【摘要】冠狀動(dòng)脈微栓塞(CME)多發(fā)生于急性冠脈綜合征患者,因手術(shù)相關(guān)的動(dòng)脈粥樣硬化斑塊破裂引發(fā),可導(dǎo)致心律失常、冠狀動(dòng)脈儲(chǔ)備減少以及心臟收縮功能障礙。CME后常規(guī)擴(kuò)張冠狀動(dòng)脈、抗血小板和直接抽吸血栓的臨床療效不理想。研究發(fā)現(xiàn),微RNA(miRNA)特異結(jié)合炎癥反應(yīng)、凋亡、自噬相關(guān)信使RNA的3?-UTR,最終影響CME預(yù)后。深入研究miRNA在CME發(fā)生和發(fā)展中的作用,不僅可以進(jìn)一步了解CME后不良預(yù)后機(jī)制,并有助于為其藥物治療尋找新的靶點(diǎn)。
【關(guān)鍵詞】冠狀動(dòng)脈微栓塞;微RNA;炎癥反應(yīng);凋亡;自噬
【DOI】10.16806/j.cnki.issn.1004-3934.2024.06.000
MicroRNA-mediated Regulation of Cardiomyocyte Injury Following Coronary Microembolisation
LI Lange1,2,ZHENG Yaxuan1,2,LYU"Tingting1,LI Kun1,KONG Lingyun1,ZHOU Boda1,LIU Fang1,ZHANG Ping1,XUE Yajun1
(1.Department of Cardiovascular Medicine,Beijing Tsinghua Changgung Hospital,School of Clinical Medicine,Tsinghua University,Beijing 102218,China;2.School of Medicine,Tsinghua University,Beijing 100083,China)
【Abstract】Coronary microembolization(CME) occurs in patients with acute coronary syndrome"and is primarily caused by atherosclerotic plaque rupture associated with surgery. CME can lead to arrhythmias,reduced coronary blood flow reserve,and cardiac systolic dysfunction. The clinical efficacies of conventional coronary artery dilation,antiplatelet agents,and direct thrombus aspiration after CME are not satisfactory. Studies have found that microRNA(miRNA) specifically bind to the 3?-UTR of inflammatory response,apoptosis,and autophagy-related messenger RNA,and ultimately affect the prognosis of CME. In-depth study of the role of miRNA in the occurrence and development of CME can not only further understand the mechanism of poor prognosis after CME,but also help to find new targets for its drug treatment.
【Keywords】Coronary microembolization; MicroRNA;Inflammatory;"Apoptosis;"Autophagy
冠狀動(dòng)脈微栓塞(coronary microembolization,CME)多發(fā)生于經(jīng)皮冠狀動(dòng)脈介入治療期間,栓子脫落引起遠(yuǎn)端微循環(huán)栓塞和心肌微梗死。根據(jù)不同的評(píng)估方法、參數(shù)及評(píng)估時(shí)間,CME在經(jīng)皮冠狀動(dòng)脈介入圍手術(shù)期的發(fā)生率為5%~70%[1]。CME引起的“無(wú)再流”或“慢再流”現(xiàn)象是急性冠脈綜合征(acute coronary syndrome,ACS)患者不良預(yù)后的獨(dú)立預(yù)測(cè)因子,且臨床常規(guī)治療手段效果有限。隨著分子生物學(xué)實(shí)驗(yàn)技術(shù)的進(jìn)展,有研究[2]證實(shí)CME不僅通過(guò)物理阻塞、血管收縮誘導(dǎo)心肌損傷,微RNA(microRNA,miRNA)與CME預(yù)后進(jìn)展密切相關(guān)。綜述從炎癥反應(yīng)、細(xì)胞凋亡及細(xì)胞自噬三個(gè)方面闡述miRNA對(duì)CME后心肌細(xì)胞損傷的調(diào)節(jié),為探索改善CME后心功能障礙提供新的研究方向。
