通信作者簡介:吳慶武,醫(yī)學(xué)博士,博士后,副研究員,碩士生導(dǎo)師。任職于中山大學(xué)附屬第三醫(yī)院耳鼻咽喉頭頸外科,師從楊欽泰教授和張革化教授。研究方向:慢性鼻部疾病的人工智能與大數(shù)據(jù)研究。入選2022年中山大學(xué)附屬第三醫(yī)院“重大人才工程培育計劃”,獲2021年廣東省科技進步二等獎??蒲袠I(yè)績:主持國家自然科學(xué)基金面上項目和省部級項目3項,以第一/通信作者在BMJ、JACI和EBioMedicine等SCI期刊發(fā)表論文10篇,在《中華耳鼻咽喉頭頸外科雜志》發(fā)表論文4篇,獲得3項專利授權(quán)。擔(dān)任iScience、Heliyon和Current Molecular Medicine等雜志審稿人。E-mail: wuqw8@mail2.sysu.edu.cn。
【摘要】 目的 系統(tǒng)綜述國內(nèi)外兒童耳鼻咽喉頭頸外科領(lǐng)域人工智能的應(yīng)用情況,重點分析其進展,以期為未來發(fā)展與臨床實踐提供參考。方法 在PubMed、Web of Science、Embase數(shù)據(jù)庫中檢索人工智能應(yīng)用于兒童耳鼻咽喉頭頸外科的相關(guān)文獻,檢索日期為2024年6月,檢索范圍不受研究類型、發(fā)表日期以及手稿原始語言的限制。依據(jù)國家心肺血液研究所研究質(zhì)量評估工具(NHI-SQAT)和2011版牛津循證醫(yī)學(xué)證據(jù)分級(LOE)對文章質(zhì)量施行評估,遴選出真實有效的文獻。提取文獻內(nèi)容并對人工智能在該領(lǐng)域的應(yīng)用現(xiàn)狀與發(fā)展前景進行系統(tǒng)綜述。結(jié)果 經(jīng)過初步篩選摘要與標(biāo)題、閱讀全文、追溯補充檢索、篩除質(zhì)量不符合標(biāo)準(zhǔn)的文獻后,最終納入38篇文獻。人工智能被廣泛應(yīng)用于兒童耳鼻咽喉頭頸外科疾病的診療中,其形式不一,通過機器學(xué)習(xí)和大數(shù)據(jù)處理等方法,實現(xiàn)了手術(shù)輔助、診療模型建立等,在臨床應(yīng)用方面具有巨大潛力。其中,兒童中耳炎的診療、兒童聽力損傷測定、術(shù)前規(guī)劃與術(shù)后指導(dǎo)、遠程醫(yī)療等成為近年來人工智能探索及應(yīng)用的主要方向。結(jié)論 人工智能在國內(nèi)外兒童耳鼻咽喉頭頸外科中的應(yīng)用越來越廣泛,人工智能的疾病輔助診療已逐漸被醫(yī)患群體所接受,未來人工智能的應(yīng)用形式將更為多元化。
【關(guān)鍵詞】 耳鼻咽喉頭頸外科;人工智能;兒童;機器學(xué)習(xí);深度學(xué)習(xí)
Application of artificial intelligence in pediatric otolaryngology-head and neck surgery: a systematic review
XU Xi1,2, KANG Ning1,2, LUO Minting1,2, YANG Qintai1,2, WU Qingwu1,2
(1.Department of Otorhinolaryngology Head and Neck Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China;2.Department of Allergy, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China)
Corresponding author: WU Qingwu, E-mail: wuqw8@mail2.sysu.edu.cn
【Abstract】 Objective To systematically review the progress in the application of artificial intelligence in the field of pediatric otolaryngology-head and neck surgery at home and abroad, aiming to provide reference for the development and clinical practice in the future. Methods Literature related to the application of artificial intelligence in otolaryngology,head and neck surgery were searched from PubMed, Web of Science and Embase databases in June 2024, regardless of the research type, publication date and language restrictions. Subsequently, using the National Heart, Lung, and Blood Institute Study Quality Assessment Tools (NHI-SQAT) and the Oxford 2011 Levels of Evidence (LOE), tables were designed to assess the quality of the articles and select authentic and effective literature. Literature content was extracted, and a systematic review of current status and future prospects of artificial intelligence in this field was conducted. Results After preliminary screening of abstracts and titles, full-text reading, supplementary retrieval, and exclusion of literature that did not meet quality standards, a total of 38 articles were finally included. Artificial intelligence has been widely used in the diagnosis and treatment of pediatric otolaryngological diseases in various forms. Significant clinical effects have been achieved through methods such as machine learning and big data processing, enabling surgical assistance and the establishment of diagnostic and treatment models. In recent research, the diagnosis and treatment of pediatric otitis media, assessment of pediatric hearing loss, preoperative planning and postoperative guidance, and telemedicine are becoming the main directions of exploration and application of artificial intelligence. Conclusions Application of artificial intelligence in pediatric otolaryngology head and neck surgery at home and abroad has been gradually extended in recent years. As the use of artificial intelligence in assisted diagnosis and treatment has been gradually accepted by the medical community, the application platform for artificial intelligence will become diversified in the future.
