摘要: 針對環(huán)境的自凈作用很難消除廢水中的四環(huán)素從而實現(xiàn)水質(zhì)凈化的問題," 開發(fā)設(shè)計一種新型污水處理劑. 以4,4′,4″,4′′′\|(喹喔啉\|2,3,6,7\|四基)四苯甲酸為有機配體, Mn(Ⅱ)為金屬中心離子合成一種新型金屬有機骨架(MOFs)材料[Mn2(TCPQ)(H2O)8]·xsolvent. 利用粉末X射線衍射、 X射線單晶衍射、 Fourier變換紅外光譜及熱重對該材料的結(jié)構(gòu)和穩(wěn)定性進(jìn)行研究, 并分析其光催化性能. 實驗結(jié)果表明, 在可見光照射30 min時, 所制備MOFs材料對四環(huán)素的降解率可達(dá)97.5%, 該化合物可作為一種優(yōu)異的降解四環(huán)素材料.
關(guān)鍵詞:" 金屬有機骨架材料; 光催化; 四環(huán)素
中圖分類號: O614" 文獻(xiàn)標(biāo)志碼: A" 文章編號: 1671-5489(2024)03-0734-08
Synthesis of a Novel Mn(Ⅱ)\|Based Metal\|Organic Framework Materials and Its Photocatalytic Degradation Performance of Tetracycline
WANG Lishan," GUO Huadong
(College of Chemistry, Changchun Normal University, Changchun 130032," China)
收稿日期: 2023\|11\|29." 網(wǎng)絡(luò)首發(fā)日期: 2024\|02\|23.
第一作者簡介: 王麗珊(1998—)," 女, 漢族, 碩士研究生, 從事金屬有機骨架化合物的研究," E\|mail: wls9889@163.com.
通信作者簡介:""" 郭華東(1978—), 男, 漢族, 博士, 教授, 從事有機/無機功能材料的研究, E\|mail: hdxmguo@163.com.
基金項目:""" 吉林省自然科學(xué)基金(批準(zhǔn)號: YDZJ202201ZYTS646)和長春師范大學(xué)研究生科研創(chuàng)新項目(批準(zhǔn)號: 2022093).
網(wǎng)絡(luò)首發(fā)地址:" https://link.cnki.net/urlid/22.1340.o.20240221.1452.001.
Abstract:
Aiming at the problem that it was difficult to eliminate tetracycline in wastewater and achieve water quality purification through self\|purification of the environment, we developed and designed a" new type of sewage treatment agents. A novel metal\|organic framework (MOF) material [Mn2(TCPQ)(H2O)8]·xsolvent" was synthesized by 4,4′,4″,4′′′\|(quinoxalin\|2,3,6,7\|tetrayl)tetrabenzoic acid as the organic ligand and Mn(Ⅱ) as the metal center ion. The structure and stability of the material were studied by using powder X\|ray diffraction," X\|ray single crystal diffraction, Fourier transform infrared spectroscopy and thermogravimetry," and its photocatalytic performance was analyzed. The experimental results show that the degradation rate of tetracycline by the prepared MOFs material can reach 97.5% when exposed to visible light for 30 min. The compound can be used as an excellent" material for the degradation of tetracycline.
Keywords:" metal\|organic framework material; photocatalysis; tetracycline
近年來, 隨著工業(yè)發(fā)展和農(nóng)畜行業(yè)進(jìn)程的加快, 環(huán)境污染越來越嚴(yán)重, 已引起人們廣泛關(guān)注[1\|2]. 其中四環(huán)素(TC)是廢水中的主要污染物之一, 由于四環(huán)素的分子結(jié)構(gòu)穩(wěn)定, 在廢水中不易分解, 因此會引起生態(tài)毒理學(xué)效應(yīng), 從而抑制水中微生物的生長, 危害環(huán)境, 甚至可對人體健康構(gòu)成潛在威脅[3\|5]. 目前, 處理四環(huán)素的方法主要有吸附法[6]、 高級氧化法[7]、 膜過濾法[8]和光催化降解法[9]. 其中, 吸附法、 過濾法和高級氧化法存在能耗高、" 降解不徹底且可能會產(chǎn)生二次污染的問題. 光催化降解法是利用光能使催化劑產(chǎn)生強氧化能力的活性物種分解四環(huán)素, 具有高效、 催化條件簡單、 無二次污染等優(yōu)點[10\|14].
