【摘 要】細(xì)胞衰老是一種應(yīng)激誘導(dǎo)的終末細(xì)胞周期停滯程序。衰老在許多生理和病理條件下的影響已經(jīng)很明顯。研究表明,細(xì)胞衰老在健康妊娠的發(fā)展和進(jìn)展中起著決定性的作用。母胎組織(蛻膜和胎盤)的過早衰老與許多不良妊娠結(jié)局有關(guān),包括復(fù)發(fā)性流產(chǎn)、復(fù)發(fā)性植入失敗、胎兒生長受限和子癇前期。本文結(jié)合最新相關(guān)文獻(xiàn),綜述細(xì)胞衰老及其與正常妊娠進(jìn)展和不良妊娠結(jié)局的關(guān)系。
【關(guān)鍵詞】細(xì)胞衰老;子宮內(nèi)膜基質(zhì)細(xì)胞;滋養(yǎng)細(xì)胞;胎盤;妊娠
【中圖分類號】R714 【文獻(xiàn)標(biāo)志碼】A 【收稿日期】2024-04-25
蛻膜化成功和胎盤正常發(fā)育是妊娠順利進(jìn)展的先決條件,蛻膜化不良和胎盤功能障礙將導(dǎo)致多種不良妊娠結(jié)局。細(xì)胞衰老(cellular senescence,CS)可以定義為一種細(xì)胞防御機(jī)制,因響應(yīng)多種外部或內(nèi)部應(yīng)激源而觸發(fā),導(dǎo)致不可逆的細(xì)胞周期停滯,其參與生命的復(fù)雜動態(tài)過程[1]。在正常情況下,蛻膜化過程和胎盤發(fā)育均存在生理性的細(xì)胞衰老[2-3],而在多種刺激因素作用下誘發(fā)的病理性蛻膜基質(zhì)細(xì)胞和胎盤滋養(yǎng)細(xì)胞衰老可導(dǎo)致不良妊娠結(jié)局。本文結(jié)合最新相關(guān)文獻(xiàn),綜述CS及其與正常妊娠進(jìn)展和不良妊娠結(jié)局的關(guān)系。
1 細(xì)胞衰老概述
1961年Hayflick和Moorhead的開創(chuàng)性觀察首先描述了正常細(xì)胞在培養(yǎng)物中表現(xiàn)出有限的增殖,自此“CS”的概念被提出,即細(xì)胞在受到生長因子的刺激后不再能夠分裂的狀態(tài)[4]。到目前為止,在疾病、衰老和一些特定的生理反應(yīng)(胚胎發(fā)育和傷口愈合)中觀察到衰老細(xì)胞的積累[5],而這種現(xiàn)象在健康和年輕的組織中則比較少見,這些證據(jù)使得我們對衰老細(xì)胞存在的理解更加深刻。CS是一把“雙刃劍”,何時、持續(xù)多長時間、在哪種細(xì)胞中以及衰老表型等因素是確定CS在生物體中發(fā)揮有益還是有害作用的基本變量[6]。
2 細(xì)胞衰老的觸發(fā)機(jī)制
CS 是一個復(fù)雜且多因素的生物過程,可由多種刺激的累積變化引起,例如端??s短[7]、DNA損傷[8]、線粒體功能障礙[9]、氧化應(yīng)激[10]和癌基因激活[11]等;此外外源性來源(包括電離輻射和環(huán)境毒素)也可以作為壓力源導(dǎo)致細(xì)胞衰老[12]。以上大多數(shù)的誘發(fā)因素作用于細(xì)胞時,可以引起端?;蚍嵌肆?dǎo)致的DNA 損傷,或染色質(zhì)的結(jié)構(gòu)發(fā)生改變,最終激活DNA 損傷反應(yīng),使得共濟(jì)失調(diào)-毛細(xì)血管擴(kuò)張突變基因(ataxia telangiectasia mutated,ATM)和共濟(jì)失調(diào)-毛細(xì)血管擴(kuò)張與Rad3 相關(guān)蛋白(ataxia telangiectasia and Rad3-relatedprotein,ATR)被磷酸化,磷酸化后的ATM 和ATR 又能進(jìn)一步激活檢查點激酶1(checkpoint kinase 1,CHK1)和檢查點激酶2(checkpoint kinase 2,CHK2),使其轉(zhuǎn)位至細(xì)胞核,誘導(dǎo)p53活化。激活的p53誘導(dǎo)細(xì)胞周期蛋白依賴性激酶抑制因子p21CIP1 的轉(zhuǎn)錄,p21CIP1 反過來抑制周期蛋白依賴性激酶2(cyclin-dependent kinase 2,CDK2)的活性,導(dǎo)致視網(wǎng)膜母細(xì)胞瘤蛋白(retinoblastoma,Rb)家族蛋白的持續(xù)激活,E2F轉(zhuǎn)錄因子轉(zhuǎn)錄活化的抑制以及隨之而來的細(xì)胞周期停滯[13]。已知的另外一種衰老激活機(jī)制是INK4-ARF基因組去抑制,在正常細(xì)胞中,多梳蛋白和表觀遺傳修飾的因子抑制INK4-ARF位點,但是當(dāng)其被誘發(fā)因素異常激活后,會增加ARF和p16的表達(dá),一方面,通過ARF促進(jìn)p53信號通路,啟動細(xì)胞周期停滯程序,導(dǎo)致細(xì)胞衰老的發(fā)生;另一方面,通過p16遏抑周期蛋白依賴性激酶4(cyclin-dependent kinase 4,CDK4)和周期蛋白依賴性激酶6(cyclin-dependent kinase 6,CDK6)表達(dá),使得Rb過度磷酸化抑制,造成復(fù)制周期停滯[14]。因此,DNA損傷和INK4-ARF基因去抑制這2條衰老細(xì)胞周期停滯途徑相互作用并相互調(diào)節(jié),導(dǎo)致CS發(fā)生。衰老細(xì)胞周期停滯途徑見圖1。