【Key words】 Otolaryngology-head and neck surgery; Artificial intelligence; Children; Machine learning; Deep learning
人工智能的應(yīng)用涵蓋多個醫(yī)療領(lǐng)域,包括機器人治療、智能診斷、輔助醫(yī)療決策和圖像分析等。隨著計算機算法技術(shù)的不斷提高,人工智能日益發(fā)展,尤其是在新興的機器學(xué)習(xí)及深度學(xué)習(xí)領(lǐng)域上。機器學(xué)習(xí)領(lǐng)域是人工智能的一個子領(lǐng)域,是從現(xiàn)有信息中預(yù)測新信息[1],即通過大量的數(shù)據(jù)進行“訓(xùn)練”,利用各種算法從數(shù)據(jù)中學(xué)習(xí)如何完成任務(wù),并據(jù)此對真實世界中的事件作出決策和預(yù)測。深度學(xué)習(xí)是機器學(xué)習(xí)的一個子集,是通過對數(shù)據(jù)庫的自動處理、學(xué)習(xí)和訓(xùn)練來形成同人類一般的通過評估數(shù)據(jù)特征得出診斷的能力。例如,本團隊的前期研究顯示了人工智能應(yīng)用于鼻息肉方面的創(chuàng)新與突破,并證實人工智能不僅有較高的準(zhǔn)確性,而且能提高診斷效率[2-4]。
近年來,隨著人工智能應(yīng)用領(lǐng)域的不斷開拓,數(shù)以萬計的新方法和新技術(shù)涌現(xiàn),人工智能在疾病診療過程中的作用逐漸突顯,然而有關(guān)人工智能應(yīng)用于兒童耳鼻咽喉頭頸外科的綜述較少,且現(xiàn)有的相關(guān)綜述多聚焦于某項特定技術(shù)的發(fā)展或特定疾病的診療,??苹图毞只内厔葺^為明顯,缺乏對其系統(tǒng)化、整體化的分析。因此,基于本團隊將人工智能應(yīng)用于耳鼻咽喉頭頸外科的前期經(jīng)驗[5-7],文章旨在總結(jié)以往有關(guān)人工智能在兒童耳鼻咽喉頭頸外科的研究,并對人工智能在本學(xué)科的應(yīng)用前景進行展望,為人工智能于兒童耳鼻咽喉頭頸外科中的應(yīng)用賦能。
1 資料與方法
1.1 文獻檢索
于2024年6月在PubMed、Web of Science、Embase
數(shù)據(jù)庫中進行全面檢索。使用的檢索詞包括人工智能(artificial intelligence)、兒童(children/child)、深度學(xué)習(xí)(deep learning)、耳鼻咽喉頭頸外科(otolaryngology, head and neck surgery)、機器學(xué)習(xí)(machine learning)。關(guān)于這一主題的現(xiàn)有文獻有限,因此檢索范圍不受研究類型、發(fā)表日期以及手稿原始語言的限制。導(dǎo)出檢索到的文獻并手動篩選。
1.2 文獻納入及排除標(biāo)準(zhǔn)
納入標(biāo)準(zhǔn):①研究對象為6~14歲兒童;②發(fā)表于同行評審的期刊;③研究具體描述了人工智能在兒童耳鼻咽喉頭頸外科中的應(yīng)用。排除標(biāo)準(zhǔn):①沒有摘要和全文;②非期刊論文,如會議論文、學(xué)位論文等;③診斷或治療時沒有使用人工智能或自動化技術(shù)進行資料收集、分析;④病例報道、文獻綜述或薈萃分析。
2 文獻篩選流程及質(zhì)量評估
2.1 文獻篩選流程
由2名研究者獨立篩選文獻,文獻篩選時首先閱讀題目和摘要,在排除明顯不相關(guān)的文獻后,進一步閱讀全文,確定最終納入的文獻。文獻篩選流程見圖1。
2.2 文獻質(zhì)量評估
依據(jù)國家心肺血液研究所研究質(zhì)量評估工具(National Heart,Lung,and Blood Institute Study Quality Assessment Tools,NHI-SQAT)和2011版牛津循證醫(yī)學(xué)證據(jù)分級(the Oxford 2011 Levels of Evidence,LOE)設(shè)計表格,依次對文獻質(zhì)量進行評估,遴選出真實有效的文獻。
3 結(jié) 果
3.1 納入文獻基本情況
經(jīng)過初步篩選摘要與標(biāo)題、閱讀全文、追溯補充檢索,篩除質(zhì)量不符合標(biāo)準(zhǔn)的文獻后,最終納入38篇文獻,見圖1。這些文獻發(fā)表于2007年1月至2024年6月,集中于2023年(n = 10),其次為2024年(n = 8)。用于訓(xùn)練機器學(xué)習(xí)算法模型的數(shù)據(jù)主要來自單中心(n = 35),少數(shù)為多中心(n = 3)。38篇文獻中所描述的研究在9個國家進行,其中研究數(shù)量最多的國家是美國(n = 19),其次是中國(n = 9)和加拿大(n = 3)。這些研究涵蓋了耳科學(xué)、鼻科學(xué)、咽喉科學(xué)和頭頸外科學(xué)4個領(lǐng)域,最常見的領(lǐng)域是耳科(n = 23),其次是咽喉科(n = 9)、頭頸外科(n = 3)和鼻科(n = 2)。
3.2 文獻偏倚風(fēng)險評估和證據(jù)水平
根據(jù)NHI‐SQAT,納入文獻的研究質(zhì)量大部分為質(zhì)量一般(n = 26),部分為質(zhì)量良好(n = 12)。根據(jù)LOE,納入文獻的研究中主要為4級證據(jù)(n =30),其次為5級證據(jù)(n = 7)。
