摘 要:研究兩個積分均值的差值的估計.利用積分恒等式和引入?yún)?shù)求最值的方法,建立了關于兩個積分均值的差值的不等式,加強和改進了已有結果.結果蘊含著改進的Ostrowski不等式和Ostrowski型不等式.
關鍵詞:積分均值;Ostrowski不等式;Ostrowski型不等式
中圖分類號:O 178" 文獻標識碼:A" 文章編號:1007-6883(2024)06-0008-08
DOI:10.19986/j.cnki.1007-6883.2024.06.002
對兩個積分均值之間的絕對差值的估計首先由Barnett等人研究.設[f]是[a,b]上的絕對連續(xù)函數(shù),[f′∈L∞a,b],即[f′∞=esssupt∈a,bf′tlt;∞],[a]≤[clt;d]≤[b],Barnett等[1]利用積分恒等式
[1b-aabftdt-1d-ccdftdt=abKc,dsf′sds], (1)
其中
[Kc,ds=a-sb-a," s∈a,c;s-cd-c+a-sb-a, s∈c,d;b-sb-a," s∈d,b,]
得到不等式
[1b-aabftdt-1d-ccdftdt≤14+a+b2-c+d2b-a-d-c2b-a-d-cf′∞]. (2)
式(2)推廣了Ostrowski不等式,在式(2)中取[c=x],令[d→x+0],得到Ostrowski不等式[2]
[fx-1b-aabftdt≤b-a14+x-a+b2b-a2f′∞].
Hwang和Dragomir[3]利用Grüss不等式建立了下面不等式
[1b-aabftdt-1d-ccdftdt-b-c-d+a2S≤14b-a-d-cΓ-γ], (3)
其中[γ]≤[f′]≤[Γ],[S=fb-fab-a].
在式(3)中取[c=x],令[d→x+0],得到由Dragomir和Wang[4]首次建立的Ostrowski-Grüss型不等式
[fx-x-a+b2S-1b-aabftdt≤14b-aΓ-γ]." " " (4)
通過文獻[5]將[fx-x-a+b2S-1b-aabftdt]表示為形如[1b-aabGtf′tdt]的定積分,將式(4)中的[14]改進為[18].文獻[6]用引入?yún)?shù)求最值的方法將式(4)加強為
[fx-x-a+b2S-1b-aabftdt≤b-aΓ-SS-γ2Γ-γ]." " "(5)
文獻[7-9]針對有界變差函數(shù),Cerone和Dragomir[10]針對r-H-H?lder型的連續(xù)函數(shù),研究了兩個積分均值之間的絕對差值的估計.Pe?ari?和Vukeli?[11]把Barnett等人的結果推廣到高階可微函數(shù).關于兩個積分均值之間的絕對差值的研究,還可參閱文獻[12-13].
本文受文獻[5]的啟發(fā),借助積分恒等式,用引入?yún)?shù)求最值的方法,給出式(2)的加強,將式(3)中的[14]改進為[18].
2 主要結果
定理1 設[f]是[a,b]上的絕對連續(xù)函數(shù),[γ]≤[f′]≤[Γ],[a]≤[clt;d]≤[b],則有
[b-d2γ-c-a2Γ2b-a-d-c+b-a-d-c2b-d2+c-a2Γ-γc-a2Γ-b-d2γb-a-d-c+Kb-a2]≤
[1b-aabftdt-1d-ccdftdt]≤
[b-d2Γ-c-a2γ2b-a-d-c-b-a-d-c2b-d2+c-a2Γ-γb-d2Γ-c-a2γb-a-d-c-Kb-a2], (6)
其中
[K=c-afa+b-dfb-b-d+c-afτ],[τ=cb-a-ad-cb-a-d-c].