3 細(xì)胞衰老的特征
CS的表型表現(xiàn)是高度多樣化的,不同觸發(fā)機(jī)制和細(xì)胞類型導(dǎo)致的衰老細(xì)胞分子改變存在差異。目前,衰老細(xì)胞的鑒定依賴于多種標(biāo)志物的組合,當(dāng)這些標(biāo)志物同時存在時,可以區(qū)分不同組織樣本中的衰老細(xì)胞。CS的一些最常見的特征如下。
3.1 細(xì)胞周期停滯
本質(zhì)上不可逆的細(xì)胞周期停滯是CS的一個共同特征,p53/p21和p16/Rb復(fù)合物介導(dǎo)的途徑對于建立衰老細(xì)胞周期停滯非常重要。因此,細(xì)胞周期抑制分子和腫瘤抑制因子,包括p16、p53、p21和低磷酸化的Rb被視為經(jīng)典的CS標(biāo)志分子[15]。
3.2 衰老相關(guān)分泌表型(senescence-associated secretoryphenotype,SASP)
CS 分泌過多的細(xì)胞因子,包括促炎細(xì)胞因子、趨化因子、生長調(diào)節(jié)劑、血管生成因子和基質(zhì)金屬蛋白酶,統(tǒng)稱為SASP[16];SASP以自分泌和旁分泌的方式加強(qiáng)和傳播衰老,并激活消除衰老的免疫反應(yīng)。不同應(yīng)激刺激誘導(dǎo)的衰老細(xì)胞可能表現(xiàn)出獨特SASP成分。
3.3 代謝變化
第1 個也是最廣泛使用的衰老細(xì)胞的生物標(biāo)志物是“ 衰老相關(guān)β - 半乳糖苷酶(senescence-associated betagalactosidase,SA-β-gal)”[17]。在大多數(shù)衰老細(xì)胞中,該標(biāo)志物可通過組織化學(xué)染色檢測到。雖然SA-β-gal不是衰老的特異性獨特標(biāo)記,但是將其與SASP 和細(xì)胞周期控制標(biāo)記相結(jié)合的多標(biāo)記方法,將為衰老細(xì)胞的鑒定提供更可靠的信息[18]。
3.4 細(xì)胞超微結(jié)構(gòu)改變與功能缺陷
衰老細(xì)胞的另一個特征是異常的細(xì)胞內(nèi)信號傳導(dǎo),伴隨細(xì)胞內(nèi)形態(tài)、功能和細(xì)胞器質(zhì)量的變化[19],這些改變可能是由細(xì)胞器產(chǎn)量增加與細(xì)胞器功能失調(diào)之間的沖突直接或間接引起的。當(dāng)細(xì)胞器功能障礙存在時,蛋白質(zhì)和聚集體的消除效率較低[20],盡管衰老細(xì)胞可以不斷產(chǎn)生細(xì)胞器來補(bǔ)償細(xì)胞器功能缺陷。但是隨著衰老的進(jìn)行,新產(chǎn)生的細(xì)胞器可能會通過升高的降解應(yīng)激和氧化損傷來加劇損傷[21-22]。衰老細(xì)胞的形態(tài)改變表現(xiàn)為異常擴(kuò)大和扁平的細(xì)胞形態(tài),細(xì)胞質(zhì)與細(xì)胞核的比例不成比例地增加[23]。溶酶體是主要的分解代謝細(xì)胞器,在衰老細(xì)胞中溶酶體生物發(fā)生上調(diào)而導(dǎo)致溶酶體質(zhì)量增加[24]。與溶酶體改變相比,線粒體的變化(質(zhì)量和大小增加,功能降低)是最明顯的衰老相關(guān)特征之一[22]。功能失調(diào)的線粒體產(chǎn)生大量的活性氧(reactive oxygen species,ROS),導(dǎo)致DNA、脂質(zhì)和蛋白質(zhì)受損,進(jìn)而導(dǎo)致線粒體動力學(xué)失衡,并導(dǎo)致線粒體體積急劇增加[25]。這與線粒體對損傷的脆弱性相結(jié)合,顯著地在細(xì)胞中傳播氧化應(yīng)激,誘導(dǎo)衰老表型[26]。此外,來自線粒體損傷的信號會影響細(xì)胞核的逆行信號通路,進(jìn)而影響核轉(zhuǎn)錄重編程,并影響細(xì)胞增殖和衰老[27]。高爾基復(fù)合體是一種膜結(jié)合的細(xì)胞器,據(jù)報道,它在衰老細(xì)胞中表現(xiàn)出大而擴(kuò)展的形態(tài)和雜亂無章的結(jié)構(gòu),功能改變[28]。