3.3 納入文獻分析
3.3.1 人工智能在兒童耳科學(xué)中的應(yīng)用
人工智能在兒童耳科學(xué)中的應(yīng)用主要涉及人工耳蝸(cochlear implant,CI)[25, 36, 44]、兒童中耳炎診斷[12, 18-20]、數(shù)字耳鏡以及聽力損失檢測[32, 36, 46-47]。
1)人工智能在CI方面的應(yīng)用。聽力障礙是最常見的感覺缺陷,對全球超過4.66億人產(chǎn)生了深遠的影響[48]。自1971年被開創(chuàng)性引入以來,基于優(yōu)秀的神經(jīng)仿生功能,CI技術(shù)已成為中重度感音神經(jīng)性聽力損失患者的首選治療方法[49]。在過去幾年中,CI技術(shù)在人工智能的幫助下實現(xiàn)了極大的進步,也從最初的針對成人逐漸向應(yīng)用于兒童轉(zhuǎn)變[50]。Skidmore等[25]納入23例耳蝸神經(jīng)缺損患兒和29名耳蝸大小正常者的聽神經(jīng)負荷電位參數(shù),通過線性回歸、支持向量機回歸和Logistic回歸建立預(yù)測模型,準(zhǔn)確評估患者的神經(jīng)網(wǎng)絡(luò)(cochlear nerve,CN)功能狀態(tài)并對其進行分層,該模型有助于了解使用了CI患兒的預(yù)后。Feng等[36]和Tan等[44]采用支持向量回歸算法建模,利用術(shù)前神經(jīng)解剖形態(tài)學(xué)數(shù)據(jù)來預(yù)測CI激活后使用者的語言發(fā)展?fàn)顩r,分別獲得了76%和93.8%的分類準(zhǔn)確率。Abousetta等[9]針對兒童進行了一項回顧性研究,其將成功建立的新的機器學(xué)習(xí)分類模型用于預(yù)測CI激活后使用者的表現(xiàn),隨著數(shù)據(jù)的不斷累積,模型預(yù)測的準(zhǔn)確度也進一步提升,有望于未來輔助CI使用者進行客觀決策。上述各項結(jié)果證實了CI與機器學(xué)習(xí)算法尤其是深度學(xué)習(xí)之間的關(guān)系正在不斷加強。
2)人工智能在中耳炎方面的應(yīng)用。Ngombu等[51]回顧近十年的文獻發(fā)現(xiàn)輔助診斷中耳炎的自動化計算機算法不斷增加。在兒童中耳炎的診斷中,Shaikh等[8]、Tran等[12]、Crowson等[19]及Wu等[20]通過深度學(xué)習(xí)算法構(gòu)建了診斷中耳炎的模型,分別在臨床醫(yī)療決策、患者自我檢測與持續(xù)監(jiān)測、優(yōu)化診斷結(jié)果、智能手機聯(lián)合等方面展現(xiàn)了各自優(yōu)勢,且各具創(chuàng)新性,為醫(yī)療領(lǐng)域帶來了新的機遇。
3)人工智能在耳科學(xué)其他方面的應(yīng)用。有研究者通過計算機視覺圖像分類算法建立了人工智能模型,從耳鏡圖像中識別特定的耳部疾病,且準(zhǔn)確率相當(dāng)高(80%以上),提示人工智能的使用在提供遠程醫(yī)療和社區(qū)初級保健方面可以發(fā)揮重要作用[13, 16]。目前,人工智能已被應(yīng)用于耳科特定疾病的診療,如前庭導(dǎo)水管綜合征的診斷[52],此外鼓膜造瘺置管[40]、先天性膽脂瘤的機器人輔助經(jīng)鼻內(nèi)鏡耳部手術(shù)也有報道[53]。
3.3.2 人工智能在兒童鼻科學(xué)中的應(yīng)用
人工智能在兒童鼻科學(xué)中的應(yīng)用報道相對較少,主要受限于鼻科學(xué)圖像數(shù)據(jù)的獲取。兒童鼻腔、鼻竇及其相鄰器官生理解剖學(xué)具有復(fù)雜性和多變異性,同時,兒童鼻科圖像數(shù)據(jù)來源較少且質(zhì)量不穩(wěn)定,這些因素大大增加了兒童鼻科學(xué)圖像數(shù)據(jù)收集和分析的難度。
目前已有的研究主要涉及鼻竇圖像數(shù)據(jù)的重建[29]。隨著重建技術(shù)的不斷發(fā)展,如何在顯著降低輻射劑量的情況下保證獲得高質(zhì)量的診斷圖像成為目前研究的熱點[54-55]。Li等[29]引入一種新的深度學(xué)習(xí)圖像重建方法(deep learning image reconstruction,DLIR),并將其與目前臨床最先進的自適應(yīng)統(tǒng)計迭代重建算法進行比較,結(jié)果顯示,在圖像質(zhì)量評估方面DLIR總體優(yōu)于后者,提示了將DLIR應(yīng)用于兒童鼻竇低劑量CT掃描的可能性。Fu等[35]開發(fā)了一款人工智能自動化預(yù)測軟件,對56例鼻竇炎繼發(fā)骨膜下眶膿腫患兒的CT圖像進行三維可視化和定量評估,實現(xiàn)了對腫物體積的準(zhǔn)確預(yù)測,有望對手術(shù)治療規(guī)劃及臨床決策提供有效幫助。在相關(guān)疾病預(yù)后方面,Montevecchi等[56]報道了經(jīng)腺樣體切除術(shù)治療失敗的3例患兒,在通過經(jīng)口機器人手術(shù)(transoral robotic surgery,TORS)后解除了舌底梗阻,腺樣體切除術(shù)后預(yù)后不良癥狀得到改善。
3.3.3 人工智能在兒童咽喉科學(xué)中的應(yīng)用