金屬有機骨架材料(metal\|organic frameworks," MOFs)具有結(jié)構(gòu)的可設(shè)計性、 易于功能化、 高孔隙率等優(yōu)點, 在熒光傳感、 氣體吸附、 分離和催化等方面應(yīng)用前景廣泛[15\|20]. 選擇具有大共軛π鍵的有機配體與金屬離子配位合成的MOFs材料, 具有比表面積大、" 電子和空穴復(fù)合較慢的特點, 從而在光催化方面表現(xiàn)出較強的氧化還原能力[21\|26]. 本文以4,4′,4″,4′′′\|(喹喔啉\|2,3,6,7\|四基)四苯甲酸(H4TCPQ)為有機配體, 將其與錳金屬離子配位, 成功合成一種新型的金屬有機骨架材料[Mn2(TCPQ)(H2O)8]·xsolvent, 并利用粉末X射線衍射、 X射線單晶衍射、 Fourier變換紅外光譜和熱重等方法對合成的化合物進(jìn)行表征," 研究該MOFs材料的結(jié)構(gòu)和對四環(huán)素的催化降解性能.
1" 實" 驗
1.1" 試劑與儀器
所用的化學(xué)藥品和試劑均為分析純. H4TCPQ根據(jù)文獻(xiàn)[27]方法合成. 六水合硝酸錳、 四環(huán)素水合物(TC)、 氯化硝基四氮唑藍(lán)(NBT)和三乙醇胺(TEOA)購自國藥集團(tuán)化學(xué)試劑有限公司, 異丙醇(IPA)、 甲醇、 N,N\|二甲基甲酰胺(DMF)和硝酸購自天津市致遠(yuǎn)化學(xué)試劑有限公司.
Bruker D2 Phaser型粉末X射線衍射儀(PXRD, 德國布魯克公司); TGA Q600型熱重分析儀(TGA, 美國TA公司); Perkin\|Elmer 580B型紅外光譜分析儀(FT\|IR, 美國安捷倫科技有限公司); Smart ApexⅡ X射線單晶衍射儀(德國布魯克公司); Bruker EMX\|nano型電子順磁共振儀(EPR, 德國布魯克公司); UV\|3101 PC分光光度計(日本島津公司).
1.2" [Mn2(TCPQ)(H2O)8]·xsolvent的制備
將H4TCPQ(0.05 mmol, 0.030 5 g), Mn(NO3)2·6H2O (0.05 mmol, 0.012 0 g), DMF(5 mL), 0.5 mol/L HNO3(1 mL)和水(1 mL)加入20 mL反應(yīng)釜中, 于80 ℃加熱48 h. 冷卻至室溫, 將白色晶體用甲醇洗滌, 50 ℃干燥10 h, 即得[Mn2(TCPQ)(H2O)8]·xsolvent, 記為化合物1.
1.3" 光催化實驗
光催化降解TC: 在30 mL TC (50 mg/L) 水溶液中加入20 mg化合物1. 置于暗處攪拌60" min, 使其達(dá)到吸附脫附平衡. 采用300 W氙燈并利用濾光片濾除低于420 nm的入射光, 間隔一定時間取出2 mL上清液通過紫外\|可見吸收光譜(UV\|Vis)測定溶液濃度.
1.4" 晶體數(shù)據(jù)收集與解析
挑選結(jié)晶度高且形狀規(guī)整、 大小合適的晶體樣品在液氮條件下使用X射線單晶衍射儀進(jìn)行單晶結(jié)構(gòu)表征, 其輻射光源為石墨單色器Mo\|Kα. 利用直接法通過SHELXL程序解析化合物1的結(jié)構(gòu)[28], 并采用Olex2程序中全矩陣最小二乘法對晶體結(jié)構(gòu)進(jìn)行精修, 用各向異性溫度參數(shù)對所有非氫原子進(jìn)行精修, 所有氫原子通過理論加氫得到. 利用Platon程序中的“SQUEEZE”命令刪除孔道中的溶劑分子[29]. 化合物1的分子式、 晶體學(xué)數(shù)據(jù)以及部分鍵長和鍵角分別列于表1~表3.
2" 結(jié)果與討論
2.1" 化合物1的晶體結(jié)構(gòu)
X射線單晶衍射分析表明, 化合物1結(jié)晶于六方晶系P65空間群(表1). 在不對稱單元中, 存在2種晶體學(xué)獨立的Mn原子和1個晶體學(xué)獨立的TCPQ4-陰離子. 化合物1的晶體結(jié)構(gòu)如圖1所示.
由圖1(A)可見: Mn1采取變形八面體的配位模式, 與來自4個TCPQ4-陰離子的羧基氧原子以及2個端基水分子進(jìn)行配位; Mn2采取變形四面體的配位模式, 與來自4個TCPQ4-陰離子的羧基氧原子進(jìn)行配位. Mn1和Mn2通過橋聯(lián)的氧原子相連形成雙核金屬簇, 這些金屬簇被羧基依次相連形成一維鏈(圖1(B)). 由圖1(C)可見, 這些鏈狀體與TCPQ4-陰離子連接形成三維網(wǎng)絡(luò)結(jié)構(gòu). 由圖1(D)可見, 在該結(jié)構(gòu)中, 沿垂直紙面向外方向, TCPQ4-陰離子呈一維緊密堆積, 相鄰苯并吡嗪基團(tuán)之間的質(zhì)心距離約為0.39 nm.
