(表1),進(jìn)而對(duì)生物質(zhì)炭施入后土壤溫室氣體減排效果產(chǎn)生影響。生物質(zhì)炭老化后,其比表面積可能增大或減小,微孔可能被堵塞,進(jìn)而影響其對(duì)溫室氣體的吸附能力;老化通常會(huì)使生物質(zhì)炭的pH值降低,與人工老化相比,自然老化pH值下降程度較低,這與生物質(zhì)炭中可溶性碳酸鹽的浸出、含氧官能團(tuán)的分解和有機(jī)碳的分解有關(guān),且在老化過程中生物質(zhì)炭還會(huì)吸附環(huán)境中的CO2,形成碳酸鹽,進(jìn)而降低其酸堿度[23-24];老化過程還會(huì)使O/C、C/N、H/C和(N+O)/C等元素比例發(fā)生變化,且生物質(zhì)炭的老化會(huì)導(dǎo)致溶解性有機(jī)碳的浸出和有機(jī)碳的礦化。在大多數(shù)研究中,隨著生物質(zhì)炭的老化,其碳含量逐漸下降,在老化過程中生物質(zhì)炭會(huì)吸附土壤中的有機(jī)物質(zhì),進(jìn)而改變其元素含量[21,25-26];CEC是衡量生物質(zhì)炭吸附環(huán)境中陽離子能力的指標(biāo),老化過程可在生物質(zhì)炭表面形成含氧官能團(tuán)(OFGs),特別是羥基和羧基,從而導(dǎo)致CEC增加[27]。

        2 新鮮生物質(zhì)炭對(duì)溫室氣體的減排效果

        2.1 新鮮生物質(zhì)炭對(duì)CO2、N2O和CH4排放的影響

        施用生物質(zhì)炭可以增加土壤中的有機(jī)碳含量,也可以增加其溶解性有機(jī)碳含量,且生物質(zhì)炭本身含有較高的碳,可達(dá)90.5%[5],因而生物質(zhì)炭施用到土壤中可以增加土壤的碳匯,但是其對(duì)土壤CO2排放的影響尚不統(tǒng)一,可能和施肥方式、環(huán)境因子、生物質(zhì)炭的原材料和制備條件等有關(guān)。有許多研究結(jié)果表明,生物質(zhì)炭施用可增加菜田CO2的排放,如何飛飛等通過盆栽試驗(yàn)探究南方紅壤菜田土(其種植歷史超過15年)添加不同量的生物質(zhì)炭(水稻秸稈和花生殼在400 ℃下熱解2 h)對(duì)于土壤理化性質(zhì)和CO2排放的影響,發(fā)現(xiàn)施用生物質(zhì)炭可以提高土壤CEC值、pH值和持水量,但也會(huì)增加土壤CO2的排放,原因可能是生物質(zhì)炭的自身分解會(huì)促進(jìn)土壤呼吸以及通過土壤pH值、CEC值、含水量的提高來增強(qiáng)土壤微生物活性,進(jìn)而促進(jìn)土壤CO2的排放[33]。Huang等為探究生物質(zhì)炭施入菜田對(duì)CO2排放的影響及其對(duì)溫度的響應(yīng),采用3種處理(空白、化肥和生物質(zhì)炭+化肥處理)在重慶市某監(jiān)測(cè)站進(jìn)行為期1年的原位監(jiān)測(cè),發(fā)現(xiàn)與化肥處理相比,短期施用生物質(zhì)炭可以顯著提高土壤微生物碳(MBC)和有機(jī)碳(SOC),也會(huì)顯著提高27.5%的土壤-植物系統(tǒng)的累計(jì)CO2排放量,該研究中所用生物質(zhì)炭為油菜秸稈在450~500 ℃溫度下制備,為不完全氧化,可能其揮發(fā)性物質(zhì)含量較高,進(jìn)而促進(jìn)CO2的排放,且短期的生物質(zhì)炭施用可能會(huì)引起激發(fā)效應(yīng),導(dǎo)致土壤中的有機(jī)碳或生物質(zhì)炭中的不穩(wěn)定化合物更易被微生物利用[34]。

        對(duì)于不同土壤類型生物質(zhì)炭施用后對(duì)CO2的排放影響可能不同,如方明等通過盆栽試驗(yàn)研究花生殼生物質(zhì)炭(500 ℃下制備而成)施用對(duì)潮土和紅壤理化性質(zhì)和溫室氣體的影響,發(fā)現(xiàn)2種類型的土壤有機(jī)碳含量在施加生物質(zhì)炭后都顯著增加,生物質(zhì)炭施用后顯著增加潮土CO2的排放,而對(duì)紅壤CO2的排放無顯著影響[35]。Wu等認(rèn)為,施用生物質(zhì)炭會(huì)抑制CO2的排放[36-37]。

        施用生物質(zhì)炭可以減少N2O的排放,吳震等基于文獻(xiàn)整合分析,對(duì)集約化菜地溫室氣體排放與減排進(jìn)行研究,發(fā)現(xiàn)施用生物質(zhì)炭可減少29.1%菜地生態(tài)系統(tǒng)N2O排放[38],由于生物質(zhì)炭的比表面積較大,在肥料施入土壤后,可吸附其中的銨態(tài)氮,減少硝化和反硝化作用的底物[39],且其具有疏松多孔的特點(diǎn),可以改善土壤的通氣性,促進(jìn)N2O進(jìn)一步被還原為N2,從而減少N2O的排放。Cayuela等通過meta分析,發(fā)現(xiàn)生物質(zhì)炭原料、熱解條件和C/N是影響N2O排放的關(guān)鍵因素,而生物質(zhì)炭施用量與N2O減排有直接關(guān)系[40]。Li等在華南地區(qū)以秸稈生物質(zhì)炭不同生物質(zhì)炭施用量(0、10、20、30、40 t/hm2)分析其對(duì)蔬菜土壤N2O排放的影響,發(fā)現(xiàn)生物質(zhì)炭的施用會(huì)顯著降低N2O的累計(jì)排放量降幅達(dá)34%~67%,其中以20 t/hm2生物質(zhì)炭結(jié)合氮肥可獲得最高蔬菜產(chǎn)量和N2O減排效果[41]。Spokas等認(rèn)為,新添加生物質(zhì)炭對(duì)生物質(zhì)炭的N2O緩解潛力最高,且在土壤中生物質(zhì)炭老化的1年內(nèi)下降[42-43]。