人工智能在兒童咽喉科學(xué)中的應(yīng)用主要涉及兒童阻塞性睡眠呼吸暫停(obstructive sleep apnea,OSA)的檢測[11, 21, 26]、兒童扁桃體切除術(shù)中輔助和術(shù)后指導(dǎo)[14, 30-31],以及喉氣管重建術(shù)的技術(shù)優(yōu)化[37, 57]。
1)人工智能在OSA中的應(yīng)用。OSA是一種嚴(yán)重的阻塞性睡眠呼吸障礙,在兒童中的患病率約為1%~5%[58]。其診斷的金標(biāo)準(zhǔn)——多導(dǎo)睡眠圖的花費高昂且耗時長,難以適應(yīng)疑似病例的大規(guī)模篩查,這會造成對OSA患兒病情的忽視以及錯失診療時機,增加了兒童心血管系統(tǒng)和代謝系統(tǒng)紊亂、神經(jīng)認知和行為功能障礙等不良后果的發(fā)生風(fēng)險[59]。Ye等[11]建立了基于兒童夜間心率和血氧特征的XGBoost算法診斷模型,在簡化了診斷過程的同時還實現(xiàn)了對不同程度OSA患兒的準(zhǔn)確識別,研究結(jié)果表明該機器學(xué)習(xí)模型在輕度OSA分類任務(wù)中展現(xiàn)出良好的性能(受試者操作特征曲線的曲線下面積達0.92)。Wu等[21]開發(fā)了一種基于單通道夜間氧飽和度的多層感知器模型,比較并選取了單通道夜間氧飽和度信號的最優(yōu)特征,可靠地診斷了中重度OSA患兒,尤其是在兒科睡眠實驗室資源有限的環(huán)境中,該模型可減少未被識別和未經(jīng)治療的OSA的長期并發(fā)癥,并有助于改善醫(yī)療資源的分配和使用。Qin等[26]對2 464例OSA患兒進行了臨床特征數(shù)據(jù)的收集、選擇和分析,驗證了基于兒童臨床特征預(yù)測OSA的ML模型的有效性,與多導(dǎo)睡眠圖篩查問卷相比,ML模型具有更好的預(yù)測能力,其中,有效臨床特征組合的方法為臨床快速經(jīng)濟地識別OSA提供了新思路。Crowson等[39]利用OSA患兒在多導(dǎo)睡眠監(jiān)測(polysomnography,PSG)中獲得的鼻氣壓測量數(shù)據(jù)進行建模,結(jié)果顯示機器學(xué)習(xí)通過鼻氣壓跟蹤睡眠呼吸暫停事件具有可行性,甚至可能超越臨床專家的診斷性能,建議未來的研究應(yīng)著重優(yōu)化各項預(yù)測模型的實用特性以更適用于臨床。
2)人工智能與扁桃體相關(guān)的應(yīng)用。自從TORS
問世以來,其安全性和有效性已被證實[60],尤其是在傳統(tǒng)手術(shù)難以觀察到的隱匿解剖位置,TORS展現(xiàn)出巨大的潛力,如在舌扁桃體的切除或活組織檢查(活檢) 方面[61]。Leonardis等[30]對16例接受TORS切除舌扁桃體的患兒進行了回顧性分析,評估了手術(shù)時間、出血量和術(shù)后并發(fā)癥等數(shù)據(jù)并制作機器學(xué)習(xí)曲線,結(jié)果顯示,達芬奇機器人在執(zhí)行力方面的表現(xiàn)令人鼓舞。Moise等[14]利用ChatGPT進行兒童扁桃體切除術(shù)后指導(dǎo),并將其反饋結(jié)果與美國耳鼻咽喉頭頸外科學(xué)會(American Academy of Otolaryngology Head and Neck Surgery,AAO-HNSF)制定的《臨床實踐指南》進行比較,其中93.8%的ChatGPT反饋結(jié)果具有高度的可靠性和準(zhǔn)確性,該項研究驗證了ChatGPT在增強醫(yī)療服務(wù)方面的良好性能,類似的研究也已在兒童鼓膜造瘺術(shù)的術(shù)后指導(dǎo)中開展[15]。
3.3.4 人工智能在頭頸外科學(xué)中的應(yīng)用
頭頸部機器人手術(shù)擁有三維內(nèi)窺鏡視野、微型器械的自由運動和震顫過濾等重要優(yōu)勢[30]。早于十多年前已有研究者試圖運用人工智能進行兒童頭頸部手術(shù),Rahbar等[45]成功地進行了2例喉裂TORS,并首次提出TORS是兒童氣道手術(shù)的可行選擇,標(biāo)志著兒童頭頸部手術(shù)選擇范圍的顯著擴大。近年來機器人手術(shù)不斷被成功應(yīng)用于兒童頭頸部手術(shù)的多個領(lǐng)域,從睡眠手術(shù)到氣道重建再到咽腫塊切除[42-43]。但前述研究者的觀點,他們均認為,相較于人工智能在其他方面的突出表現(xiàn),目前TORS在兒童中的應(yīng)用仍處于起步階段,其原因可能包括:①兒童患者頭頸部解剖結(jié)構(gòu)的特殊性;②機器人手術(shù)視覺限制和器械操作空間不足;③設(shè)備和培訓(xùn)的初始成本高昂。
鑒于TORS的應(yīng)用受到多重限制,未來進一步開發(fā)更小的儀器以及進行充分而先進的術(shù)前實踐已成為必要[62]。虛擬現(xiàn)實手術(shù)演練最初被引入外科訓(xùn)練中的目的是增強受訓(xùn)者的信心,隨著虛擬現(xiàn)實技術(shù)在觸覺反饋方面的提高,其用途已擴展至術(shù)前規(guī)劃。研究顯示,從虛擬現(xiàn)實到三維打印模型再到計算機輔助優(yōu)化算法,利用人工智能制定先進的術(shù)前手術(shù)計劃可以進一步增強手術(shù)的可視化及安全性[57]。
4 討 論