內(nèi)質(zhì)網(wǎng)是另一個膜細(xì)胞器網(wǎng)絡(luò)[29],未折疊蛋白反應(yīng)(unfolded protein response,UPR)響應(yīng)內(nèi)質(zhì)網(wǎng)應(yīng)激而被激活,內(nèi)質(zhì)網(wǎng)應(yīng)激失調(diào)和UPR激活都發(fā)生在細(xì)胞衰老過程中[30]。除了上述公認(rèn)的衰老結(jié)合細(xì)胞器外,過氧化物酶體和細(xì)胞骨架的功能障礙也與衰老密切相關(guān)。過氧化物酶體衍生的ROS與線粒體相互作用以協(xié)調(diào)穩(wěn)態(tài)細(xì)胞ROS水平,其缺乏會引起氧化應(yīng)激并導(dǎo)致細(xì)胞衰老的早期階段[31]。此外,衰老細(xì)胞表現(xiàn)出細(xì)胞骨架及其影響的細(xì)胞功能的變化,如形狀、細(xì)胞分裂、運動和細(xì)胞內(nèi)運輸[32]。
4 細(xì)胞衰老與妊娠
4.1 基質(zhì)細(xì)胞衰老與妊娠
4.1.1 基質(zhì)細(xì)胞衰老與正常妊娠 子宮內(nèi)膜在囊胚植入過程中轉(zhuǎn)化為妊娠狀態(tài)的蛻膜,這是一個由子宮內(nèi)膜基質(zhì)細(xì)胞(endometrial stromal cells,ESCs)分化為蛻膜基質(zhì)細(xì)胞(de?cidual stromal cells,DSCs)的過程,此過程也稱為“蛻膜化”,是包括小鼠和人類在內(nèi)的一些哺乳動物妊娠期間的關(guān)鍵事件[33-34]。滋養(yǎng)細(xì)胞的侵襲程度也受到子宮內(nèi)膜蛻膜化的調(diào)節(jié),因此蛻膜化的順利進(jìn)行對胚胎著床、胎盤的形成及妊娠的維持至關(guān)重要[35]。有研究發(fā)現(xiàn)正常的蛻膜化過程存在一定水平的CS[2,36]。Brighton PJ等[37]在細(xì)胞實驗中發(fā)現(xiàn),體外誘導(dǎo)ESC蛻膜化后,SAβG陽性的衰老的DSC衰老的蛻膜基質(zhì)細(xì)胞(senescent decidual stromal cells,snDSC)數(shù)量明顯增加,與增殖期人子宮內(nèi)膜組織相比,分泌期中SAβG陽性的snDSC 比例增加,p16 和p53 水平上調(diào),共聚焦顯微鏡顯示p16的誘導(dǎo)僅限于snDSC。Lucas ES等[38]在體外誘導(dǎo)蛻膜化的不同時間節(jié)點進(jìn)行單細(xì)胞轉(zhuǎn)錄組測序,發(fā)現(xiàn)snDSC在第4天出現(xiàn),表現(xiàn)為氧化應(yīng)激和CS因子的表達(dá),且snDSC比例隨著蛻膜化的進(jìn)程逐漸增加,在第6天時觀察到正常DSC比例是78%,snDSC的比例是13%,而在第8天二者的比例持平,提示蛻膜化過程中伴隨CS的發(fā)生。
4.1.2 基質(zhì)細(xì)胞衰老與病理妊娠 基質(zhì)細(xì)胞衰老與復(fù)發(fā)性流產(chǎn)(recurrent spontaneous abortion,RSA):美國生殖學(xué)會將其定義為懷孕20周前連續(xù)2次或2次以上的妊娠丟失(排除生化妊娠)[39]。有研究證實RSA蛻膜化過程中snDSC過多,或蛻膜自然殺傷細(xì)胞對snDSC清除效率減低,導(dǎo)致不良妊娠結(jié)局[38]。該研究團(tuán)隊還收集了RSA患者分泌中期內(nèi)膜組織進(jìn)行單細(xì)胞轉(zhuǎn)錄組測序,結(jié)果發(fā)現(xiàn)snDSC標(biāo)志因子Ⅱ型脫碘酶(type 2 deiodinase,DIO2)表達(dá)更高,而DSC的標(biāo)志因子清道夫受體A類成員5的表達(dá)更低,側(cè)面證實了RSA蛻膜化過程中存在過度CS現(xiàn)象。1項納入311例患者的臨床研究發(fā)現(xiàn),運用免疫組織化學(xué)染色對送檢的子宮內(nèi)膜進(jìn)行p16檢測,發(fā)現(xiàn)ESC 中p16陽性細(xì)胞表達(dá)量與流產(chǎn)有很強(qiáng)的相關(guān)性[40]。Zeng SS等[41]的研究發(fā)現(xiàn)與對照組相比,RSA蛻膜中的DSCs表現(xiàn)出更高的衰老評分,同時伴隨著p53/p16和SASP因子增加,表明RSA病例的蛻膜中出現(xiàn)過度的蛻膜衰老。