證明 易知[τ∈c,d].對于任意[ε∈0,c-a],有[a+ε∈a,c],[τ-τ-cc-aε∈c,τ],
[τ+d-τc-aε∈τ,d],利用式(1)得
[1b-aabftdt-1d-ccdftdt=]
[1b-aaca-sf′sds+1d-c-1b-acds-τf′sds+1b-adbb-sf′sds=]
[1b-aaca+ε-sf′sds+1d-c-1b-acτs-τ+τ-cc-aεf′sds+]
[τds-τ-d-τc-aεf′sds+1b-adbb-b-dc-aε-sf′sds+Kb-ac-a]. (7)
其中
[K=c-afa+b-dfb-b-a-d-cfτ],
[aca+ε-sf′sds=aa+εa+ε-sf′sds+a+εca+ε-sf′sds]≤
[Γaa+εa+ε-sds+γa+εca+ε-sds=12ε2Γ-c-a-ε2γ]," " (8)
類似可得
[cτs-τ+τ-cc-aεf′sds≤12τ-cc-a2ε2Γ-c-a-ε2γ]," " " (9)
[τds-τ-d-τc-aεf′sds≤12d-τc-a2c-a-ε2Γ-γε2]," " "(10)
[dbb-b-dc-aε-sf′sds≤12b-dc-a2c-a-ε2Γ-γε2]," " "(11)
綜合式(7)~(11)得
[1b-aabftdt-1d-ccdftdt]≤[121b-a+1d-c-1b-aτ-cc-a2ε2Γ-c-a-ε2γ+]
[121d-c-1b-ad-τc-a2+1b-ab-dc-a2c-a-ε2Γ-ε2γ+Kb-ac-aε=]
[b-d2Γ-c-a2γ2b-a-d-c-b-a-d-c2b-d2+c-a2Γ-γb-d2Γ-c-a2γb-a-d-c-Kb-a2+]
[b-d2+c-a2Γ-γ2c-a2b-a-d-cε-ε12]," " " " " (12)
其中
[c-ab-a-d-cb-d2+c-a2Γ-γb-d2Γ-c-a2γb-a-d-c-Kb-a].
注意到[K=c-afa-fτ+b-dfb-fτ],所以有
[K≤c-aa-τγ+b-db-τΓ=b-ab-d2Γ-c-a2γb-a-d-c],
[K≥c-aa-τΓ+b-db-τγ=b-ab-d2γ-c-a2Γb-a-d-c],
從而有[ε1∈0,c-a].在式(12)中取[ε=ε1]則式(6)的右邊不等式得證.
當[γ]≤[f′]≤[Γ]時,有[-Γ]≤[-f′]≤[-γ],對[-f]應用已證結果,則式(6)的左邊不等式得證.
推論1 設[f]是[a,b]上的絕對連續(xù)函數(shù),[f′∈L∞a,b],[a]≤[clt;d]≤[b],則有
[-b-d2+c-a22b-a-d-cf′∞1-121+b-a-d-cb-ab-d2+c-a2?Kf′∞2]≤
[1b-aabftdt-1d-ccdftdt]≤
[b-d2+c-a22b-a-d-cf′∞1-121-b-a-d-cb-ab-d2+c-a2?Kf′∞2].
從而有
[1b-aabftdt-1d-ccdftdt]≤
[b-d2+c-a22b-a-d-cf′∞1-121-b-a-d-cb-ab-d2+c-a2?Kf′∞2].
證明 在定理1中取[Γ=f′∞],[γ=-f′∞],推論即可得證.
推論2 設[f]是[a,b]上的絕對連續(xù)函數(shù),[f′∈L∞a,b],則對任意[x∈a,b]有
[-b-x2+x-a22b-af′∞1-121+x-afa+b-xfb-b-afxb-x2+x-a2f′∞2]≤
[1b-aabftdt-fx]≤
[b-x2+x-a22b-af′∞1-121-x-afa+b-xfb-b-afxb-x2+x-a2f′∞2].