1""miRNA及在CME后表達(dá)概述
miRNA是一類(lèi)大小為21~23"nt的單鏈非編碼RNA,它們主要通過(guò)與目標(biāo)基因3?-UTR完全或部分堿基配對(duì),影響信使RNA(messenger RNA,mRNA)的翻譯過(guò)程負(fù)向調(diào)控基因表達(dá)[3]。動(dòng)物miRNA形成過(guò)程高度保守:(1)RNA聚合酶Ⅱ轉(zhuǎn)錄形成具有莖環(huán)結(jié)構(gòu)的初級(jí)miRNA轉(zhuǎn)錄產(chǎn)物(primary miRNA,pri-miRNA)。(2)RNA聚合酶Ⅲ型核酸內(nèi)切酶Drosha切割pri-miRNA的莖環(huán)結(jié)構(gòu)生成pre-miRNA。(3)輸出蛋白5轉(zhuǎn)運(yùn)細(xì)胞核內(nèi)pre-miRNA進(jìn)入細(xì)胞質(zhì)。(4)pre-miRNA被RNA聚合酶Ⅲ型的核酸內(nèi)切酶Dicer切割形成雙鏈miRNA。雙鏈miRNA在輔助蛋白作用下被載入Argonaute(Ago)蛋白中,降解其中一條單鏈,成熟miRNA與Ago形成RNA誘導(dǎo)沉默復(fù)合物(RNA induced silencing complex,RISC)降解目標(biāo)mRNA。每個(gè)miRNA可有多個(gè)靶基因,一個(gè)基因也可以受到多個(gè)miRNA調(diào)控,形成復(fù)雜的調(diào)控網(wǎng)絡(luò)。具有同一miRNA結(jié)合位點(diǎn)的mRNA可以競(jìng)爭(zhēng)性結(jié)合miRNA反應(yīng)元件(miRNA response element,MRE)進(jìn)而調(diào)節(jié)靶基因轉(zhuǎn)錄表達(dá),這種競(jìng)爭(zhēng)相同MRE的mRNA被稱(chēng)為競(jìng)爭(zhēng)性?xún)?nèi)源RNA(completing endogenous RNA,ceRNA)。ceRNA沉默時(shí),miRNA通過(guò)結(jié)合目標(biāo)RNA的RISC降解靶mRNA。相反ceRNA上調(diào)時(shí),通過(guò)結(jié)合miRNA的MRE使靶mRNA水平升高。ceRNA還包括具有相同MRE的其他轉(zhuǎn)錄物,如長(zhǎng)鏈非編碼RNA(long non-coding RNA,lncRNA)、假基因轉(zhuǎn)錄本以及環(huán)狀RNA等[4]。Li等[5]認(rèn)為,內(nèi)源性miRNA可在血液循環(huán)中穩(wěn)定存在。正常情況下,特定的miRNA在心肌內(nèi)高度表達(dá),心肌梗死后,miRNA由心肌損壞釋放表達(dá)下降,而外周循環(huán)miRNA水平升高。miRNA失調(diào)在心臟收縮功能障礙、心肌梗死、心肌肥厚、遺傳性心肌病等多種心血管疾病具有重要的作用[6]。尤其是對(duì)于ACS患者。循環(huán)miRNA通過(guò)外泌體、凋亡體、miRNA結(jié)合蛋白或脂蛋白保護(hù)免受RNA酶降解[7]。這些研究結(jié)果提示,miRNA可以作為ACS診斷及治療的潛在靶點(diǎn)。
miRNA被作為參與心血管系統(tǒng)生理、病理發(fā)生發(fā)展的重要因素受到廣泛研究。近來(lái)有研究證實(shí)miRNA在CME后心肌損傷也發(fā)揮重要作用。自2017年,Su等[8]在以豬CME模型的心肌組織中發(fā)現(xiàn)有11種miRNA差異性表達(dá)明顯,其中ssc-miR-136和ssc-miR-142-3p表達(dá)降低,ssc-miR-874、ssc-miR-370、ssc-miR-425-3p等9種表達(dá)增加。隨著進(jìn)一步深入研究,有更多表達(dá)改變的miRNA在CME模型中發(fā)現(xiàn),這些miRNA的靶基因主要與細(xì)胞凋亡、炎癥、自噬及纖維化相關(guān),在CME中發(fā)揮著重要作用。此外,Xue等[9]認(rèn)為內(nèi)皮祖細(xì)胞可通過(guò)miRNA治療CME,miR-132抑制劑通過(guò)改善心肌重構(gòu)診療心力衰竭,已經(jīng)進(jìn)入Ⅰ期臨床[10],這提示,miRNA還可作為CME的潛在治療靶點(diǎn)。