基質(zhì)細(xì)胞衰老與復(fù)發(fā)性植入失?。╮ecurrent implantationfailure,RIF):RIF定義為在多次連續(xù)體外受精(連續(xù)3次或3次以上在新鮮或冷凍周期內(nèi)移植3枚優(yōu)質(zhì)胚胎)嘗試后仍無法實現(xiàn)受孕[42],是當(dāng)前生殖醫(yī)學(xué)面臨的復(fù)雜且多方面的挑戰(zhàn)。研究表明RIF患者蛻膜化呈現(xiàn)受損狀態(tài),且與蛻膜基質(zhì)細(xì)胞衰老異常相關(guān)[43]。1項體外研究發(fā)現(xiàn),誘導(dǎo)RIF患者原代ESC蛻膜化后,蛻膜化標(biāo)志物催乳素、人胰島素樣生長因子結(jié)合蛋白1和叉頭框蛋白O1的表達(dá)較對照組降低,snDSC的代表基因DIO2和SASP的經(jīng)典因子白細(xì)胞介素-6(inter?leukin-6,IL-6)的表達(dá)水平也表現(xiàn)出同樣的趨勢[44]。近期的研究報道RIF患者存在ESC過度衰老的情況[45],ESC早熟衰老使得snDSC數(shù)量增加,而導(dǎo)致蛻膜化不良和容受性相關(guān)因子表達(dá)失調(diào),導(dǎo)致植入失敗。除此之外,國外有學(xué)者整合多個研究RIF的數(shù)據(jù)結(jié)果,并在隨后的分析中發(fā)現(xiàn)25個CS數(shù)據(jù)庫基因明顯改變,進(jìn)一步通過機(jī)器學(xué)習(xí)篩選RIF的CS相關(guān)特征基因,分析出8個對RIF有預(yù)測價值的基因[46]。
4.2 滋養(yǎng)細(xì)胞衰老與妊娠
4.2.1 滋養(yǎng)細(xì)胞衰老與正常妊娠 胎盤形成及其功能正常對于妊娠建立與維持是必不可少的,滋養(yǎng)細(xì)胞是胎盤的主要組成細(xì)胞,其正常入侵對胚胎著床和胎盤發(fā)育至關(guān)重要[47],對成功維持妊娠無疑也具有重要意義。胎盤絨毛由細(xì)胞滋養(yǎng)細(xì)胞、合體滋養(yǎng)細(xì)胞和絨毛外滋養(yǎng)細(xì)胞組成。隨著妊娠周數(shù)的增加,合體滋養(yǎng)細(xì)胞會吸收細(xì)胞滋養(yǎng)細(xì)胞;這種現(xiàn)象被稱為合胞融合,有證據(jù)表明,在這一過程中存在CS[3]。研究發(fā)現(xiàn)隨著胎齡的增加,在健康的胎盤中發(fā)現(xiàn)衰老標(biāo)志物水平升高。在足月胎盤中,滋養(yǎng)層衰老發(fā)生在合體滋養(yǎng)層形成期間,伴隨胎盤老化。足月胎盤中發(fā)現(xiàn)衰老相關(guān)細(xì)胞周期蛋白激酶p21和p16的含量明顯增加,以及環(huán)鳥苷酸-腺苷酸(cyclic guanosine monophosphate-adenosine monophosphate,cGAMP)。cGAMP的存在表明細(xì)胞質(zhì)DNA在衰老過程中釋放,并可觸發(fā)SASP[48]。此外,在健康的胎盤合胞滋養(yǎng)細(xì)胞中檢測到衰老標(biāo)志物p53和SA-β-gal[49]。若滋養(yǎng)細(xì)胞功能障礙,造成胎盤發(fā)育不良可能導(dǎo)致許多并發(fā)癥,包括子癇前期(preeclampsi,PE)、胎兒生長受限(fetal growth restriction,F(xiàn)GR)。
4.2.2 滋養(yǎng)細(xì)胞衰老與病理妊娠 滋養(yǎng)細(xì)胞衰老與FGR:FGR 定義為胎兒體質(zhì)量或腹圍低于胎齡第10百分位的胎兒[50-51],也稱為宮內(nèi)生長受限(intrauterine growth restriction,IUGR),與胎盤生長、結(jié)構(gòu)和功能異常相關(guān),是胎兒發(fā)病和死亡的主要原因。研究使用免疫組化檢測相同胎齡的妊娠晚期無并發(fā)癥(正常)和FGR 患者的胎盤的切片的衰老標(biāo)志物,結(jié)果顯示與正常胎盤相比,F(xiàn)GR中細(xì)胞周期依賴性蛋白激酶(cell cycle-dependent protein kinases,CDKs)抑制劑p15、p16和p21陽性的合體滋養(yǎng)細(xì)胞核的百分比明顯降低;與上述標(biāo)志物表達(dá)的降低一致,F(xiàn)GR胎盤合體滋養(yǎng)層中p53的核染色也明顯降低[52]。這些發(fā)現(xiàn)表明,衰老的中心途徑p16-pRb和p53-p21在FGR胎盤的合體滋養(yǎng)層細(xì)胞中失調(diào)。早在2010年,Biron-Shental T等[53]報道了FGR胎盤滋養(yǎng)細(xì)胞衰老的證據(jù),他們證明與單純?nèi)焉锵啾?,F(xiàn)GR妊娠中滋養(yǎng)層中的端粒明顯縮短,滋養(yǎng)細(xì)胞中端粒酶RNA成分基因拷貝數(shù)減少,端粒聚集頻率增加,表明FGR妊娠中的胎盤過早老化。Manna S等[54]通過檢測多種衰老生物標(biāo)志物來評估FGR細(xì)胞衰老導(dǎo)致胎盤衰老的證據(jù),結(jié)果顯示,與對照組相比,F(xiàn)GR胎盤中衰老相關(guān)基因ATM、細(xì)胞周期中G2期的標(biāo)志物細(xì)胞周期蛋白B1和增殖細(xì)胞核抗原明顯降低,母體循環(huán)干擾素γ水平明顯增加,這些結(jié)果證實了FGR胎盤過早衰老。以上觀察結(jié)果表明,CS對與FGR相關(guān)的胎盤病理學(xué)有直接影響。