        但Cheng等認(rèn)為施用生物質(zhì)炭會(huì)促進(jìn)N2O排放[44-46];戴相林等通過田間試驗(yàn)研究秸稈及生物質(zhì)炭還田配施氮肥后,發(fā)現(xiàn)鹽漬稻田N2O排放量顯著增加[46];劉麗君等通過室內(nèi)培養(yǎng)設(shè)置不同的生物質(zhì)炭添加比例(0、2%、4%、6%)[47],發(fā)現(xiàn)添加不同比例生物質(zhì)炭處理都會(huì)不同程度地促進(jìn)海南燥紅壤土N2O和CO2排放,因而短期施用生物質(zhì)炭會(huì)促進(jìn)N2O和CO2排放[46];而王月玲等認(rèn)為,生物質(zhì)炭施用量較多會(huì)減少N2O排放,施用量較少會(huì)增加N2O排放[48],甚至對(duì)N2O排放無影響。

        生物質(zhì)炭具備減緩甲烷的潛力,但甲烷是在厭氧條件下產(chǎn)生的,故生物質(zhì)炭對(duì)CH4排放的影響在水稻田和濕地研究中較多。Huang等通過1年的田間試驗(yàn)發(fā)現(xiàn),在蔬菜土壤中與單施化肥處理相比,生物質(zhì)炭配施化肥處理可減少CH4的排放[34];而Jia等采用盆栽試驗(yàn)方法進(jìn)行研究,發(fā)現(xiàn)玉米秸稈生物質(zhì)炭施用對(duì)甲烷排放無影響[49]。也有研究認(rèn)為施用生物質(zhì)炭會(huì)增加土壤CH4的排放,如Li等通過培養(yǎng)試驗(yàn)發(fā)現(xiàn),與未處理的土壤相比,添加5%生物質(zhì)炭(500 ℃,稻草秸稈)處理CH4排放增加了2倍[50]。

        2.2 新鮮生物質(zhì)炭影響溫室氣體排放的機(jī)制

        生物質(zhì)炭促進(jìn)CO2排放的原因主要包括以下3個(gè)方面:第一,生物質(zhì)炭自身不穩(wěn)定碳組分的釋放[51]。第二,生物質(zhì)炭的正激發(fā)效應(yīng),使微生物的活性增強(qiáng),增加土壤有機(jī)物的礦化[52-53]。第三,生物質(zhì)炭疏松多孔,會(huì)增加土壤中的透氣性,促進(jìn)土壤的呼吸作用[54]。

        生物質(zhì)炭抑制CO2排放的原因主要包括以下3個(gè)方面:第一,生物質(zhì)炭的孔隙結(jié)構(gòu)和高比表面積將土壤有機(jī)質(zhì)吸附到其孔隙內(nèi)或外表面上,前者為包封作用,能有效隔離微生物及其胞外酶與孔隙內(nèi)有機(jī)質(zhì)的接觸,后者為吸附作用,能降低有機(jī)質(zhì)的有效性,且兩者均能強(qiáng)烈抑制被吸附有機(jī)質(zhì)的降解[55],微生物可利用的底物減少,故土壤CO2排放降低。第二,生物質(zhì)炭本身對(duì)CO2具有吸附作用,這是因?yàn)樯镔|(zhì)炭的比表面積較高、有豐富的孔隙結(jié)構(gòu)和各種官能團(tuán)[56]。第三,生物質(zhì)炭的“石灰效應(yīng)”可以提高土壤的pH值,使得生物質(zhì)炭表面堿金屬與CO2反應(yīng),生成碳酸鹽的沉淀物[57]。

        生物質(zhì)炭促進(jìn)N2O排放的原因主要如下:第一,生物質(zhì)炭通過提高硝化作用相關(guān)微生物(AOA-amoA、AOB-amoA)的基因豐度,促進(jìn)N2O排放[58-59]。第二,生物質(zhì)炭施用會(huì)增加土壤中的活性有機(jī)碳含量,增強(qiáng)微生物的活性,促進(jìn)N2O排放[60]。

        生物質(zhì)炭抑制N2O排放的原因主要如下:第一,生物質(zhì)炭施用會(huì)提高土壤的pH值,進(jìn)而增加編碼N2O還原酶的基因豐度,促進(jìn)微生物的完全反硝化作用,使N2O還原為N2,從而減少N2O的排放[61-63]。第二,生物質(zhì)炭對(duì)無機(jī)氮(銨態(tài)氮和硝態(tài)氮)的吸附作用會(huì)減少微生物可利用的底物[64]。第三,生物質(zhì)炭會(huì)抑制土壤中微生物的硝化作用,這是因?yàn)樯镔|(zhì)炭會(huì)釋放多環(huán)芳烴和酚類化合物等抑制氨氧化細(xì)菌(AOB)的活性[65]。

        生物質(zhì)炭促進(jìn)CH4排放主要是因?yàn)樯镔|(zhì)炭會(huì)增加產(chǎn)甲烷菌和甲烷氧化菌的豐度,但產(chǎn)甲烷菌的增幅大于甲烷氧化菌[66]。生物質(zhì)炭抑制CH4排放的原因主要如下:第一,施加生物質(zhì)炭會(huì)增加土壤的通氣性,促進(jìn)CH4的氧化,進(jìn)而降低CH4的排放[67-68]。第二,甲烷菌氧化菌活性被抑制或產(chǎn)甲烷菌活性被激發(fā)[42,69-70]。