本系統(tǒng)綜述顯示,人工智能已逐漸被深入應(yīng)用于兒童耳鼻咽喉頭頸外科,呈現(xiàn)了快速發(fā)展的趨勢,應(yīng)用前景廣闊。在兒童耳科學(xué)方面,人工智能的應(yīng)用不限于傳統(tǒng)的人工耳蝸改良,研究者們正逐步將視線放寬至整個耳科學(xué)的各類疾病和診療技術(shù)上,例如中耳炎及一些少見病的診治。此外,人工智能在推進兒童耳科學(xué)診療發(fā)展的同時也為其他相關(guān)領(lǐng)域的人工智能應(yīng)用提供了新基礎(chǔ)和新思路。但在兒童鼻科學(xué)方面,礙于個體差異的客觀存在,以及相關(guān)優(yōu)秀算法的匱乏,人工智能的應(yīng)用仍存在巨大困難,也相對少人涉足。但基于前述個別先驅(qū)者的大膽嘗試,本團隊相信,在未來更多優(yōu)秀算法涌現(xiàn)和迭代的情況下,個體差異等困難將迎刃而解,人工智能在克服復(fù)雜性、多變異性等現(xiàn)存問題困難后,將會在兒童鼻科學(xué)圖像采集與手術(shù)技術(shù)創(chuàng)新方面得到更廣泛的應(yīng)用。在兒童咽喉學(xué)方面,多個OSA模型的建立為高效、經(jīng)濟診斷OSA提供了新的思路與方向。此外,對于咽喉部隱匿的解剖位置,TORS展現(xiàn)出了較大優(yōu)勢,而2022年底問世的生成式人工智能ChatGPT在優(yōu)化術(shù)后指導(dǎo)、增強醫(yī)療服務(wù)方面也具有巨大潛力[15]。對于兒童頭頸外科學(xué),TORS的應(yīng)用由于受到多種因素的限制仍處于初始階段,但虛擬現(xiàn)實技術(shù)在優(yōu)化術(shù)前手術(shù)方案中則頗具優(yōu)勢。
綜上所述,近年來人工智能已逐漸滲透于耳鼻咽喉頭頸外科疾病的診斷及治療,且不囿于傳統(tǒng)的耳科、鼻科、咽喉科、頭頸外科等成人領(lǐng)域,而是在兒童疾病中橫向拓寬、縱深發(fā)展,并在臨床實踐中開始了初具規(guī)模的規(guī)范化應(yīng)用。其中在兒童耳科學(xué)、咽喉科學(xué)的疾病早期診斷和預(yù)后預(yù)測方面尤為突出,兒童中耳炎的診療、兒童聽力損傷測定、術(shù)前規(guī)劃與術(shù)后指導(dǎo)、遠程醫(yī)療等成為近年來的主要應(yīng)用方向。人工智能在兒童耳鼻咽喉頭頸外科呈現(xiàn)的應(yīng)用方向還囊括了人工智能參與的醫(yī)療保健、人工智能參與的遠程醫(yī)療協(xié)助等,且存在大片的空白領(lǐng)域有待探究。在精準(zhǔn)醫(yī)療已成為行業(yè)焦點的契機上,人工智能有助于提高精準(zhǔn)性的優(yōu)勢使得其在兒童耳鼻咽喉頭頸外科疾病中的發(fā)展勢不可擋,但在施行的可行性以及相關(guān)的倫理方面依然具有挑戰(zhàn)性,例如,缺乏及時有效的反饋機制、安全隱私的責(zé)任監(jiān)察體系、完備的法律法規(guī)等。再者,高昂的開發(fā)成本、維護工作的高風(fēng)險等壓力也使大多數(shù)醫(yī)療機構(gòu)望而卻步。然而伴隨著信息技術(shù)的跨步發(fā)展,人工智能在醫(yī)療保健和兒童患者教育方面的應(yīng)用前景將更加明朗。立足當(dāng)今醫(yī)學(xué)科學(xué)研究的角度展望未來,人工智能在兒童耳鼻咽喉頭頸外科相關(guān)領(lǐng)域的應(yīng)用,技術(shù)上亟須在優(yōu)化術(shù)前實踐、術(shù)后教育等方面尋求突破,同時應(yīng)進一步加強機器學(xué)習(xí)算法應(yīng)用的交互性以及實用性以將其更好地融入臨床指導(dǎo)。在倫理上,隨著人工智能應(yīng)用于臨床實踐的深入化,尤其是針對兒童疾病的診療,是否會逾越現(xiàn)今的倫理審查標(biāo)準(zhǔn),是否應(yīng)制定針對人工智能的更為全面的規(guī)范制度,值得商榷。歸根結(jié)底,人工智能在兒童耳鼻咽喉頭頸外科中的應(yīng)用具有廣闊的前景,但仍存在多個有待探索的真空領(lǐng)域,其研究以及實踐兼具創(chuàng)新性以及挑戰(zhàn)性,有待醫(yī)學(xué)研究者及臨床工作者的深入探索。
參 考 文 獻
[1] CROWSON M G, LIN V, CHEN J M, et al. Machine learning and cochlear implantation-a structured review of opportunities and challenges[J]. Otol Neurotol, 2020, 41(1): e36-e45. DOI: 10.1097/MAO.0000000000002440.
[2] WU Q, CHEN J, DENG H, et al. Expert-level diagnosis of nasal polyps using deep learning on whole-slide imaging[J]. J Allergy Clin Immunol, 2020, 145(2): 698-701.e6. DOI: 10.1016/j.jaci.2019.12.002.
[3] WU Q, CHEN J, REN Y, et al. Artificial intelligence for cellular phenotyping diagnosis of nasal polyps by whole-slide imaging[J]. EBioMedicine, 2021, 66: 103336. DOI: 10.1016/j.ebiom.2021.103336.