滋養(yǎng)細(xì)胞衰老與PE:PE常發(fā)生在妊娠20周以上的孕婦中,其臨床癥狀包括高血壓和蛋白尿,并可伴有上腹不適、頭痛、視物模糊等[55-56]。Wang YJ等[57]的研究發(fā)現(xiàn)與對照組相比,PE患者胎盤中沉默信息調(diào)節(jié)因子1(the silent informationregulator sirtuin 1,SIRT1)明顯下調(diào),衰老和細(xì)胞外基質(zhì)(extracellular matrix,ECM)相關(guān)蛋白水平上調(diào),免疫組化顯示這些變化僅限于合體滋養(yǎng)層,SIRT1的下調(diào)通過調(diào)節(jié)細(xì)胞周期、ECM產(chǎn)生和細(xì)胞骨架重組的靶標(biāo)加速合體滋養(yǎng)層的衰老,從而導(dǎo)致PE。Lekva T[58]認(rèn)為子癇前期滋養(yǎng)細(xì)胞端粒縮短與CS增加和端粒平衡機(jī)制改變有關(guān),該研究還發(fā)現(xiàn),與晚期子癇和健康對照組相比,早期PE(妊娠lt;34周)的母親和胎兒的發(fā)病率通常更嚴(yán)重,且早期子癇的胎盤樣本中SA-β-Gal和p16的表達(dá)高于晚期子癇和對照組??梢?,端粒穩(wěn)態(tài)受損和衰老標(biāo)志物增加在PE胎盤中是存在的,且在早期PE中更為明顯。1項體外研究將人滋養(yǎng)層(HTR-8/SV?neo)置于缺氧狀態(tài)以建立體外PE模型,結(jié)果發(fā)現(xiàn)PE模型中抗衰老基因Klotho的水平下降,而衰老標(biāo)記基因p16和p21表達(dá)上調(diào),表明疾病狀態(tài)下這些基因表達(dá)失調(diào)觸發(fā)了人滋養(yǎng)層的細(xì)胞衰老[59]。
5 抗衰老治療的研究進(jìn)展
最近消除衰老細(xì)胞的新療法(Senotherapies)的開發(fā)引起了人們的關(guān)注。Senotherapies采用藥物通過消除衰老細(xì)胞、抑制SASP或在衰老發(fā)生之前抑制衰老來減輕衰老細(xì)胞的有害作用[60]。Kusama K等[61]用不同的抗衰老藥物干預(yù)蛻膜化的ESC,結(jié)果發(fā)現(xiàn)用槲皮素和/或達(dá)沙替尼處理可去除衰老的蛻膜細(xì)胞,并增強(qiáng)其余ESC的蛻膜化。在一項細(xì)胞實驗研究中,Deryabin PI和Borodkina AV[45]使用雷帕霉素和二甲雙胍(SASP抑制劑)處理不同衰老水平的ESC并觀察蛻膜化情況,發(fā)現(xiàn)二甲雙胍在共培養(yǎng)模型(snDSC與DSC)中可以遏抑繼發(fā)性衰老的發(fā)生,而雷帕霉素則沒有這種作用。需要強(qiáng)調(diào)的是,二甲雙胍只在衰老水平較高的ESC中改善蛻膜化狀態(tài),而在正常ESC則不行。研究發(fā)現(xiàn)二甲雙胍抑制PE大鼠胎盤組織中炎癥通路活化和炎癥因子IL-6等的生成,減少氧化應(yīng)激,發(fā)揮潛在的抗衰老作用[62]。
6 結(jié)語
隨著人類對體外和體內(nèi)衰老細(xì)胞特征的了解不斷加深,蛻膜化及胎盤形成過程中基質(zhì)細(xì)胞及滋養(yǎng)細(xì)胞的衰老被廣泛關(guān)注。以上研究表明細(xì)胞衰老是正常妊娠進(jìn)展中蛻膜化和胎盤發(fā)育所必需的,端??s短、缺氧等刺激因素可介導(dǎo)子宮內(nèi)膜基質(zhì)細(xì)胞和滋養(yǎng)細(xì)胞異常衰老誘發(fā)蛻膜化不良和胎盤功能障礙,最終造成多種不良妊娠結(jié)局。闡明CS在妊娠蛻膜化及胎盤形成中的作用機(jī)制有助于開發(fā)新的靶向消除衰老細(xì)胞,且侵入性較小的治療方法,以預(yù)防和逆轉(zhuǎn)不良妊娠結(jié)局并增加后代的福祉。
參考文獻(xiàn)
[1] Knopf P,Pacheco-Torres J,Zizmare L,et al. Metabolic fingerprint?