2 "miRNA對(duì)CME心肌損傷的調(diào)節(jié)機(jī)制研究
2.1 "miRNA在CME后炎癥反應(yīng)中的作用
炎癥反應(yīng)是CME后心肌損傷的重要機(jī)制。CME引起微梗死的典型形態(tài)學(xué)改變?yōu)閴乃?,常伴有炎癥細(xì)胞浸潤(rùn),甚至焦亡。栓塞顆粒直徑?jīng)Q定血管阻塞部位,進(jìn)而決定梗死范圍。收縮功能障礙的程度常與急性缺血不匹配,這與心肌炎癥引起心肌收縮功能障礙相關(guān)。CME后梗死灶周?chē)奘杉?xì)胞和中性粒細(xì)胞浸潤(rùn)釋放腫瘤壞死因子(tumor necrosis factor,TNF)、白細(xì)胞介素(interleukin,IL)等炎癥介質(zhì),介導(dǎo)活性氧信號(hào)轉(zhuǎn)導(dǎo)損害相鄰存活心肌細(xì)胞的收縮功能,最終,肌原纖維氧化。炎癥信號(hào)通路以TNF為中心,還涉及一氧化氮及鞘氨醇,在CME后心肌損傷的進(jìn)展中具有重要作用。NOD樣受體蛋白3(NOD-like receptor protein 3,NLRP3)被傳感器激活后與適配器凋亡相關(guān)微粒蛋白(apoptosis-associated speck-like protein containing CARD,ASC),效應(yīng)器半胱天冬酶(caspase)聚合形成經(jīng)典N(xiāo)LRP3炎癥小體。NLRP3傳感蛋白包括三個(gè)結(jié)構(gòu)域:氨基末端Pyrin結(jié)構(gòu)域(pyrin domain,PYD),與ASC結(jié)合;中心中央核苷酸結(jié)合和寡聚化結(jié)構(gòu)域(a central nucleotide binding and oligomerization domain,NACHT),具有ATP激活活性及聚合功能;羧基末端富含亮氨酸的重復(fù)序列(leucine-rich repeat,LRR)結(jié)構(gòu)域,抑制NACHT功能。一般狀態(tài)下,炎癥小體在LRR結(jié)構(gòu)域的作用下受到抑制。炎癥刺激或創(chuàng)傷刺激下,NLRP3炎癥小體中的活性caspase切割I(lǐng)L生成活性IL-1β和IL-18,引起炎癥。同時(shí)切割gasdermin-D(GSDMD)的N端,插入細(xì)胞膜,引起細(xì)胞焦亡。
近期miRNA通過(guò)調(diào)節(jié)炎癥信號(hào)通路改善CME后心肌損傷的研究取得一些進(jìn)展(如圖1)。在多項(xiàng)以大鼠CME為模型的研究表明,Cai等[11]進(jìn)一步通過(guò)分離大鼠心肌細(xì)胞中的脂多糖(lipopolysaccharide,LPS)誘導(dǎo)焦亡,通過(guò)熒光定量PCR(real time fluorescence quantitative PCR,qPCR)、酶聯(lián)免疫吸附測(cè)定法(enzyme-linked immunosorbent assay,ELISA)、膠原染色等方法觀察到CME組及LPS組小鼠心肌組織miR-136-5P下調(diào),而TNF、IL-6、肌鈣蛋白I上調(diào),而過(guò)表達(dá)miR-136-5P減輕心肌細(xì)胞炎癥及焦亡。并通過(guò)免疫熒光報(bào)告基因檢測(cè)技術(shù)證實(shí)miR-136-5p通過(guò)靶向ataxin-1樣(ataxin-1-like,ATXN1L)蛋白,抑制ATXN1L/capicua轉(zhuǎn)錄抑制因子(capicua transcriptional repressor,CIC)軸上調(diào)PYDC1,競(jìng)爭(zhēng)性抑制NLRP3與ASC結(jié)合而抑制炎癥及焦亡,從而減輕CME引起的心臟損傷[11]。Chen等[12]發(fā)現(xiàn)CME后miR-200a-3p下降,其通過(guò)抑制硫氧還蛋白互作蛋白(thioredoxin-interacting protein,TXNIP)/NLRP3軸抑制炎癥反應(yīng)及氧化應(yīng)激改善CME后誘導(dǎo)的心肌損傷。Xu等[13]發(fā)現(xiàn)過(guò)表達(dá)miR-142-3p可以靶向ATXN1L減輕CME后心肌損傷,而ATXN1L與組蛋白去乙?;?(histone deacetylase 3,HDAC3)結(jié)合促進(jìn)組蛋白3(histon3,H3)脫乙?;M(jìn)而抑制核仁蛋白(nucleolar protein 3",NOL3)表達(dá),促進(jìn)caspase-1/IL-1β/IL-18信號(hào)誘導(dǎo)心肌損傷。