        3 老化生物質(zhì)炭對(duì)溫室氣體的減排效果

        3.1 老化生物質(zhì)炭對(duì)CO2、N2O和CH4排放的影響

        經(jīng)過老化后生物質(zhì)炭的理化性質(zhì)會(huì)發(fā)生變化,生物質(zhì)炭的原料、熱解溫度、老化方法和老化時(shí)間是影響生物質(zhì)炭性質(zhì)變化的重要變量,且由于試驗(yàn)條件、施用量、土壤類型等不同,老化生物質(zhì)炭對(duì)土壤溫室氣體的影響并不統(tǒng)一[71]。

        Li等通過田間原位試驗(yàn)設(shè)置對(duì)照、土壤強(qiáng)還原修復(fù)技術(shù)(RSD)處理、RSD+20 t/hm2老化生物質(zhì)炭處理、RSD+40 t/hm2 老化生物質(zhì)炭處理,與RSD處理相比,RSD+生物質(zhì)炭處理會(huì)抑制CO2排放,但會(huì)促進(jìn)N2O排放,對(duì)CH4排放影響不大,溫室氣體(CHG)總體下降207%~28.7%[22]。而Hagemann等通過田間試驗(yàn)和培養(yǎng)試驗(yàn)結(jié)合的方式研究老化生物質(zhì)炭對(duì)N2O排放的影響,發(fā)現(xiàn)在生物質(zhì)炭施用后的第3年仍可以有效減少N2O和CO2的排放[72]。Sadasivam等發(fā)現(xiàn),與對(duì)照相比,在空氣中老化3年的生物質(zhì)炭CH4排放顯著增高[73];而Feng等通過文獻(xiàn)整合分析發(fā)現(xiàn),老化生物質(zhì)炭可以減少11%的CH4排放[71]。陳亞娟等通過分析生物質(zhì)炭和沼液配施對(duì)楊樹人工林土壤溫室氣體排放的長(zhǎng)期影響,發(fā)現(xiàn)生物質(zhì)炭施用7年后對(duì)土壤溫室氣體的減排效果并不顯著,甚至?xí)龠M(jìn)溫室氣體的排放[74]。

        同一種老化生物質(zhì)炭在不同處理土壤中對(duì)溫室氣體的影響也不同,Zheng等通過培養(yǎng)試驗(yàn)分析不同鹽度(0、1.2%)的土壤與生物質(zhì)炭老化的相互作用,發(fā)現(xiàn)老化生物質(zhì)炭會(huì)增加鹽漬條件下土壤C礦化和CO2排放,在非鹽條件下可以抑制土壤CO2的排放量,老化生物質(zhì)炭和作物殘留物共同施用是解決鹽漬條件下儲(chǔ)存土壤碳和減少N2O排放的最佳途徑[75]。

        3.2 老化生物質(zhì)炭影響溫室氣體排放的機(jī)制

        老化生物質(zhì)炭影響土壤CO2排放,是因?yàn)轱L(fēng)化通常會(huì)增加生物質(zhì)炭表面的碳基、羧基和酚類官能團(tuán)的豐度,進(jìn)而導(dǎo)致pH值下降和O/C增加,O ∶[KG-*3]C 的值增加可能會(huì)對(duì)生物質(zhì)炭的穩(wěn)定性產(chǎn)生影響。老化生物質(zhì)炭促進(jìn)CO2排放是因?yàn)槔匣纳镔|(zhì)炭可能更易被微生物分解,也可能在風(fēng)化過程中孔隙被堵塞,吸附能力減弱,進(jìn)而促進(jìn)CO2的排放[42];老化生物質(zhì)炭抑制CO2排放是因?yàn)殡S著生物質(zhì)炭的老化,它會(huì)和土壤團(tuán)聚體結(jié)合,促進(jìn)根際沉積物和微生物的穩(wěn)定,可以在土壤中存在數(shù)百年到數(shù)千年,生物質(zhì)炭自身不穩(wěn)定成分被釋放出去,會(huì)提高機(jī)械性能,增加生物質(zhì)炭的穩(wěn)定性[76]。

        老化生物質(zhì)炭抑制N2O排放的原因主要包括2個(gè)方面:第一,老化生物質(zhì)炭會(huì)顯著降低硝化和反硝化作用[31]。第二,老化生物質(zhì)炭的比表面積和對(duì)銨態(tài)氮的吸附能力增強(qiáng)[77-78],進(jìn)而增加對(duì)N2O的吸附。

        老化生物質(zhì)炭會(huì)抑制N2O的能力減弱或促進(jìn)N2O排放,主要是因?yàn)橥寥冷@態(tài)氮的降低和土壤硝酸鹽的增加間接證實(shí)了生物質(zhì)炭對(duì)硝化作用的促進(jìn)作用,但老化生物質(zhì)炭會(huì)促進(jìn)硝化細(xì)菌的增殖,尤其是AOA(5.1%),可能是由于氨氧化真菌能更好地適應(yīng)環(huán)境,改善老化生物質(zhì)炭,而AOA比AOB更能適應(yīng)堿性環(huán)境[79]。生物質(zhì)炭的老化效應(yīng)會(huì)顯著促進(jìn)AOA的增加,可能使硝化過程加速,有利于N2O的排放,從而削弱生物質(zhì)炭降低N2O的潛力[71]。

        老化生物質(zhì)炭抑制CH4排放的原因主要包括3個(gè)方面:第一,老化生物質(zhì)炭通過形成微聚集體或?qū)⑷芙獾挠袡C(jī)物吸附到木炭顆粒上來穩(wěn)定有機(jī)碳,使其在土壤中持久存在,通過固定有機(jī)碳來減少CH4排放[80-81]。第二,生物質(zhì)炭施入土壤后會(huì)增加土壤的pH值,而pH值與pmoA基因豐度呈顯著正相關(guān),并降低mcrA豐度,甲烷氧化菌對(duì)pH值的變化較敏感,pH值增加會(huì)提高其活性,抑制CH4的排放[82-84]。第三,老化生物質(zhì)炭可以增加土壤的通氣性,進(jìn)而抑制產(chǎn)甲烷菌的活性,減少CH4排放[85]。老化生物質(zhì)炭促進(jìn)CH4排放可能是由于老化生物質(zhì)炭的孔徑會(huì)變大,吸附能力變?nèi)酰?3]。