ing by nuclear magnetic resonance of hepatocellular carcinoma cells
during p53 reactivation-induced senescence[J]. NMR Biomed,2024,37
(9):e5157.
[2] Deryabin P,Griukova A,Nikolsky N,et al. The link between endo?
metrial stromal cell senescence and decidualization in female fertility:
the art of balance[J]. Cell Mol Life Sci,2020,77(7):1357-1370.
[3] Farfán-Labonne B,Leff-Gelman P,Pellón-Díaz G,et al. Cellular
senescence in normal and adverse pregnancy[J]. Reprod Biol,2023,23
(1):100734.
[4] Reimann M,Lee S,Schmitt CA. Cellular senescence:neither irre?
versible nor reversible[J]. J Exp Med,2024,221(4):e20232136.
[5] Princilly J,Veerabhadrappa B,Rao NN,et al. Cellular senescence
in aging:molecular basis,implications and therapeutic interventions[J].
Adv Protein Chem Struct Biol,2023,136:1-33.
[6] Karin O,Agrawal A,Porat Z,et al. Senescent cell turnover slows
with age providing an explanation for the Gompertz law[J]. Nat Commun,
2019,10(1):5495.
[7] Azarm K,Bhardwaj A,Kim E,et al. Persistent telomere cohesion
protects aged cells from premature senescence[J]. Nat Commun,2020,
11(1):3321.
[8] Mizi A,Zhang S,Papantonis A. Genome folding and refolding in
differentiation and cellular senescence[J]. Curr Opin Cell Biol,2020,
67:56-63.
[9] Bellei B,Picardo M. Premature cell senescence in human skin:
dual face in chronic acquired pigmentary disorders[J]. Ageing Res Rev,
2020,57:100981.
[10] Bitencourt TC,Vargas JE,Silva AO,et al. Subcellular structure,
heterogeneity,and plasticity of senescent cells[J]. Aging Cell,2024,23
(4):e14154.
[11] Kluge V,Kappelmann-Fenzl M,F(xiàn)ischer S,et al. Alternative
Wnt-signaling axis leads to a break of oncogene-induced senescence[J].
Cell Death Dis,2024,15(2):166.
[12] Pathare ADS,Loid M,Saare M,et al. Endometrial receptivity in
women of advanced age:an underrated factor in infertility[J]. Hum
Reprod Update,2023,29(6):773-793.
[13] Ibragimova M,Kussainova A,Aripova A,et al. The molecular
mechanisms in senescent cells induced by natural aging and ionizing
radiation[J]. Cells,2024,13(6):550.
[14] Saez-Atienzar S,Masliah E. Cellular senescence and Alzheimer
disease:the egg and the chicken scenario[J]. Nat Rev Neurosci,2020,21
(8):433-444.
[15] SenNet Consortium. NIH SenNet Consortium to map senescent
cells throughout the human lifespan to understand physiological health
[J]. Nat Aging,2022,2(12):1090-1100.
[16] Hou JX,Zheng Y,Gao CJ. Regulation of cellular senescence by
innate immunity[J]. Biophys Rep,2023,9(6):338-351.
[17] Mohamad Kamal NS,Safuan S,Shamsuddin S,et al. Aging of the
cells:insight into cellular senescence and detection Methods[J]. Eur J
Cell Biol,2020,99(6):151108.
[18] García-Fleitas J,García-Fernández A,Martí-Centelles V,et al.
Chemical strategies for the detection and elimination of senescent cells
[J]. Acc Chem Res,2024,57(9):1238-1253.
[19] Neurohr GE,Terry RL,Lengefeld J,et al. Excessive cell growth
causes cytoplasm dilution and contributes to senescence[J]. Cell,2019,
176(5):1083-1097.
[20] Wen JH,He XH,F(xiàn)eng ZS,et al. Cellular protein aggregates:
formation,biological effects,and ways of elimination[J]. Int J Mol Sci,
2023,24(10):8593.
[21] Machado-Oliveira G,Ramos C,Marques ARA,et al. Cell senes?
cence,multiple organelle dysfunction and atherosclerosis[J]. Cells,
2020,9(10):2146.
[22] Martini H,Passos JF. Cellular senescence:all roads lead to mito?
chondria[J]. FEBS J,2023,290(5):1186-1202.
[23] Di Micco R,Krizhanovsky V,Baker D,et al. Cellular senescence
in ageing:from mechanisms to therapeutic opportunities[J]. Nat Rev Mol
Cell Biol,2021,22(2):75-95.