從而得到文獻[14]推論5中的式(13)
[1b-aabftdt-fx]≤
[b-x2+x-a22b-af′∞1-121-x-afa+b-xfb-b-afxb-x2+x-a2f′∞2].
證明 在推論1中取[c=x],[d→x+0],即可得證.
定理2 設[f]是[a,b]上的絕對連續(xù)函數(shù),[γ]≤[f′]≤[Γ],[a]≤[clt;d]≤[b],則有
[b-d2γ-c-a2Γ2b-a-d-c+L12b-aΓ-γ]≤[1b-aabftdt-1d-ccdftdt]≤
[b-d2Γ-c-a2γ2b-a-d-c-L22b-aΓ-γ]," " " " "(13)
其中
[L1=fc-fa-c-aΓ2+fb-fd-b-dγ2+][d-cb-a-d-cb-a-d-cfd-fcd-c-b-dγ-c-aΓ2],
[L2=fc-fa-c-aγ2+fb-fd-b-dΓ2+][d-cb-a-d-cb-a-d-cfd-fcd-c-b-dΓ-c-aγ2].
證明 對于任意常數(shù)[ε∈0,c-a],有[a+ε∈a,c],利用式(8)有
[aca-sf′sds=aca+ε-sf′sds-εfc-fa]≤
[12ε2Γ-c-a-ε2γ-εfc-fa=]
[-12c-a2γ-fc-fa-c-aγ22Γ-γ+Γ-γ2ε-ε22]," " "(14)
其中
[ε2=fc-fa-c-aγΓ-γ∈0,c-a],
在式(14)中取[ε=ε2]得
[aca-sf′sds≤-12c-a2γ-fc-fa-c-aγ22Γ-γ]." " "(15)
用類似方法還可得
[dbb-sf′sds≤12b-d2Γ-fb-fd-b-dΓ22Γ-γ]," " "(16)
[cds-τf′sds≤12d-τ2Γ-τ-c2γ-fd-fc-d-τΓ-τ-cγ22Γ-γ], (17)
綜合式(1),(15)~(17),則式(13)的右邊不等式得證.對[-f]應用已證結果,則式(13)的左邊不等式得證.
推論3 設[f]是[a,b]上的絕對連續(xù)函數(shù),[γ]≤[f′]≤[Γ],[a]≤[clt;d]≤[b],則有
[b-x2γ-x-a2Γ2b-a+fb-fa-x-aΓ-b-xγ22b-aΓ-γ]≤
[b-x2γ-x-a2Γ2b-a+fx-fa-x-aΓ2+fb-fx-b-xγ22b-aΓ-γ]≤
[1b-aabftdt-fx]≤
[b-x2Γ-x-a2γ2b-a-fx-fa-x-aγ2+fb-fx-b-xΓ22b-aΓ-γ]≤
[b-x2Γ-x-a2γ2b-a-fb-fa-x-aγ-b-xΓ22b-aΓ-γ]," " "(18)
也即
[1b-aabftdt-12fx+x-afa+b-xfbb-a]≤
[12b-aΓ-γfx-fa-x-aγx-aΓ-fx+fa+]
[fb-fx-b-xγb-xΓ-fb+fx≤b-aΓ-SS-γ2Γ-γ]." (19)
證明 因為當[pq]≤0時有[p2+q2]≥[p+q2],所以由式(13)知式(18)的從左邊數(shù)起的第一個不等式和從右邊數(shù)起的第一個不等式成立.在定理2中取[c=x],[d→x+0],則式(18)的從左邊數(shù)起的第二個不等式和從右邊數(shù)起的第二個不等式可得證.式(19)的左邊不等式是式(18)的直接結果.利用當[p],[q],[r],[s]均非負時有[pq+rs]≤[p+rq+s],式(19)的右邊不等式得證.