        4 老化生物質(zhì)炭和新鮮生物質(zhì)炭減排效果的對(duì)比及機(jī)制

        本文對(duì)田間自然老化、室內(nèi)模擬老化以及不同培養(yǎng)方式進(jìn)行聯(lián)合探究,利用13C和15N示蹤技術(shù)從過程層次上揭示生物質(zhì)炭添加對(duì)土壤溫室氣體排放的影響機(jī)制研究有所缺乏[8],目前研究的田間自然老化生物質(zhì)炭多從田間土壤中分離出來后,在實(shí)驗(yàn)室進(jìn)行培養(yǎng)試驗(yàn),對(duì)于田間原位試驗(yàn)研究較少(表2)。

        如Duan等利用15N示蹤技術(shù)和定量聚合酶鏈反應(yīng)(qPCR)對(duì)2種溫室蔬菜生產(chǎn)(堿性和酸性)土壤進(jìn)行微觀試驗(yàn),分析新鮮和老化生物質(zhì)炭(從田間施用生物質(zhì)炭5年后的土壤中分離出來)對(duì)N2O生產(chǎn)的影響機(jī)制,發(fā)現(xiàn)新鮮生物質(zhì)炭可以有效降低2種土壤中的N2O排放,而老化生物質(zhì)炭處理通過硝化和反硝化作用會(huì)顯著促進(jìn)N2O排放(43%~78%)[77],相對(duì)新鮮生物質(zhì)炭,老化生物質(zhì)炭會(huì)增加比表面積、有機(jī)碳含量、銨的吸附能力和陽離子交換能力,但會(huì)減小孔徑和pH值。但這與Wang等得到的結(jié)果相反,本研究通過室內(nèi)培養(yǎng)試驗(yàn)發(fā)現(xiàn),與新鮮生物質(zhì)炭相比,田間老化生物質(zhì)炭會(huì)顯著減少土壤中CO2和N2O排放,可能是因?yàn)樵谏镔|(zhì)炭老化過程中,其表面形成了有機(jī)-礦物復(fù)合物,堵塞生物質(zhì)炭上的裂紋和孔隙,提高其力學(xué)性能,減少其自身不穩(wěn)定組分的釋放,且老化生物質(zhì)炭顆粒中的微生物群落結(jié)構(gòu)相對(duì)豐富于新鮮生物質(zhì)炭顆粒,如細(xì)菌(如氯霉)的存在可以將CO2固定在老化的生物質(zhì)炭顆粒中,也可能減少CO2的釋放[86],然而,生物質(zhì)炭老化對(duì)其微生物群落結(jié)構(gòu)和基因的影響有待進(jìn)一步研究。

        繼上述研究后,Zhang等對(duì)土壤氮循環(huán)基因進(jìn)行研究,發(fā)現(xiàn)新鮮生物質(zhì)炭通過自養(yǎng)硝化和反硝化作用會(huì)顯著促進(jìn)蔬菜土壤15.5%的N2O排放,而田間老化生物質(zhì)炭會(huì)削弱17.0%的N2O,但實(shí)驗(yàn)室老化生物質(zhì)炭對(duì)N2O的排放并沒有顯著影響[31]。造成該現(xiàn)象的原因是新鮮生物質(zhì)炭提高了土壤的AOB-amoA基因豐度,進(jìn)而通過自養(yǎng)硝化和反硝化促進(jìn)N2O的排放,老化生物質(zhì)炭通過降低AOB-amoA和nosZ基因的豐度來減少N2O的排放。劉一戈等通過室內(nèi)培養(yǎng)比較不同溫度下新鮮生物質(zhì)炭與老化生物質(zhì)炭對(duì)菜地土壤N2O排放的影響,發(fā)現(xiàn)在30 ℃時(shí)生物質(zhì)炭對(duì)N2O減排效果比在10、20 ℃時(shí)更好,且老化生物質(zhì)炭的減排效果優(yōu)于新鮮生物質(zhì)炭,這是因?yàn)樾迈r生物質(zhì)炭通過吸附硝酸根離子減少其參與反硝化過程,進(jìn)而降低N2O排放,老化生物質(zhì)炭則通過影響反硝化過程的底物量和反硝化功能基因nirK和nosZ的豐度,從而導(dǎo)致土壤氮以其他氮素形式損失,減少N2O的排放量[87]。

        生物質(zhì)炭對(duì)溫室氣體排放的影響會(huì)隨時(shí)間的延長(zhǎng)而發(fā)生變化,在農(nóng)田中老化3年的生物質(zhì)炭的CH4氧化能力比新施入的生物質(zhì)炭高,但N2O減排能力下降[42],生物質(zhì)炭在施用3年后仍對(duì)N2O具有顯著的減排效果。吳震等認(rèn)為,在稻田土壤中老化3年的生物質(zhì)炭能顯著降低稻麥輪作系統(tǒng)中CH4和N2O排放,其仍然具備固碳減排的能力,而新鮮生物質(zhì)炭也會(huì)顯著降低N2O排放,但卻增加了CH4排放,相比之下老化生物質(zhì)炭更能降低稻田輪作系統(tǒng)的綜合溫室效應(yīng)[88]。但Thers等通過油菜土壤施用田間老化生物質(zhì)炭和新鮮生物質(zhì)炭原位試驗(yàn)對(duì)土壤N2O排放進(jìn)行研究,發(fā)現(xiàn)N2O排放不受生物質(zhì)炭不同類型、施用率和田間老化的影響[89]。