Kong等[14]發(fā)現(xiàn)CME后miR-26a-5p下調(diào),其結(jié)合高遷移率蛋白A1(high mobility group AT-hook 1,HMGA1)mRNA,調(diào)節(jié)HMGA1/NF-κB/TNF-α通路改善CME后心肌炎癥及損傷。Gao等[15]發(fā)現(xiàn)川芎嗪預(yù)處理的CME大鼠可抑制miR-34a-5p表達(dá),進(jìn)而通過(guò)Sirt1/eNOS和Sirt1/NF-κB途徑抑制炎癥反應(yīng),減輕冠狀動(dòng)脈微血管障礙。Zhou等[16-17]發(fā)現(xiàn)CME后miR-181a-5p、miR-186-5p上調(diào),通過(guò)靶向X連鎖凋亡抑制蛋白(X-linked Inhibitor of Apoptosis,XIAP)促進(jìn)焦亡,加重心肌損傷。而lncRNA TUG1通過(guò)競(jìng)爭(zhēng)性?xún)?nèi)源RNA(competing endogenous RNA,ceRNA)機(jī)制競(jìng)爭(zhēng)性與miR-186-5p結(jié)合,減輕CME后心肌炎癥及損傷[17]。Dai等[18]發(fā)現(xiàn)CME后miR-30e-3p下調(diào),其通過(guò)抑制HDAC2/SMAD7通路抑制炎癥反應(yīng)。在以豬CME模型中的研究中,Su等[19]發(fā)現(xiàn)miR-142-3p通過(guò)靶向白細(xì)胞介素-1受體相關(guān)激酶-1(interleukin-1 receptorassociated kinase 1,IRAK-1)抑制IRAK-1/NF-κB信號(hào)通路,減輕CME后心肌炎癥反應(yīng)及心肌損傷。而超聲微泡介導(dǎo)的miR-21轉(zhuǎn)染可通過(guò)靶向結(jié)合程序性細(xì)胞死亡4(programmed cell death 4,PDCD4)mRNA,抑制PDCD4/NF-κB/TNF-α通路,減輕CME后炎癥及心肌損傷[20]。
2.2 "miRNA在CME導(dǎo)致凋亡中的作用
經(jīng)典凋亡是一種主動(dòng)的程序性死亡過(guò)程,鏡下有細(xì)胞核固縮、染色質(zhì)濃染、凋亡小體形成等表現(xiàn)。心肌細(xì)胞凋亡是CME后不良預(yù)后的原因之一,受到凋亡信號(hào)通路調(diào)節(jié)。線(xiàn)粒體通路、內(nèi)質(zhì)網(wǎng)通路、死亡受體通路可從不同階段啟動(dòng)凋亡,最終激活caspase完成凋亡。Bcl-2家族中促凋亡因子及抗凋亡因子的平衡是調(diào)節(jié)凋亡的關(guān)鍵??沟蛲鲆蜃覤cl-2、Bcl-xl、Bcl-w等通過(guò)與BH3-only、Bak蛋白結(jié)合,抑制促凋亡因子活性。當(dāng)受刺激時(shí),促凋亡因子Bak在線(xiàn)粒體膜上聚集,與抑凋亡因子分離,與其他Bak、Bax結(jié)合形成孔蛋白復(fù)合體,使線(xiàn)粒體膜通透性增加而釋放細(xì)胞色素C。細(xì)胞質(zhì)中細(xì)胞色素C與凋亡相關(guān)因子1結(jié)合,募集胞質(zhì)中的caspase誘導(dǎo)細(xì)胞凋亡。
近年來(lái),有少量研究提示miRNA通過(guò)調(diào)節(jié)凋亡相關(guān)信號(hào)通路誘導(dǎo)CME后心肌損傷。Su等[21]在體外分離的大鼠心肌細(xì)胞的研究中,通過(guò)qPCR、蛋白質(zhì)印跡、流式細(xì)胞技術(shù)等方式發(fā)現(xiàn),心肌細(xì)胞暴露在缺血缺氧后,miR-30e-3p下降,而凋亡水平及caspase增加,而過(guò)表達(dá)miR-30e-3p時(shí)早反應(yīng)生長(zhǎng)因子(early growth response factor 1 ,Egr-1)、caspase、凋亡水平下降,這表明miR-30e-3p通過(guò)靶向Egr-1降低凋亡改善心肌損傷。Mo等[22]在人類(lèi)誘導(dǎo)的多能干細(xì)胞來(lái)源的心肌細(xì)胞(human induced pluripotent stem cell-derived cardiomyocytes,hiPSC-CM)的模型中發(fā)現(xiàn),hiPSC-CM缺氧24"h后miR-30e-5p表達(dá)下降,凋亡增加。并通過(guò)蟲(chóng)熒光素酶報(bào)告基因測(cè)試證實(shí)miR-30e-5p直接靶向Bim改善凋亡。Qin等[23]發(fā)現(xiàn)在大鼠CME模型中miR-29b-3p下降,其上調(diào)后抑制Bax、caspase-3和caspase-9的表達(dá),增加Bcl-2的表達(dá),并通過(guò)雙熒光素基因測(cè)定技術(shù)證實(shí)這一過(guò)程通過(guò)miR-29b-3p靶向Bcl-2修飾因子(Bcl-2 modifying factor,BMF)實(shí)現(xiàn)。