定理3 設[f]是[a,b]上的絕對連續(xù)函數(shù),[γ]≤[f′]≤[Γ],[a]≤[clt;d]≤[b],則有
[1b-aabftdt-1d-ccdftdt-b-c-d+a2S]≤
[c-a+b-d8Γ-γ-Q2b-aΓ-γ≤c-a+b-dΓ-SS-γ2Γ-γ], (20)
其中
[Q=σ-c-a+b-dΓ+γ22+d-cc-a+b-dSc,d-Γ+γ22],
[σ=fb-fd+fc-fa],[Sc,d=fd-fcd-c].
證明 利用式(1)及[abKc,dtdt=b-c-d+a2],得
[1b-aabftdt-1d-ccdftdt-b-c-d+a2S=Jb-a+1d-c-1b-acds-c+d2f′sds],(21)
其中
[J=aca+c+d-b2-sf′sds+dbc+d+b-a2-sf′sds].
對任意常數(shù)[ε∈-c-a+b-d2,b-d-c-a2],記[α=a+c+d-b2+ε],[β=c+d+b-a2+ε],則[α]≤[a],[β∈d,b],有
[J=acα-sf′sds+dββ-sf′sds+βbβ-sf′sds-σε]≤
[γacα-sds+Γdββ-sds+γβbβ-sds-σε=]
[c-a+b-d28Γ-γ-2σ-c-a+b-dΓ+γ28Γ-γ-Γ-γ2ε-ε32], (22)
其中
[ε3=2σ-c-a+b-dΓ+γ2Γ-γ].
對任意常數(shù)[ε∈b-d-c-a2,c-a+b-d2],記[α=a+c+d-b2+ε],[β=c+d+b-a2+ε],則[α∈a,c],[β]≥[b],有
[J=aαα-sf′sds+αcα-sf′sds+dbβ-sf′sds-σε]≤
[Γaαα-sds+γαcα-sds+γdbβ-sds-σε=]
[c-a+b-d28Γ-γ-2σ-c-a+b-dΓ+γ28Γ-γ-Γ-γ2ε-ε32].
綜上所述,對任意的常數(shù)[ε∈-c-a+b-d2,c-a+b-d2],都有式(22)成立.
因為[σ∈c-a+b-dγ,c-a+b-dΓ],所以有[ε3∈-c-a+b-d2,c-a+b-d2],在式(22)中取[ε=ε3],則得
[J≤c-a+b-d28Γ-γ-2σ-c-a+b-dΓ+γ28Γ-γ]." " (23)
利用推廣的Iyengar不等式[15]有
[cds-c+d2f′sds=d-cfc+fd2-cdfsds]≤
[d-c22Γ-γΓ-γ22-Sc,d-Γ+γ22]." " "(24)
綜合式(21),(23),(24),得
[1b-aabftdt-1d-ccdftdt-b-c-d+a2S≤c-a+b-d8Γ-γ-Q2b-aΓ-γ],
對[-f]應用已證結果得
[1b-aabftdt-1d-ccdftdt-b-c-d+a2S≥-c-a+b-d8Γ-γ+Q2b-aΓ-γ],
故式(20)的左邊不等式得證.
當[c-a+b-d=0],也即[c=a],[d=b]時,式(20)的右邊不等式顯然成立.當[c-a+]
[b-dgt;0]時,根據(jù)不等式[px2+qy2]≥[px+qy2p+q]([p,q]為不全為零的非負數(shù)),有
[Q=c-a+b-dc-a+b-dσc-a+b-d-Γ+γ22+d-cSc,d-Γ+γ22]≥
[c-a+b-db-ac-a+b-dσc-a+b-d-Γ+γ2+d-cSc,d-Γ+γ22=]
[b-ac-a+b-dS-Γ+γ22],
由此證得式(20)的右邊不等式.
注1 式(20)改進和加強了式(3).在式(20)中令[c=x],[d→x+0],得到式(5).