[24] Zhu HY,Li QQ,Liao TP,et al. Metabolomic profiling of single
enlarged lysosomes[J]. Nat Methods,2021,18(7):788-798.
[25] Anzell AR,Maizy R,Przyklenk K,et al. Mitochondrial quality
control and disease:insights into ischemia-reperfusion injury[J]. Mol
Neurobiol,2018,55(3):2547-2564.
[26] Ye GW,Xie ZY,Zeng HQ,et al. Oxidative stress-mediated mito?
chondrial dysfunction facilitates mesenchymal stem cell senescence in
ankylosing spondylitis[J]. Cell Death Dis,2020,11(9):775.
[27] Vizioli MG,Liu TH,Miller KN,et al. Mitochondria-to-nucleus
retrograde signaling drives formation of cytoplasmic chromatin and
inflammation in senescence[J]. Genes Dev,2020,34(5/6):428-445.
[28] Despres J,Ramdani Y,di Giovanni M,et al. Replicative senes?
cence of human dermal fibroblasts affects structural and functional
aspects of the Golgi apparatus[J]. Exp Dermatol,2019,28(8):922-932.
[29] Lee JH,Lee J. Endoplasmic reticulum (ER) stress and its role in
pancreatic β-cell dysfunction and senescence in type 2 diabetes[J]. Int
J Mol Sci,2022,23(9):4843.
[30] Tan B,Jaulin A,Bund C,et al. Matrix metalloproteinase-11 pro?
motes early mouse mammary gland tumor growth through metabolic
reprogramming and increased IGF1/AKT/FoxO1 signaling pathway,
enhanced ER stress and alteration in mitochondrial UPR[J]. Cancers,
2020,12(9):2357.
[31] Mao XJ,Bharti P,Thaivalappil A,et al. Peroxisomal abnormali?
ties and catalase deficiency in Hutchinson-Gilford Progeria Syndrome
[J]. Aging,2020,12(6):5195-5208.
[32] Jin P,Duan XR,Li L,et al. Cellular senescence in cancer:mo?
lecular mechanisms and therapeutic targets[J]. MedComm,2024,5(5):
e542.
[33] Zhou WJ,Yang HL,Mei J,et al. Fructose-1,6-bisphosphate pre?
vents pregnancy loss by inducing decidual COX-2+ macrophage differ?
entiation[J]. Sci Adv,2022,8(8):eabj2488.
[34] 李路豪,王清儀,涂許許,等. p53基因與女性生殖關(guān)系的研究
進(jìn)展[J]. 重慶醫(yī)科大學(xué)學(xué)報,2023,48(11):1302-1307.
Li LH,Wang QY,Tu XX,et al. Advances in research on the relation?
ship between p53 gene and female reproduction[J]. J Chongqing Med
Univ,2023,48(11):1302-1307.
[35] 陸思宇,蘇 燕,尹鑫,等. 轉(zhuǎn)錄因子EB對早孕小鼠子宮內(nèi)
膜蛻膜化的影響[J]. 重慶醫(yī)科大學(xué)學(xué)報,2020,45(5):615-619.
Lu SY,Su Y,Yin X,et al. Effect of transcription factor EB on endome?
trial decidualization in early pregnant mice[J]. J Chongqing Med Univ,
2020,45(5):615-619.
[36] Rawlings TM,Makwana K,Taylor DM,et al. Modelling the
impact of decidual senescence on embryo implantation in human endo?
metrial assembloids[J]. Elife,2021,10:e69603.
[37] Brighton PJ,Maruyama Y,F(xiàn)ishwick K,et al. Clearance of senes?
cent decidual cells by uterine natural killer cells in cycling human endo?
metrium[J]. Elife,2017,6:e31274.
[38] Lucas ES,Vrljicak P,Muter J,et al. Recurrent pregnancy loss is
associated with a pro-senescent decidual response during the periimplantation
window[J]. Commun Biol,2020,3(1):37.
[39] Deng TQ,Liao XY,Zhu SM. Recent advances in treatment of
recurrent spontaneous abortion[J]. Obstet Gynecol Surv,2022,77(6):
355-366.
[40] Parvanov D,Ganeva R,Vidolova N,et al. Decreased number of
p16-positive senescent cells in human endometrium as a marker of
miscarriage[J]. J Assist Reprod Genet,2021,38(8):2087-2095.
[41] Zeng SS,Liang YY,Lai SY,et al. TNFα/TNFR1 signal induces
excessive senescence of decidua stromal cells in recurrent pregnancy
loss[J]. J Reprod Immunol,2023,155:103776.
[42] Rokhsartalab Azar P,Maleki Aghdam M,Karimi S,et al. Uterine
fluid microRNAs in repeated implantation failure[J]. Clin Chim Acta,
2024,558:119678.
[43] Pantos K,Grigoriadis S,Maziotis E,et al. The role of interleukins
in recurrent implantation failure:a comprehensive review of the litera?
ture[J]. Int J Mol Sci,2022,23(4):2198.
[44] Zhou MJ,Xu HH,Zhang D,et al. Decreased PIBF1/IL6/p-
STAT3 during the mid-secretory phase inhibits human endometrial stro?
mal cell proliferation and decidualization[J]. J Adv Res,2021,30:
15-25.