[4] KONG W, WU Q, CHEN Y, et al. Chinese central compartment atopic disease: the clinical characteristics and cellular endotypes based on whole-slide imaging[J]. J Asthma Allergy, 2022, 15: 341-352. DOI: 10.2147/JAA.S350837.
[5] WU Q, WANG X, LIANG G, et al. Advances in image-based artificial intelligence in otorhinolaryngology-head and neck surgery: a systematic review[J]. Otolaryngol Head Neck Surg, 2023, 169(5): 1132-1142. DOI: 10.1002/ohn.391.
[6] 吳慶武, 楊欽泰. 深度學(xué)習(xí)在耳鼻咽喉頭頸外科的應(yīng)用[J]. 中華耳鼻咽喉頭頸外科雜志,2020,55(10):980-984.DOI:10.3760/cma.j.cn115330-20200217-00097
WU Q W, YANG Q T. A contemporary review of deep learning in otorhinolaryngology-head and neck surgery[J]. Chin J Otorhinolaryngol Head Neck Surg, 2020, 55(10): 980-984. DOI: 10.3760/cma.j.cn115330-20200217-00097.
[7] 周文豪, 羅新, 梁桂賢,等. 人工智能在鼻科學(xué)圖像中的應(yīng)用[J]. 中華耳鼻咽喉頭頸外科雜志,2024,59(3):277-283.DOI:10.3760/cma.j.cn115330-20231025-00169
ZHOU W H, LUO X, LIANG G X, et al. Application of artificial intelligence in rhinology images[J]. Chin J Otorhinolaryngol Head Neck Surg, 2024, 59(3): 277-283. DOI: 10.3760/cma.j.cn115330-20231025-00169.
[8] SHAIKH N, CONWAY S J, KOVACEVIC J, et al. Development and validation of an automated classifier to diagnose acute otitis media in children[J]. JAMA Pediatr, 2024, 178(4): 401-407. DOI: 10.1001/jamapediatrics.2024.0011.
[9] ABOUSETTA A, EL KHOLY W, HEGAZY M, et al. A scoring system for cochlear implant candidate selection using artificial intelligence[J]. Hear Balance Commun, 2023, 21(2): 114-121. DOI: 10.1080/21695717.2023.2165371.
[10] ZENG J, KANG W, CHEN S, et al. A deep learning approach to predict conductive hearing loss in patients with otitis media with effusion using otoscopic images[J]. JAMA Otolaryngol Head Neck Surg, 2022, 148(7): 612-620. DOI: 10.1001/jamaoto.2022.0900.
[11] YE P, QIN H, ZHAN X, et al. Diagnosis of obstructive sleep apnea in children based on the XGBoost algorithm using nocturnal heart rate and blood oxygen feature[J]. Am J Otolaryngol, 2023, 44(2): 103714. DOI: 10.1016/j.
amjoto.2022.103714.
[12] TRAN T T, FANG T Y, PHAM V T, et al. Development of an automatic diagnostic algorithm for pediatric otitis media[J]. Otol Neurotol, 2018, 39(8): 1060-1065. DOI: 10.1097/MAO.0000000000001897.
[13] MOTHERSHAW A, SMITH A C, PERRY C F, et al. Does artificial intelligence have a role in telehealth screening of ear disease in indigenous children in Australia[J]. Aust J Otolaryngol, 2021, 4:38. DOI: 10.21037/ajo-21-14.
[14] MOISE A, CENTOMO-BOZZO A, ORISHCHAK O, et al. Can ChatGPT replace an otolaryngologist in guiding parents on tonsillectomy[J]. Ear Nose Throat J, 2024: 1455613241230841. DOI: 10.1177/01455613241230841.
[15] MOISE A, CENTOMO-BOZZO A, ORISHCHAK O, et al. Can ChatGPT guide parents on tympanostomy tube insertion[J]. Children, 2023, 10(10): 1634. DOI: 10.3390/children10101634.
[16] HABIB A R, CROSSLAND G, PATEL H, et al. An artificial intelligence computer-vision algorithm to triage otoscopic images from Australian aboriginal and torres strait islander children[J]. Otol Neurotol, 2022, 43(4): 481-488. DOI: 10.1097/MAO.0000000000003484.
[17] GOFFI-GOMEZ M V S, CORRêA F M D S, MAGALH?ES A T, et al. Is the spread of excitation different between adults and children cochlear implants users[J]. Eur Arch Otorhinolaryngol, 2024, 281(7): 3491-3498. DOI: 10.1007/s00405-024-08451-0.
[18] DHAR S, KOTHARI D, VASQUEZ M, et al. The utility and accuracy of ChatGPT in providing post-operative instructions following tonsillectomy: a pilot study[J]. Int J Pediatr Otorhinolaryngol, 2024, 179: 111901. DOI: 10.1016/j.ijporl.2024.111901.
[19] CROWSON M G, BATES D W, SURESH K, et al. “Human vs machine” validation of a deep learning algorithm for pediatric middle ear infection diagnosis[J]. Otolaryngol Head Neck Surg, 2023, 169(1): 41-46. DOI: 10.1177/01945998221119156.
[20] WU Z, LIN Z, LI L, et al. Deep learning for classification of pediatric otitis media[J]. Laryngoscope, 2021, 131(7): E2344-E2351. DOI: 10.1002/lary.29302.
[21] WU Y, JIA Y, NING X, et al. Detection of pediatric obstructive sleep apnea using a multilayer perceptron model based on single-channel oxygen saturation or clinical features[J]. Methods, 2022, 204: 361-367. DOI: 10.1016/j.ymeth.2022.04.017.