        5 展望

        新鮮生物炭通過改變土壤的理化性質(zhì)和生物學(xué)性質(zhì),直接或間接影響土壤溫室氣體排放,老化生物炭會(huì)改變自身的理化性質(zhì),從而直接或間接影響土壤溫室氣體排放。但由于生物質(zhì)炭的原材料、施用量、老化時(shí)間、老化方式等存在差異,其對(duì)農(nóng)田土壤溫室氣體排放的影響也不同,亟須深入研究新鮮和老化生物炭施入對(duì)農(nóng)田土壤溫室氣體排放的影響和機(jī)制。未來研究需重點(diǎn)關(guān)注以下內(nèi)容:(1)比較新鮮和老化生物炭對(duì)農(nóng)田土壤溫室氣體排放的影響。在相同條件下,同時(shí)研究新鮮和老化生物質(zhì)炭對(duì)土壤溫室氣體排放的影響,分析生物質(zhì)炭長(zhǎng)期施用對(duì)土壤溫室氣體排放的減排效果。(2)田間試驗(yàn)和培養(yǎng)試驗(yàn)聯(lián)合研究,可以進(jìn)一步利用13C和15N示蹤技術(shù)從過程層次上揭示生物質(zhì)炭添加對(duì)土壤溫室氣體排放的影響,利用田間試驗(yàn)與培養(yǎng)試驗(yàn)結(jié)合的方法揭示老化生物質(zhì)炭和新鮮生物質(zhì)炭對(duì)溫室氣體排放效應(yīng)的機(jī)理。(3)目前對(duì)于生物質(zhì)炭田間老化對(duì)溫室氣體排放的影響研究中生物質(zhì)炭老化時(shí)間大多在5年以內(nèi),應(yīng)關(guān)注生物質(zhì)炭施用后土壤溫室氣體排放更長(zhǎng)期的效應(yīng)和機(jī)理研究。

        參考文獻(xiàn):

        [1]Franchini M,Mannucci P M. Impact on human health of climate changes[J]. European Journal of Internal Medicine,2015,26(1):1-5.

        [2]徐朝霞,蘇海報(bào),江曉東,等. 氣候變暖對(duì)冬小麥生長(zhǎng)發(fā)育、產(chǎn)量和品質(zhì)的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào),2020,36(25):101-105.

        [3]Kiehl J T,Trenberth K E. Earth’s annual global mean energy budget[J]. Bulletin of the American Meteorological Society,1997,78(2):197-208.

        [4]Shakoor A,Shahbaz M,F(xiàn)arooq T H,et al. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage[J]. The Science of the Total Environment,2021,750:142299.

        [5]Dissanayake P D,You S M,Igalavithana A D,et al. Biochar-based adsorbents for carbon dioxide capture:a critical review[J]. Renewable and Sustainable Energy Reviews,2020,119:109582.

        [6]Jeffery S,Bezemer T M,Cornelissen G,et al. The way forward in biochar research:targeting trade-offs between the potential wins[J]. GCB Bioenergy,2015,7(1):1-13.

        [7]楊傳文,邢 帆,朱建春,等. 中國(guó)秸稈資源的時(shí)空分布、利用現(xiàn)狀與碳減排潛力[J]. 環(huán)境科學(xué),2023,44(2):1149-1162.

        [8]周詠春,吳柳林,李丹陽,等. 生物炭添加對(duì)土壤溫室氣體排放影響的長(zhǎng)短期效應(yīng)研究進(jìn)展[J]. 環(huán)境科學(xué),2023,44(8):4742-4750.

        [9]Xiao X,Chen B L,Chen Z M,et al. Insight into multiple and multilevel structures of biochars and their potential environmental applications:a critical review[J]. Environmental Science amp; Technology,2018,52(9):5027-5047.

        [10]卿 敬,張建強(qiáng),關(guān) 卓,等. 農(nóng)田土壤中生物質(zhì)炭的老化及其對(duì)有機(jī)污染物吸附-解吸影響的研究進(jìn)展[J]. 土壤,2017,49(5):859-867.

        [11]Dong X L,Li G T,Lin Q M,et al. Quantity and quality changes of biochar aged for 5 years in soil under field conditions[J]. CATENA,2017,159:136-143.

        [12]袁海靜,鄧桂森,周順桂,等. 生物炭的老化及其對(duì)溫室氣體排放影響的研究進(jìn)展[J]. 生態(tài)環(huán)境學(xué)報(bào),2019,28(9):1907-1914.

        [13]Cao Y Q,Jing Y D,Hao H,et al. Changes in the physicochemical characteristics of peanut straw biochar after freeze-thaw and dry-wet aging treatments of the biomass[J]. BioResources,2019,14(2):4329-4343.

        [14]Tang W,Jing F Q,Laurent Z B L G,et al. High-temperature and freeze-thaw aged biochar impacts on sulfonamide sorption and mobility in soil[J]. Chemosphere,2021,276:130106.

        [15]Wang K F,Peng N,Niu X C,et al. Effects of aging on surface properties and endogenous copper and zinc leachability of swine manure biochar and its composite with alkali-fused fly ash[J]. Waste Management,2021,126:400-410.

        [16]Chen D Y,Yu X Z,Song C,et al. Effect of pyrolysis temperature on the chemical oxidation stability of bamboo biochar[J]. Bioresource Technology,2016,218:1303-1306.

        [17]Liu Y Y,Chen J W. Effect of ageing on biochar properties and pollutant management[J]. Chemosphere,2022,292:133427.

        [18]Cross A,Sohi S P. A method for screening the relative long-term stability of biochar[J]. GCB Bioenergy,2013,5(2):215-220.

        [19]Hale S E,Hanley K,Lehmann J,et al. Effects of chemical,biological,and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar[J]. Environmental Science amp; Technology,2011,45(24):10445-10453.

        [20]Ren X H,Sun H W,Wang F,et al. The changes in biochar properties and sorption capacities after being cultured with wheat for 3 months[J]. Chemosphere,2016,144:2257-2263.

        [21]Zeba N,Berry T D,Panke-Buisse K,et al. Effects of physical,chemical,and biological ageing on the mineralization of pine wood biochar by a Streptomyces isolate[J]. PLoS One,2022,17(4):e0265663.

        [22]Li B,Zhou J,Lu Y,et al. Field-aged biochar reduces the greenhouse gas balance in a degraded vegetable field treated by reductive soil disinfestation[J]. Environmental Science and Pollution Research,2019,26:10609-10620.