[45] Deryabin PI,Borodkina AV. Stromal cell senescence contributes
to impaired endometrial decidualization and defective interaction with
trophoblast cells[J]. Hum Reprod,2022,37(7):1505-1524.
[46] Zhao XX,Zhao Y,Jiang YP,et al. Deciphering the endometrial
immune landscape of RIF during the window of implantation from cellu?
lar senescence by integrated bioinformatics analysis and machine learn?
ing[J]. Front Immunol,2022,13:952708.
[47] Zhou XB,Xu YC,Ren SN,et al. Trophoblast PR-SET7 dysfunc?
tion induces viral mimicry response and necroptosis associated with
recurrent miscarriage[J]. Proc Natl Acad Sci USA,2023,120(25):
e2216206120.
[48] Cindrova-Davies T,F(xiàn)ogarty NME,Jones CJP,et al. Evidence of
oxidative stress-induced senescence in mature,post-mature and patho?
logical human placentas[J]. Placenta,2018,68:15-22.
[49] Secomandi L,Borghesan M,Velarde M,et al. The role of cellular
senescence in female reproductive aging and the potential for senothera?
peutic interventions[J]. Hum Reprod Update,2022,28(2):172-189.
[50] 張 雪,漆洪波. 胎盤發(fā)育研究回顧與展望[J]. 重慶醫(yī)科大學(xué)
學(xué)報,2021,46(9):1023-1026.
Zhang X,Qi HB. The retrospect and prospect of research on the pla?
centa development[J]. J Chongqing Med Univ,2021,46(9):1023-1026.
[51] Rodriguez-Sibaja MJ,Lopez-Diaz AJ,Valdespino-Vazquez MY,
et.al. Placental pathology lesions: international society for ultrasound in
obstetrics and gynecology vs. society for maternal-fetal medicine fetal
growth restriction definitions[J]. Am J Obstet Gynecol MFM,2024,3:
101422.
[52] Gal H,Lysenko M,Stroganov S,et al. Molecular pathways of
senescence regulate placental structure and function[J]. EMBO J,2020,
39(15):e105972.
[53] Biron-Shental T,Kidron D,Sukenik-Halevy R,et al. TERC
telomerase subunit gene copy number in placentas from pregnancies
complicated with intrauterine growth restriction[J]. Early Hum Dev,
2011,87(2):73-75.
[54] Manna S,Mc Elwain CJ,Maher GM,et al. Heterogenous Differ?
ences in Cellular Senescent Phenotypes in Pre-Eclampsia and IUGR
following Quantitative Assessment of Multiple Biomarkers of Senescence
[J]. Int J Mol Sci,2023,24(4):3101.
[55] Jung E,Romero R,Yeo L,et al. The etiology of preeclampsia[J].
Am J Obstet Gynecol,2022,226(2 Suppl):S844-S866.
[56] 楊 嵐,肖建平,石 皓,等. 胎盤生長因子、可溶性fms樣酪
氨酸激酶-1及糖基化纖連蛋白在子癇前期預(yù)測中的應(yīng)用價值[J]. 重
慶醫(yī)科大學(xué)學(xué)報,2024,49(1):50-54.
Yang L,Xiao JP,Shi H,et al. Application value of placental growth
factor,soluble fms-like tyrosine kinase-1,and glycosylated fibronectin
in the prediction of preeclampsia[J]. J Chongqing Med Univ,2024,49
(1):50-54.
[57] Wang YJ,Zhang YY,Wu YQ,et al. SIRT1 regulates trophoblast
senescence in premature placental aging in preeclampsia[J]. Placenta,
2022,122:56-65.
[58] Lekva T,Roland MCP,Estensen ME,et al. Dysregulated noncoding
telomerase RNA component and associated exonuclease XRN1
in leucocytes from women developing preeclampsia-possible link to en?
hanced senescence[J]. Sci Rep,2021,11(1):19735.
[59] Xu BM,Cheng F,Xue XL. Klotho-mediated activation of the
anti-oxidant Nrf2/ARE signal pathway affects cell apoptosis,senes?
cence and mobility in hypoxic human trophoblasts:involvement of
Klotho in the pathogenesis of preeclampsia[J]. Cell Div,2024,19(1):13.
[60] Blagosklonny MV. Anti-aging:senolytics or gerostatics (uncon?
ventional view)[J]. Oncotarget,2021,12(18):1821-1835.
[61] Kusama K,Yamauchi N,Yoshida K,et al. Senolytic treatment
modulates decidualization in human endometrial stromal cells[J]. Bio?
chem Biophys Res Commun,2021,571:174-180.
[62] 張 陽,鐘彥琪,鄒 麗,等. 細(xì)胞衰老在子癇前期中的研究進(jìn)
展[J]. 華中科技大學(xué)學(xué)報(醫(yī)學(xué)版),2023,52(6):868-872.
Zhang Y,Zhong YQ,Zou L,et al. Research progress of cell senescence
in preeclampsia[J]. Acta Med Univ Sci Technol Huazhong,2023,52
(6):868-872.
(責(zé)任編輯:曾 玲)