[22] WIMALARATHNA H, ANKMNAL-VEERANNA S, ALLAN C, et al. Comparison of machine learning models to classify auditory brainstem responses recorded from children with auditory processing disorder[J]. Comput Methods Programs Biomed, 2021, 200: 105942. DOI: 10.1016/j.cmpb.2021.105942.
[23] TESSLER I, WOLFOVITZ A, ALON E E, et al. ChatGPT’s adherence to otolaryngology clinical practice guidelines[J]. Eur Arch Otorhinolaryngol, 2024, 281(7): 3829-3834. DOI: 10.1007/s00405-024-08634-9.
[24] SURESH K, WU M P, BENBOUJJA F, et al. AI model versus clinician otoscopy in the operative setting for otitis media diagnosis[J]. Otolaryngol Head Neck Surg, 2024, 170(6): 1598-1601. DOI: 10.1002/ohn.559.
[25] SKIDMORE J, XU L, CHAO X, et al. Prediction of the functional status of the cochlear nerve in individual cochlear implant users using machine learning and electrophysiological measures[J]. Ear Hear, 2021, 42(1): 180-192. DOI: 10.1097/AUD.0000000000000916.
[26] QIN H, ZHANG L, LI X, et al. Pediatric obstructive sleep apnea diagnosis: leveraging machine learning with linear discriminant analysis[J]. Front Pediatr, 2024, 12: 1328209. DOI: 10.3389/fped.2024.1328209.
[27] PITATHAWATCHAI P, CHAICHULEE S, KIRTSREESAKUL V. Robust machine learning method for imputing missing values in audiograms collected in children[J]. Int J Audiol, 2022, 61(1): 66-77. DOI: 10.1080/14992027.2021.1884909.
[28] MU Y, JIANG W, LIN H, et al. Wideband acoustic immittance characteristics and machine learning-based diagnostic model for children with large vestibular aqueduct syndrome[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(3): 207-211,216. DOI: 10.13201/j.issn.2096-7993.2024.03.005.
[29] LI Y, LIU X, ZHUANG X H, et al. Assessment of low-dose paranasal sinus CT imaging using a new deep learning image reconstruction technique in children compared to adaptive statistical iterative reconstruction V (ASiR-V)[J]. BMC Med Imaging, 2022, 22(1): 106. DOI: 10.1186/s12880-022-00834-1.
[30] LEONARDIS R L, DUVVURI U, MEHTA D. Transoral robotic-assisted lingual tonsillectomy in the pediatric population[J]. JAMA Otolaryngol Head Neck Surg, 2013, 139(10): 1032-1036. DOI: 10.1001/jamaoto.2013.4924.
[31] JOHNSTON D R, MAURRASSE S E, MADDALOZZO J M. Avascular midline oropharyngeal anatomy allows for expanded indications for transoral robotic surgery in pediatric patients[J]. J Robot Surg, 2023, 17(4): 1803-1808. DOI: 10.1007/s11701-023-01603-0.
[32] JIN F Q, HUANG O, KLEINDIENST ROBLER S, et al. A hybrid deep learning approach to identify preventable childhood hearing loss[J]. Ear Hear, 2023, 44(5): 1262-1270. DOI: 10.1097/AUD.0000000000001380.
[33] HENNOCQ Q, BONGIBAULT T, MARLIN S, et al. AI-based diagnosis in mandibulofacial dysostosis with microcephaly using external ear shapes[J]. Front Pediatr, 2023, 11: 1171277. DOI: 10.3389/fped.2023.1171277.
[34] GOYAL N, GOLDENBERG D, RUSZKAY N, et al. Can a flexible surgical robot be used in the pediatric population: a feasibility study[J]. Int J Pediatr Otorhinolaryngol, 2022, 159: 111206. DOI: 10.1016/j.ijporl.2022.111206.
[35] FU R, BANDOS A, LEADER J K, et al. Artificial intelligence automation of proptosis measurement: an indicator for pediatric orbital abscess surgery[J]. Ophthalmol Ther, 2023, 12(5): 2479-2491. DOI: 10.1007/s40123-023-00754-5.
[36] FENG G, INGVALSON E M, GRIECO-CALUB T M, et al. Neural preservation underlies speech improvement from auditory deprivation in young cochlear implant recipients[J]. Proc Natl Acad Sci U S A, 2018, 115(5): E1022-E1031. DOI: 10.1073/pnas.1717603115.
[37] FAUST R A, RAHBAR R. Robotic surgical technique for pediatric laryngotracheal reconstruction[J]. Otolaryngol Clin North Am, 2008, 41(5): 1045-1051, xi. DOI: 10.1016/j.otc.2008.04.005.
[38] CROWSON M G, HARTNICK C J, DIERCKS G R, et al. Machine learning for accurate intraoperative pediatric middle ear effusion diagnosis[J]. Pediatrics, 2021, 147(4): e2020034546. DOI: 10.1542/peds.2020-034546.
[39] CROWSON M G, GIPSON K S, KADOSH O K, et al. Paediatric sleep apnea event prediction using nasal air pressure and machine learning[J]. J Sleep Res, 2023, 32(4): e13851. DOI: 10.1111/jsr.13851.
[40] CHANG K M, SURAPANENI S S, SHAIKH N, et al. Pediatric tympanostomy tube assessment via deep learning[J]. Am J Otolaryngol, 2024, 45(4): 104334. DOI: 10.1016/j.amjoto.2024.104334.
[41] CAMALAN S, NIAZI M K K, MOBERLY A C, et al. OtoMatch: content-based eardrum image retrieval using deep learning[J]. PLoS One, 2020, 15(5): e0232776. DOI: 10.1371/journal.pone.0232776.