        [23]Joseph S D,Camps-Arbestain M,Lin Y,et al. An investigation into the reactions of biochar in soil[J]. Soil Research,2010,48(7):501.

        [24]Xu N,Tan G C,Wang H Y,et al. Effect of biochar additions to soil on nitrogen leaching,microbial biomass and bacterial community structure[J]. European Journal of Soil Biology,2016,74:1-8.

        [25]Xia H,Riaz M,Ming C,et al. Assessing the difference of biochar and aged biochar to improve soil fertility and cabbage (Brassica oleracea var. capitata) productivity[J]. Journal of Soils and Sediments,2023,23(2):606-618.

        [26]張 瀅,張長(zhǎng)浩,張秀芳,等. 污泥和雞糞生物炭制備及其老化過程中的碳損失[J]. 環(huán)境科學(xué),2023,44(8):4554-4564.

        [27]Lawrinenko M,Laird D A,Johnson R L,et al. Accelerated aging of biochars:impact on anion exchange capacity[J]. Carbon,2016,103:217-227.

        [28]Su Y F,Wen Y J,Yang W J,et al. The mechanism transformation of ramie biochar’s cadmium adsorption by aging[J]. Bioresource Technology,2021,330:124947.

        [29]Zhang Y Z,He R,Zhao J,et al. Effect of aged biochar after microbial fermentation on antibiotics removal:key roles of microplastics and environmentally persistent free radicals[J]. Bioresource Technology,2023,374:128779.

        [30]Xing D,Cheng H G,Ning Z P,et al. Field aging declines the regulatory effects of biochar on cadmium uptake by pepper in the soil[J]. Journal of Environmental Management,2022,321:115832.

        [31]Zhang X,Zhang J Q,Song M X,et al. N2O and NO production and functional microbes responding to biochar aging process in an intensified vegetable soil[J]. Environmental Pollution,2022,307:119491.

        [32]Xie Y L,Zhou G L,Huang X X,et al. Study on the physicochemical properties changes of field aging biochar and its effects on the immobilization mechanism for Cd2+ and Pb2+[J]. Ecotoxicology and Environmental Safety,2022,230:113107.

        [33]何飛飛,榮湘民,梁運(yùn)姍,等. 生物炭對(duì)紅壤菜田土理化性質(zhì)和N2O、CO2排放的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2013,32(9):1893-1900.

        [34]Huang R,Wang Z F,Xiao Y,et al. Increases in temperature response to CO2 emissions in biochar-amended vegetable field soil[J]. Environmental Science and Pollution Research,2022,29(33):50895-50905.

        [35]方 明,任天志,賴 欣,等. 花生殼生物炭對(duì)潮土和紅壤理化性質(zhì)和溫室氣體排放的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2018,37(6):1300-1310.

        [36]Wu Q F,Lian R Y,Bai M X,et al. Biochar co-application mitigated the stimulation of organic amendments on soil respiration by decreasing microbial activities in an infertile soil[J]. Biology and Fertility of Soils,2021,57(6):793-807.

        [37]Gross C D,Bork E W,Carlyle C N,et al. Biochar and its manure-based feedstock have divergent effects on soil organic carbon and greenhouse gas emissions in croplands[J]. The Science of the Total Environment,2022,806(Pt 3):151337.

        [38]吳 震,陳安楓,朱爽閣,等. 集約化菜地N2O排放及減排:基于文獻(xiàn)整合分析[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2020,39(4):707-714.

        [39]Li B,Bi Z C,Xiong Z Q.Dynamic responses of nitrous oxide emission and nitrogen use efficiency to nitrogen and biochar amendment in an intensified vegetable field in southeastern China[J]. GCB Bioenergy,2017,9(2):400-413.

        [40]Cayuela M L,van Zwieten L,Singh B P,et al. Biochar’s role in mitigating soil nitrous oxide emissions:a review and meta-analysis[J]. Agriculture,Ecosystems amp; Environment,2014,191:5-16.

        [41]Li B,Huang W H,Elsgaard L,et al. Optimal biochar amendment rate reduced the yield-scaled N2O emissions from Ultisols in an intensive vegetable field in South China[J]. The Science of the Total Environment,2020,723:138161.

        [42]Spokas K A.Impact of biochar field aging on laboratory greenhouse gas production potentials[J]. GCB Bioenergy,2013,5(2):165-176.

        [43]Borchard N,Schirrmann M,Cayuela M L,et al. Biochar,soil and land-use interactions that reduce nitrate leaching and N2O emissions:a meta-analysis[J]. The Science of the Total Environment,2019,651(Pt 2):2354-2364.

        [44]Cheng Y,Cai Z C,Chang S X,et al. Wheat straw and its biochar have contrasting effects on inorganic N retention and N2O production in a cultivated black chernozem[J]. Biology and Fertility of Soils,2012,48(8):941-946.

        [45]Sun L Y,Deng J Y,F(xiàn)an C H,et al. Combined effects of nitrogen fertilizer and biochar on greenhouse gas emissions and net ecosystem economic budget from a coastal saline rice field in southeastern China[J]. Environmental Science and Pollution Research,2020,27(14):17013-17022.

        [46]戴相林,劉雅輝,孫建平,等. 秸稈還田和氮肥減施對(duì)濱海鹽漬土稻田溫室氣體排放及氮肥利用率的影響[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào),2023,29(4):994-1005.

        [47]劉麗君,朱啟林,李凱凱,等. 添加生物炭對(duì)海南燥紅壤N2O和CO2排放的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2021,40(9):2049-2056.

        [48]王月玲,耿增超,王 強(qiáng),等. 生物炭對(duì)塿土土壤溫室氣體及土壤理化性質(zhì)的影響[J]. 環(huán)境科學(xué),2016,37(9):3634-3641.

        [49]Jia J X,Li B,Chen Z Z,et al. Effects of biochar application on vegetable production and emissions of N2O and CH4[J]. Soil Science and Plant Nutrition,2012,58(4):503-509.