損傷信號(hào)持續(xù)存在時(shí),BMF分泌增加,通過(guò)與抗凋亡蛋白Bcl-2蛋白結(jié)合,誘導(dǎo)其降解,誘發(fā)凋亡[23]。CME后miR-486-5p的表達(dá)下降。通過(guò)蛋白質(zhì)印跡法、TUNEL染色發(fā)現(xiàn)過(guò)表達(dá)miR-486-5p可降低PTEN表達(dá),凋亡心肌細(xì)胞數(shù)量減少。證實(shí)miR-486-5p通過(guò)靶向PTEN激活PI3K/AKT通路抑制凋亡[24]。
2.3""miRNA在CME誘發(fā)自噬中的作用
自噬是一種細(xì)胞內(nèi)的自我降解過(guò)程,通過(guò)降解細(xì)胞內(nèi)老化或受損的細(xì)胞器或蛋白質(zhì)生成氨基酸供細(xì)胞重復(fù)利用[25]。根據(jù)所需降解物質(zhì)進(jìn)入溶酶體的方式可以分為巨自噬、微自噬、分子伴侶介導(dǎo)的自噬[26]。巨自噬通過(guò)雙分子膜包裹細(xì)胞質(zhì)形成“自噬體”,進(jìn)一步與溶酶體融合進(jìn)行降解[27]。微自噬是溶酶體膜直接凹陷形成囊泡,將部分細(xì)胞質(zhì)成分包裹進(jìn)入溶酶體[27]。分子伴侶介導(dǎo)的自噬直接通過(guò)分子伴侶蛋白Hsc70識(shí)別溶酶體并引導(dǎo)靶蛋白進(jìn)入溶酶體進(jìn)行降解[27]。在哺乳動(dòng)物心肌細(xì)胞中最常見(jiàn)的是巨自噬,這一過(guò)程可分為三個(gè)階段:自噬小體的形成、自噬小體膜的延伸、自噬小體和溶酶體膜的融合。即細(xì)胞質(zhì)中的線(xiàn)粒體等細(xì)胞器脫落部分雙分子膜,逐漸包裹部分細(xì)胞質(zhì)、細(xì)胞器、蛋白質(zhì)等成分形成吞噬囊泡組裝位點(diǎn)。自噬相關(guān)基因(autophagy-related"gene,Atg)蛋白介導(dǎo)吞噬體膜延伸形成自噬小體,繼而與溶酶體結(jié)合形成自噬溶酶體。自噬溶酶體降解所包含若干內(nèi)容物生成氨基酸及腺苷三磷酸(adenosine triphosphate,ATP)等物質(zhì)供細(xì)胞重新利用。正常情況下,心肌細(xì)胞處于基礎(chǔ)自噬水平。但當(dāng)外部因素作用于細(xì)胞時(shí),自噬水平產(chǎn)生波動(dòng),如腺苷一磷酸(adenosine monophosphate,AMP)/ATP升高、氨基酸缺乏等因素均可提高細(xì)胞自噬水平。自噬參與心肌細(xì)胞能量代謝、心臟發(fā)育、心肌蛋白質(zhì)和細(xì)胞器分解代謝等生理過(guò)程[28]。Fernández等[29]以小鼠為模型的實(shí)驗(yàn)研究表明,Beclin1(F121A)突變破壞了Beclin1-Bcl2結(jié)合,增加了基礎(chǔ)自噬并進(jìn)一步抑制心臟纖維化。這表明,不足自噬可能是心肌細(xì)胞損傷及心功能下降原因之一。CME作為一種刺激因素,能夠降低心肌細(xì)胞的自噬水平。在大鼠CME模型中[30],通過(guò)電鏡觀察及免疫熒光技術(shù)發(fā)現(xiàn)CME后6~12"h,自噬空泡數(shù)量明顯下降,抗LC3-Ⅱ條帶明顯減弱,同時(shí)伴有心肌損傷標(biāo)志物升高及射血分?jǐn)?shù)下降,這證實(shí),CME后自噬通量及心功能下降,且前后存在因果關(guān)系。CME后自噬水平降低引起心臟抵抗缺血損傷能力以及心臟重構(gòu)能力下降,對(duì)CME后不良預(yù)后具有重大意義。
自噬的活性高度依賴(lài)細(xì)胞能量及營(yíng)養(yǎng)狀態(tài),受到Atg蛋白的緊密調(diào)節(jié),維持細(xì)胞內(nèi)環(huán)境穩(wěn)定。miRNA在多個(gè)器官組織中對(duì)調(diào)控細(xì)胞自噬具有關(guān)鍵作用(如圖2)。在自噬誘導(dǎo)階段,哺乳動(dòng)物細(xì)胞內(nèi)Atg蛋白構(gòu)成的ULK1復(fù)合物及PI3K復(fù)合物在自噬過(guò)程中發(fā)揮關(guān)鍵作用,分別調(diào)控自噬起始及成核過(guò)程[25]。腺苷酸活化蛋白激酶(adenosine 5‘-monophosphate activated protein kinase,AMPK)和哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)作為調(diào)控自噬誘導(dǎo)階段的重要激酶,可分別通過(guò)感知細(xì)胞內(nèi)AMP/ATP比值、氨基酸水平調(diào)節(jié)自噬通量。