[42] ZDANSKI C J, AUSTIN G K, WALSH J M, et al. Transoral robotic surgery for upper airway pathology in the pediatric population[J]. Laryngoscope, 2017, 127(1): 247-251. DOI: 10.1002/lary.26101.
[43] THOTTAM P J, GOVIL N, DUVVURI U, et al. Transoral robotic surgery for sleep apnea in children: is it effective[J]. Int J Pediatr Otorhinolaryngol, 2015, 79(12): 2234-2237. DOI: 10.1016/j.ijporl.2015.10.010.
[44] TAN L, HOLLAND S K, DESHPANDE A K, et al. A semi-supervised Support Vector Machine model for predicting the language outcomes following cochlear implantation based on pre-implant brain fMRI imaging[J]. Brain Behav, 2015, 5(12): e00391. DOI: 10.1002/brb3.391.
[45] RAHBAR R, FERRARI L R, BORER J G, et al. Robotic surgery in the pediatric airway: application and safety[J]. Arch Otolaryngol Head Neck Surg, 2007, 133(1): 46-50;discussion 50. DOI: 10.1001/archotol.133.1.46.
[46] PETRONE P, BIROCCHI E, MIANI C, et al. Diagnostic and surgical innovations in otolaryngology for adult and paediatric patients during the COVID-19 era[J]. Acta Otorhinolaryngol Ital, 2022, 42(Suppl. 1): S46-S57. DOI: 10.14639/0392-100X-suppl.1-42-2022-05.
[47] EZZIBDEH R, MUNJAL T, AHMAD I, et al. Artificial intelligence and tele-otoscopy: a window into the future of pediatric otology[J]. Int J Pediatr Otorhinolaryngol, 2022, 160: 111229. DOI: 10.1016/j.ijporl.2022.111229.
[48] BLEBEA C M, UJVARY L P, NECULA V, et al. Current concepts and future trends in increasing the benefits of cochlear implantation: a narrative review[J]. Medicina, 2022, 58(6): 747. DOI: 10.3390/medicina58060747.
[49] ESHRAGHI A A, NAZARIAN R, TELISCHI F F, et al. The cochlear implant: historical aspects and future prospects[J]. Anat Rec, 2012, 295(11): 1967-1980. DOI: 10.1002/ar.22580.
[50] TESSLER I, GECEL N A, GLICKSBERG B S, et al. A five-decade text mining analysis of cochlear implant research: where we started and where we are heading[J]. Medicina, 2023, 59(11): 1891. DOI: 10.3390/medicina59111891.
[51] NGOMBU S, BINOL H, GURCAN M N, et al. Advances in artificial intelligence to diagnose otitis media: state of the art review[J]. Otolaryngol Head Neck Surg, 2023, 168(4): 635-642. DOI: 10.1177/01945998221083502.
[52] DUAN B, XU Z, PAN L, et al. Prediction of hearing prognosis of large vestibular aqueduct syndrome based on the PyTorch deep learning model[J]. J Healthc Eng, 2022, 2022: 4814577. DOI: 10.1155/2022/4814577.
[53] SIMON F, NGUYEN Y, LOUNDON N, et al. Robot-assisted transcanal endoscopic ear surgery for congenital cholesteatoma [J]. J Vis Exp, 2023(202). DOI: 10.3791/64861.
[54] SZCZYKUTOWICZ T P. Invited commentary on “advanced CT techniques for decreasing radiation dose, reducing sedation requirements, and optimizing image quality in children”[J]. Radiographics, 2019, 39(3): 727-728. DOI: 10.1148/rg.2019180211.
[55] NAGAYAMA Y, ODA S, NAKAURA T, et al. Radiation dose reduction at pediatric CT: use of low tube voltage and iterative reconstruction[J]. Radiographics, 2018, 38(5): 1421-1440. DOI: 10.1148/rg.2018180041.
[56] MONTEVECCHI F, BELLINI C, MECCARIELLO G, et al. Transoral robotic-assisted tongue base resection in pediatric obstructive sleep apnea syndrome: case presentation, clinical and technical consideration[J]. Eur Arch Otorhinolaryngol, 2017, 274(2): 1161-1166. DOI: 10.1007/s00405-016-4269-x.
[57] KONUTHULA N, PARIKH S R, BLY R A. Robotics in pediatric otolaryngology-head and neck surgery and advanced surgical planning [J]. Otolaryngol Clin North Am, 2020, 53(6): 1005-1016. DOI: 10.1016/j.otc.2020.07.011.
[58] MARCUS C L, BROOKS L J, DRAPER K A, et al. Diagnosis and management of childhood obstructive sleep apnea syndrome[J].
Pediatrics, 2012, 130(3): 576-584. DOI: 10.1542/peds.
2012-1671.
[59] TAN H L, GOZAL D, KHEIRANDISH-GOZAL L. Obstructive sleep apnea in children: a critical update[J]. Nat Sci Sleep, 2013, 5: 109-123. DOI: 10.2147/NSS.S51907.
[60] HOCKSTEIN N G, O’MALLEY B W, Jr, WEINSTEIN G S. Assessment of intraoperative safety in transoral robotic surgery[J]. Laryngoscope, 2006, 116(2): 165-168. DOI: 10.1097/01.mlg.0000199899.00479.75.
[61] VICINI C, DALLAN I, CANZI P, et al. Transoral robotic surgery of the tongue base in obstructive sleep Apnea-Hypopnea syndrome: anatomic considerations and clinical experience[J]. Head Neck, 2012, 34(1): 15-22. DOI: 10.1002/hed.21691.
[62] MEHTA D, DUVVURI U. Robotic surgery in pediatric otolaryngology: emerging trends[J]. Laryngoscope, 2012, 122(Suppl 4): S105-S106. DOI: 10.1002/lary.23806.
(責(zé)任編輯:洪悅民)