推論4 設[f]是[a,b]上的絕對連續(xù)函數(shù),[γ]≤[f′]≤[Γ],則對任意[x∈a,b]有
[1b-xxbftdt-1x-aaxftdt-fb-fa2]≤
[b-a8Γ-γ-12Γ-γb-xfb-fxb-x-Γ+γ22+x-afx-fax-a-Γ+γ22]≤
[b-aΓ-SS-γ2Γ-γ].
證明 在定理3中取[c=a],[d=x],并注意到
[1b-aabftdt-1x-aaxftdt=b-xb-a1b-xxbftdt-1x-aaxftdt],
則推論得證.
參考文獻:
[1]Barnett N S,Cerone P,Dragomir S S,et al.Comparing two integral means for absolutely continuous mappings whose derivatives are in L∞[a,b]and applications[J].Computers and Mathematics with Applications,2002,44(1/2):241-251.
[2]Ostrowski A.über die absolute abweichung einer differentiebaren funktion von ihren integralmittelwert[J].Commentarii Mathematici Helvetici,1938,10(1):226-227.
[3]Hwang D Y,Dragomir S S.Some results on comparing two integral means for absolutely continuous functions and applications[J].Bulletin of the Australian Mathematical Society,2014,90(2):264-274.
[4]Dragomir S S,Wang S.An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules[J].Computers and Mathematics with Applications,1997,33(11):15-20.
[5]CHENG X L.Improvement of some Ostrowski-Grüss type inequalities[J].Computers and Mathematics with Applications,2001,42:109-114.
[6]時統(tǒng)業(yè),曾志紅.若干Ostrowski型雙邊不等式[J].溫州大學學報(自然科學版),2022,43(4):1-10.
[7]Hwang D Y,Dragomir S S.Comparing two integral means for mapping of bounded variation and applications[J/OL].RGMIA Res.Rep.Coll.2013,16:11.
[8]Liu W J,Wen W S,Park J.A refinement of the difference between two integral means in terms of the cumulative variation and applications[J].J.Math.Inequal,2016,10(1):147-157.
[9]Budak H,Sarikaya M Z.Comparing the integral means for functions of two variables with bounded variation[J]. Electronic Journal of Mathematical Analysis and Applications,2016,4(2):46-55.
[10]Cerone P,Dragomir S S.Differences between means with bounds from a Riemann-Stieltjes integral[J].Computers and Mathematics with Applications,2003,46(2/3):445-453.
[11]Pe?ari? J,Vukeli? A.Milovanovi?-Pe?ari?-Fink inequality for difference of two integral means[J].Taiwanese Journal of Mathematics,2006,10(4):933-947.
[12]Kechriniotis A I.Complements of Ostrowski type inequalities[J].Applied Mathematics E-Notes,2008,8:89-97.
[13]Kechriniotis A I,Assimakis N D.On the inequality of the difference of two integral means and applications for PDFS[J/OL].Journal of Inequalities in Pure and Applied Mathematics,2007,8(1):10.
[14]時統(tǒng)業(yè),曾志紅.Ostrowski型和Ostrowski-Grüss型不等式的加強[J].湖南理工學院學報(自然科學版),2022,35(4):1-8.
[15]匡繼昌.常用不等式[M].5版.濟南:山東科學技術出版社,2021:790.
The Strengthening of Inequalities for the Difference between Two Integral Means
ZENG Zhi-hong1, SHI Tong-ye2*, CAO Jun-fei3
(1. Editorial Department of Journal of Guangdong University of Education, Guangzhou, Guangdong, 510303; 2. PLA Naval Command College, Nanjing, Jiangsu, 211800; 3. College of Mathematics, Guangdong University of Education, Guangzhou, Guangdong, 510303)
Abstract:The estimation of the difference between two integral means is studied. By using the integral identity and the method of introducing parameters to find the minimum value, some inequalities involving the difference between two integral means are established, which strengthens and improves the existing results. Ostrowski inequalities and Ostrowski type inequalities can be derived from the results in this study.
Key words:integral means;Ostrowski inequality;Ostrowski type inequality
責任編輯 朱本華