多種上游信號(hào)通路通過(guò)影響自噬的“門(mén)控開(kāi)關(guān)”mTOR活性調(diào)節(jié)自噬水平。其中,PI3K/AKT通路是自噬調(diào)節(jié)中的主要信號(hào)途徑。miRNA通過(guò)調(diào)節(jié)自噬不同階段蛋白的表達(dá)實(shí)現(xiàn)對(duì)自噬的調(diào)控:如miR-30a可直接靶向結(jié)合自噬起始及成核階段Atg蛋白Beclin1、PI3K;PTEN可被miR-19a、miR-19b、miR-26a、miR-486-5p等靶向降解,導(dǎo)致PI3K/AKT通路組成性激活誘導(dǎo)自噬[24,31-33]。PDK-1的表達(dá)可以被miR-378靶向調(diào)節(jié),從而抑制AKT激活,促進(jìn)自噬[34],同時(shí)miR-378通過(guò)靶向半胱天冬酶增加凋亡閾值促進(jìn)細(xì)胞存活[34-35]。AKT通過(guò)調(diào)節(jié)mTOR和FOXO轉(zhuǎn)錄因子對(duì)自噬產(chǎn)生重大影響。miR-378調(diào)節(jié)PI3K/AKT通路,進(jìn)一步影響mTOR/ULK1通路促進(jìn)自噬的啟動(dòng),同時(shí)通過(guò)FOXO介導(dǎo)的轉(zhuǎn)錄增強(qiáng)并維持自噬[34]。FOXO受到miR-486-5p、miR-149的靶向調(diào)節(jié)[36-37],在自噬調(diào)控中具有多方面的作用。Atg9是一種跨膜自噬蛋白,在吞噬囊泡組裝位點(diǎn)及細(xì)胞器膜之間雙向運(yùn)動(dòng)轉(zhuǎn)運(yùn)膜脂質(zhì)促進(jìn)自噬體膜延伸,Yang等[38]研究發(fā)現(xiàn)Atg9直接被miR-34a抑制影響自噬膜延伸。Atg12-Atg5-Atg16L作為E3樣酶促進(jìn)Atg8(LC3-Ⅰ)與磷脂酰乙醇胺(phosphatidyl ethanolamine,PE)結(jié)合生成LC3-PE(LC3-Ⅱ),促進(jìn)吞噬囊泡閉合成熟。miR-181a可直接下調(diào)Atg5的表達(dá)[39],抑制自噬體成熟。目前,已有動(dòng)物實(shí)驗(yàn)研究[30]證明了自噬在CME后對(duì)心功能的影響,并且在以大鼠CME模型的實(shí)驗(yàn)中闡明了miR-30e通過(guò)靶向結(jié)合LC3B、Becline蛋白在CME后誘導(dǎo)心功能改變。據(jù)此可見(jiàn),miRNA通過(guò)對(duì)Atg的靶向調(diào)控參與CME后心肌損傷。
3 "小結(jié)
綜上所述,在CME后炎癥及凋亡水平增加,自噬水平及心功能下降。miRNA能調(diào)控炎癥、凋亡、Atg蛋白及其上游信號(hào)通路,進(jìn)而影響心肌細(xì)胞存活數(shù)量及存活心肌細(xì)胞的收縮功能,參與CME后不良預(yù)后的發(fā)生發(fā)展。miRNA受到ceRNA調(diào)節(jié),形成調(diào)控網(wǎng)絡(luò)。而一個(gè)miRNA可同時(shí)靶向多個(gè)mRNA。對(duì)miRNA在CME發(fā)展過(guò)程中的調(diào)控機(jī)制的研究有助于為治療CME尋找到新的藥物,探索能夠同時(shí)調(diào)節(jié)凋亡、炎癥、自噬水平的miRNA對(duì)減輕CME后心肌損傷的具有重要意義。
4 "未來(lái)研究及展望
心肌細(xì)胞在CME后,其缺血缺氧信號(hào)會(huì)翻譯為生化信號(hào)。有關(guān)CME后不良預(yù)后發(fā)生的分子機(jī)制還有待進(jìn)一步深入探討,為其更加完善理論基礎(chǔ)并提供診療思路。CME作為一種外源性刺激使心肌自噬水平的持續(xù)下降,在CME后的心肌損傷及不良心臟預(yù)后發(fā)揮重要作用,這一過(guò)程受到miRNA調(diào)節(jié)。mTOR作為細(xì)胞自噬門(mén)控分子備受關(guān)注,其受miR-144-3P調(diào)節(jié),miR-144-3P水平在ACS患者血清中明顯升高[40]。因此miR-144-3P是否在CME后發(fā)生變化及對(duì)診斷和治療CME的意義值得進(jìn)一步探究。
參"考"文"獻(xiàn)
[1] Heusch G. Coronary blood flow in heart failure:cause,consequence and bystander[J]. Basic Res Cardiol,2022,117(1):1.