        [50]Li F Y,Cao X D,Zhao L,et al. Short-term effects of raw rice straw and its derived biochar on greenhouse gas emission in five typical soils in China[J]. Soil Science and Plant Nutrition,2013,59(5):800-811.

        [51]Troy S M,Lawlor P G,O’Flynn C J,et al. Impact of biochar addition to soil on greenhouse gas emissions following pig manure application[J]. Soil Biology and Biochemistry,2013,60:173-181.

        [52]Luo Y,Durenkamp M,de Nobili M,et al. Microbial biomass growth,following incorporation of biochars produced at 350 ℃ or 700 ℃,in a silty-clay loam soil of high and low pH[J]. Soil Biology and Biochemistry,2013,57:513-523.

        [53]陳 穎,劉玉學(xué),陳重軍,等. 生物炭對(duì)土壤有機(jī)碳礦化的激發(fā)效應(yīng)及其機(jī)理研究進(jìn)展[J]. 應(yīng)用生態(tài)學(xué)報(bào),2018,29(1):314-320.

        [54]王冠麗,孫鐵軍,劉廷璽,等. 施用生物炭對(duì)干旱區(qū)玉米農(nóng)田碳足跡的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2019,38(11):2650-2658.

        [55]Zimmerman A R,Gao B,Ahn M Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils[J]. Soil Biology and Biochemistry,2011,43(6):1169-1179.

        [56]Igalavithana A D,Choi S W,Shang J,et al. Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge:effect of porous structure and surface chemistry[J]. The Science of the Total Environment,2020,739:139845.

        [57]Guo F C,Zhang J M,Yang X Y,et al. Impact of biochar on greenhouse gas emissions from constructed wetlands under various influent chemical oxygen demand to nitrogen ratios[J]. Bioresource Technology,2020,303:122908.

        [58]Lin Y X,Ding W,Liu D Y,et al. Wheat straw-derived biochar amendment stimulated N2O emissions from rice paddy soils by regulating the amoA genes of ammonia-oxidizing bacteria[J]. Soil Biology amp; Biochemistry,2017,113:89-98.

        [59]陳 晨,許 欣,畢智超,等. 生物炭和有機(jī)肥對(duì)菜地土壤N2O排放及硝化、反硝化微生物功能基因豐度的影響[J]. 環(huán)境科學(xué)學(xué)報(bào),2017,37(5):1912-1920.

        [60]馮政君. 不同環(huán)境條件下生物炭對(duì)土壤N2O排放的影響及機(jī)制[D]. 杭州:浙江大學(xué),2017.

        [61]Liu Q,Liu B J,Zhang Y H,et al. Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions?[J]. Soil Biology and Biochemistry,2017,104:8-17.

        [62]Fungo B,Chen Z,Butterbach-Bahl K,et al. Nitrogen turnover and N2O/N2 ratio of three contrasting tropical soils amended with biochar[J]. Geoderma,2019,348:12-20.

        [63]Aamer M,Shaaban M,Hassan M U,et al. Biochar mitigates the N2O emissions from acidic soil by increasing the nosZ and nirK gene abundance and soil pH[J]. Journal of Environmental Management,2020,255:109891.

        [64]黃凱平,李永夫,宋成芳,等. 氮沉降和施生物質(zhì)炭對(duì)毛竹林土壤N2O通量的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2021,32(9):3079-3088.

        [65]Shi R Y,Ni N,Nkoh J N,et al. Beneficial dual role of biochars in inhibiting soil acidification resulting from nitrification[J]. Chemosphere,2019,234:43-51.

        [66]Wang C,Shen J L,Liu J Y,et al. Microbial mechanisms in the reduction of CH4 emission from double rice cropping system amended by biochar:a four-year study[J]. Soil Biology and Biochemistry,2019,135:251-263.

        [67]Karhu K,Mattila T,Bergstrm I,et al. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity:results from a short-term pilot field study[J]. Agriculture,Ecosystems amp; Environment,2011,140(1/2):309-313.

        [68]Chen D,Wang C,Shen J L,et al. Response of CH4 emissions to straw and biochar applications in double-rice cropping systems:insights from observations and modeling[J]. Environmental Pollution,2018,235:95-103.

        [69]Liu Y X,Yang M,Wu Y M,et al. Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar[J]. Journal of Soils and Sediments,2011,11(6):930-939.

        [70]Feng Y Z,Xu Y P,Yu Y C,et al. Mechanisms of biochar decreasing methane emission from Chinese paddy soils[J]. Soil Biology and Biochemistry,2012,46:80-88.

        [71]Feng Y Y,F(xiàn)eng Y F,Liu Q,et al. How does biochar aging affect NH3 volatilization and GHGs emissions from agricultural soils?[J]. Environmental Pollution,2022,294:118598.

        [72]Hagemann N,Harter J,Kaldamukova R,et al. Does soil aging affect the N2O mitigation potential of biochar?A combined microcosm and field study[J]. GCB Bioenergy,2017,9(5):953-964.

        [73]Sadasivam B Y,Reddy K R. Adsorption and transport of methane in landfill cover soil amended with waste-wood biochars[J]. Journal of Environmental Management,2015,158:11-23.

        [74]陳亞娟,廖曉琳,Saadat U M,等. 生物炭與沼液混施對(duì)楊樹人工林土壤溫室氣體排放的長(zhǎng)期影響[J]. 土壤通報(bào),2022,53(4):828-838.

        [75]Zheng N G,Yu Y X,Li Y Y,et al. Can aged biochar offset soil greenhouse gas emissions from crop residue amendments in saline and non-saline soils under laboratory conditions?[J]. The Science of the Total Environment,2022,806(Pt 3):151256.

        [76]Joseph S,Cowie A L,van Zwieten L,et al. How biochar works,and when it doesn’t:a review of mechanisms controlling soil and plant responses to biochar[J]. GCB Bioenergy,2021,13(11):1731-1764.

        [77]Duan P P,Zhang X,Zhang Q Q,et al. Field-aged biochar stimulated N2O production from greenhouse vegetable production soils by nitrification and denitrification[J]. The Science of the Total Environment,2018,642:1303-1310.