[2] Heusch G,Skyschally A,Kleinbongard P.Coronary microembolization and microvascular dysfunction[J]. Int"J"Cardiol,2018,258:17-23.
[3] Vishnoi A,Rani S. MiRNA biogenesis and regulation of diseases:an updated overview[J]. Methods Mol Biol,2023,2595:1-12.
[4] Travis G,McGowan EM,Simpson AM,et al. PTEN,PTENP1,microRNAs,and ceRNA networks:precision targeting in cancer therapeutics[J]. Cancers (Basel),2023,15(20):4954.
[5] Li H,Gao F,Wang X,et al. Circulating microRNA-378 levels serve as a novel biomarker for assessing the severity of coronary stenosis in patients with coronary artery disease[J]. Biosci"Rep,2019,39(5):BSR20182016.
[6] Colpaert RMW,Calore M. MicroRNAs in cardiac diseases[J]. Cells,2019,8(7):737.
[7] Tanase DM,Gosav EM,Ouatu A,et al. Current knowledge of microRNAs (miRNAs) in acute coronary syndrome(ACS):ST-elevation myocardial infarction (STEMI)[J]. Life (Basel),2021,11(10):1057.
[8] Su Q,Li L,Zhao J,et al. MiRNA expression profile of the myocardial tissue of pigs with coronary microembolization[J]. Cell Physiol Biochem,2017,43(3):1012-1024.
[9] Xue Y,Zhou B,Wu J,et al. Transplantation of endothelial progenitor cells in the treatment of coronary artery microembolism in rats[J]. Cell Transplant,2020,29:963689720912688.
[10] Foinquinos A,Batkai S,Genschel C,et al. Preclinical development of a miR-132 inhibitor for heart failure treatment[J]. Nat Commun,2020,11(1):633.
[11] Cai R,Xu Y,Ren Y,et al. MicroRNA-136-5p protects cardiomyocytes from coronary microembolization through the inhibition of pyroptosis[J]. Apoptosis,2022,27(3-4):206-221.
[12] Chen ZQ,Zhou Y,Chen F,et al. MiR-200a-3p attenuates coronary microembolization-induced myocardial injury in rats by inhibiting TXNIP/NLRP3-mediated cardiomyocyte pyroptosis[J]. Front Cardiovasc Med,2021,8:693257.
[13] Xu Y,Lv X,Cai R,et al. Possible implication of miR-142-3p in coronary microembolization induced myocardial injury via ATXN1L/HDAC3/NOL3 axis[J]. J Mol Med (Berl),2022,100(5):763-780.
[14] Kong B,Qin Z,Ye Z,et al. MicroRNA-26a-5p affects myocardial injury induced by coronary microembolization by modulating HMGA1[J]. J"Cell"Biochem,2019,120(6):10756-10766.
[15] Gao J,Ren J,Ma X,et al. Ligustrazine prevents coronary microcirculation dysfunction in rats via suppression of miR-34a-5p and promotion of Sirt1[J]. Eur J Pharmacol,2022,929:175150.
[16] Zhou Y,Long MY,Chen ZQ,et al. Downregulation of miR-181a-5p alleviates oxidative stress and inflammation in coronary microembolization-induced myocardial damage by directly targeting XIAP[J]. J Geriatr Cardiol,2021,18(6):426-439.
[17] Zhou Y,Li T,Chen Z,et al. Overexpression of lncRNA TUG1 alleviates NLRP3 inflammasome-mediated cardiomyocyte pyroptosis through targeting the miR-186-5p/XIAP axis in coronary"microembolization-induced myocardial damage[J]. Front Immunol,2021,12:637598.
[18] Dai R,Ren Y,Lv X,et al. MicroRNA-30e-3p reduces coronary microembolism-induced cardiomyocyte pyroptosis and inflammation by sequestering HDAC2 from the SMAD7 promoter[J]. Am J Physiol Cell Physiol,2023,324(2):C222-C235.
[19] Su Q,Lv X,Ye Z,et al. The mechanism of miR-142-3p in coronary microembolization-induced myocardiac injury via regulating target gene IRAK-1[J]. Cell Death Dis,2019,10(2):61.
[20] Su Q,Li L,Liu Y,et al. Ultrasound-targeted microbubble destruction-mediated microRNA-21 transfection regulated PDCD4/NF-κB/TNF-α pathway to prevent coronary microembolization-induced cardiac dysfunction[J]. Gene Ther,2015,22(12):1000-1006.
[21] Su B,Wang X,Sun Y,et al. MiR-30e-3p promotes cardiomyocyte autophagy and inhibits apoptosis via regulating Egr-1 during ischemia/hypoxia[J]. Biomed Res"Int,2020,2020:7231243.
[22] Mo B,Wu X,Wang X,et al. MiR-30e-5p mitigates hypoxia-induced apoptosis in human stem cell-derived cardiomyocytes by suppressing Bim[J]. Int"J"Biol"Sci,2019,15(5):1042-1051.
[23] Qin Z,Wang X,Zhou Y,et al. Upregulation of miR-29b-3p alleviates coronary microembolization-induced myocardial injury via regulating BMF and GSK-3β[J]. Apoptosis,2023,28(1-2):210-221.
[24] Zhu HH,Wang XT,Sun YH,et al. MicroRNA-486-5p targeting PTEN protects against coronary microembolization-induced cardiomyocyte apoptosis in rats by activating the PI3K/AKT pathway[J]. Eur"J"Pharmacol,2019,855:244-251.
[25] Cao W,Li J,Yang K,et al. An overview of autophagy:Mechanism,regulation and research progress[J]. Bull"Cancer,2021,108(3):304-322.
[26] Allen EA,Baehrecke EH. Autophagy in animal development[J]. Cell Death"Differ,2020,27(3):903-918.
[27] Yamamoto H,Matsui T. Molecular mechanisms of macroautophagy,microautophagy,and chaperone-mediated autophagy[J]. J Nippon Med Sch,2024,91(1):2-9.
[28] Gatica D,Chiong M,Lavandero S,et al. The role of autophagy in cardiovascular pathology[J]. Cardiovasc Res,2022,118(4):934-950.
[29] Fernández áF,Sebti S,Wei Y,et al. Author correction:disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice[J]. Nature,2018,561(7723):E30.
[30] Wang XT,Wu XD,Lu YX,et al. Potential involvement of miR-30e-3p in myocardial injury induced by coronary microembolization via autophagy activation[J]. Cell"Physiol"Biochem,2017,44(5):1995-2004.
[31] Chen J,Huang ZP,Seok HY,et al. MiR-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts[J]. Circ"Res,2013,112(12):1557-1566.
[32] Liang T,Gao F,Chen J. Role of PTEN-less in cardiac injury,hypertrophy and regeneration[J]. Cell Regen,2021,10(1):25.
[33] Wang J,F(xiàn)eng Q,Liang D,et al. MiRNA-26a inhibits myocardial infarction-induced apoptosis by targeting PTEN via JAK/STAT pathways[J]. Cells"Dev,2021,165:203661.
[34] Li Y,Jiang J,Liu W,et al. MicroRNA-378 promotes autophagy and inhibits apoptosis in skeletal muscle[J]. Proc"Natl Acad"Sci"U"S"A,2018,115(46):E10849-E10858.
[35] Feng Z,Bao S,Kong L,et al. MicroRNA-378 inhibits hepatocyte apoptosis during acute liver failure by targeting caspase-9 in mice[J]. Gastroenterol Hepatol,2023,46(2):124-134.
[36] Lin J,Lin H,Ma C,et al. MiR-149 aggravates pyroptosis in myocardial ischemia-reperfusion damage via silencing FOXO3[J]. Med Sci Monit,2019,25:8733-8743.
[37] Yang Y,Ji C,Guo S,et al. The miR-486-5p plays a causative role in prostate cancer through negative regulation of multiple tumor suppressor pathways[J]. Oncotarget,2017,8(42):72835-72846.
[38] Yang"J,Chen D,He Y,et al. MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene Atg9[J]. Age (Dordr),2013,35(1):11-22.
[39] Yang J,He Y,Zhai N,et al. MicroRNA-181a inhibits autophagy by targeting Atg5 in hepatocellular carcinoma[J]. Front Biosci (Landmark Ed),2018,23(2):388-396.
[40] Wang SS,Wu LJ,Li JJ,et al. A meta-analysis of dysregulated miRNAs in coronary heart disease[J]. Life Sci,2018,215:170-181.
收稿日期:2023-08-21