        [78]劉文慧,王昱璇,陳丹丹,等. 老化作用對(duì)生物炭理化特性的影響[J]. 工程熱物理學(xué)報(bào),2021,42(6):1575-1582.

        [79]Zhang X,Duan P P,Wu Z,et al. Aged biochar stimulated ammonia-oxidizing archaea and bacteria-derived N2O and NO production in an acidic vegetable soil[J]. The Science of the Total Environment,2019,687:433-440.

        [80]Wang J Y,Xiong Z Q,Kuzyakov Y.Biochar stability in soil:meta-analysis of decomposition and priming effects[J]. GCB Bioenergy,2016,8(3):512-523.

        [81]Weng Z,van Zwieten L,Singh B P,et al. Biochar built soil carbon over a decade by stabilizing rhizodeposits[J]. Nature Climate Change,2017,7:371-376.

        [82]Han X G,Sun X,Wang C,et al. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change[J]. Scientific Reports,2016,6:24731.

        [83]Qin X B,Li Y E,Wang H,et al. Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system:a four-year case study in South China[J]. The Science of the Total Environment,2016,569/570:1390-1401.

        [84]Wu Z,Sun L Y,Dong Y B,et al. Contrasting effects of different field-aged biochars on potential methane oxidation between acidic and saline paddy soils[J]. The Science of the Total Environment,2022,853:158643.

        [85]Wang C,Shen J L,Liu J Y,et al. Microbial mechanisms in the reduction of CH4 emission from double rice cropping system amended by biochar:a four-year study[J]. Soil Biology and Biochemistry,2019,135:251-263.

        [86]Wang L,Gao C C,Yang K,et al. Effects of biochar aging in the soil on its mechanical property and performance for soil CO2 and N2O emissions[J]. The Science of the Total Environment,2021,782:146824.

        [87]劉一戈,胡家?guī)洠?朝,等. 不同溫度條件下生物質(zhì)炭陳化對(duì)華南集約化菜地土壤反硝化過程的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2022,28(9):1641-1651.

        [88]吳 震,董玉兵,熊正琴.生物炭施用3年后對(duì)稻麥輪作系統(tǒng)CH4和N2O綜合溫室效應(yīng)的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2018,29(1):141-148.

        [89]Thers H,Abalos D,Drsch P,et al. Nitrous oxide emissions from oilseed rape cultivation were unaffected by flash pyrolysis biochar of different type,rate and field ageing[J]. The Science of the Total Environment,2020,724:138140.

        [90]Basalirwa D,Sudo S,Wacal C,et al. Impact of fresh and aged palm shell biochar on N2O emissions,soil properties,nutrient content and yield of Komatsuna (Brassica rapa var. perviridis) under sandy soil conditions[J]. Soil Science and Plant Nutrition,2020,66(2):328-343.

        [91]Liu Z W,Zhu M T,Wang J M,et al. The responses of soil organic carbon mineralization and microbial communities to fresh and aged biochar soil amendments[J]. Global Change Biology Bioenergy,2019,11(12):1408-1420.

        [92]Nan Q,Wang C,Wang H,et al. Mitigating methane emission via annual biochar amendment pyrolyzed with rice straw from the same paddy field[J]. The Science of the Total Environment,2020,746:141351.

        [93]Wu Z,Zhang Q Q,Zhang X,et al. Biochar-enriched soil mitigated N2O and NO emissions similarly as fresh biochar for wheat production[J]. The Science of the Total Environment,2020,701:134943.

        [94]Yang Y,Sun K,Liu J,et al. Changes in soil properties and CO2 emissions after biochar addition:role of pyrolysis temperature and aging[J]. The Science of the Total Environment,2022,839:156333.

        猜你喜歡
        溫室氣體減排農(nóng)田
        達(dá)爾頓老伯的農(nóng)田
        超臨界鍋爐高溫管道氧化皮剝落失效原因分析及對(duì)策建議
        不同施氮水平下乙草胺對(duì)土壤溫室氣體排放的影響
        農(nóng)田創(chuàng)意秀
        中國(guó)西北地區(qū)光伏發(fā)電的環(huán)境影響評(píng)估
        我國(guó)冷藏車減排的可行性研究
        考試周刊(2016年82期)2016-11-01 15:13:12
        船舶動(dòng)力節(jié)能減排技術(shù)分析
        農(nóng)田搞養(yǎng)殖需辦哪些證
        農(nóng)田制作所
        區(qū)域碳排放峰值測(cè)算若干問題思考:以北京市為例
        欧美人妻少妇精品久久黑人| 亚洲免费观看一区二区三区| 国产一区二区三区四区色| 亚洲中文乱码在线观看| 国产区女主播一区在线| 少妇久久久久久人妻无码| 亚洲成人色区| 2022Av天堂在线无码| 久久亚洲一级av一片| 人妻人妇av一区二区三区四区 | 综合图区亚洲另类偷窥| 9l国产自产一区二区三区| 亚洲男人av天堂久久资源| 欧美成人猛交69| 亚洲av无码之日韩精品| 国产日韩久久久久69影院| 国产一区二区三区在线观看蜜桃| 91久久国产香蕉视频| 成人精品天堂一区二区三区| 久久精品人人做人人爽电影蜜月| 中日韩欧美成人免费播放| 亚洲国产精品成人一区二区三区| 男女18视频免费网站| 国产成人综合亚洲看片| 国产精品久久久久久人妻精品| 蜜臀aⅴ永久无码一区二区| 青青草视频视频在线观看| 色天使久久综合网天天| 特级做a爰片毛片免费看无码| 久久九九青青国产精品| 亚洲av成人久久精品| 国产精品大屁股1区二区三区| 强d乱码中文字幕熟女1000部| 亚洲av高清不卡免费在线 | 又粗又硬又大又爽免费视频播放| 日日摸夜夜添无码无码av| 欧美在线Aⅴ性色| 国产三级精品三级在线专区2| 中国老太婆bb无套内射| 欧美 国产 日产 韩国 在线 | 久久婷婷成人综合色|