2.2" 化合物1的基本表征
化合物1的PXRD譜和FT\|IR譜如圖2所示. 由圖2(A)可見, 實驗測得化合物1的PXRD譜與模擬晶體結(jié)構(gòu)的理論圖相符, 說明合成化合物1的純度很高. 將化合物1浸泡在水中2 d, 其峰值雖然有所降低, 但其晶型仍保持完整, 說明其在水中的穩(wěn)定性良好. 由圖2(B)可見: 3 430 cm-1處的寬峰歸屬于O—H鍵, 是由材料中殘留的水分子所致; 1 660,1 580,1 540 cm-1處的峰歸屬于苯環(huán)上的CC伸縮振動; 1 140,945 cm-1處的峰歸屬于吡嗪環(huán)上C—N鍵的伸縮振動[30].
化合物1在空氣中穩(wěn)定存在, 并能保持完整的晶型. 對化合物1的熱穩(wěn)定性進(jìn)行熱重測試. 圖3為化合物1在N2氛圍下獲得的熱重曲線.
由圖3可見, 在25~320 ℃內(nèi)的失質(zhì)量(21.5%)可歸屬于游離的溶劑分子, 在480~550 ℃內(nèi)的失質(zhì)量是由樣品骨架坍塌所致. 可見化合物1的熱穩(wěn)定性較好.
2.3" 固體紫外\|可見漫反射光譜分析
固體紫外\|可見漫反射光譜(UV\|Vis DRS)可檢測材料的光吸收范圍, 化合物1的UV\|Vis DRS如圖4所示. 由圖4(A)可見, 有機配體H4TCPQ的光吸收范圍在200~440 nm, 化合物1的光吸收范圍約在200~450 nm. 利用(αhυ)2\|hυ曲線研究化合物1的帶隙, 由圖4(B)可見, 化合物1的帶隙寬度(Eg =2.74 eV)比H4TCPQ略低(Eg =2.81 eV), 可見化合物1具有較強的吸收光子能力.
2.4" 光催化降解TC性能及機理
基于該化合物優(yōu)良的光學(xué)性能, 考察化合物1對溶液中四環(huán)素的光催化性能, 結(jié)果如圖5所示." 由圖5(A)和(B)可見:" 可見光照射30 min時, 化合物1對溶液中四環(huán)素的降解率高達(dá)97.5%, 而H4TCPQ對四環(huán)素基本沒有降解活性. 利用
lnρ0ρ=kt
計算化合物1降解四環(huán)素動力學(xué)常數(shù), 結(jié)果如圖5(C)所示, 其中ρ0為TC的初始質(zhì)量濃度(mg/L), ρ為反應(yīng)t min時TC的質(zhì)量濃度(mg/L)," k為反應(yīng)速率常數(shù)(min-1), t 為反應(yīng)時間(min).
由圖5(C)可見, 速率常數(shù)k=0.135 min-1, R2=0.985. 化合物1與其他MOFs光催化劑的催化性能對比列于表4. 由表4可見, 所合成的化合物1 催化性能較好.
作為非均相催化劑, 化合物1可通過離心分離并用甲醇洗滌數(shù)次, 60 ℃真空干燥12 h用于下次循環(huán). 化合物1光催化降解TC的5次循環(huán)測試結(jié)果如圖6所示.
由圖6可見, 循環(huán)使用5次后, 該催化劑仍能保持較高的催化活性." 在光催化反應(yīng)過程中, 通過自由基捕捉實驗可確定起主要作用的活性物種.
分別選擇NBT,IPA和TEOA作為超氧自由基(O·-2)、" 羥基自由基(·OH)以及空穴(h+)的捕獲劑, 結(jié)果如圖7所示.
由圖7可見, 四環(huán)素的降解率從97.5%分別下降到13.9%,85.7%,93.57%, 說明O·-2和·OH是化合物1光催化降解四環(huán)素的主要活性物種.
通過EPR測量可進(jìn)一步確認(rèn)參與反應(yīng)的活性物種. 化合物1的EPR自由基檢測結(jié)果如圖8所示." 由圖8可見, 利用5,5\|二甲基\|1\|吡咯啉\|N\|氧化物(DMPO)作為自由基的檢測探針, 可見光照射化合物1的水溶液2 min后, 可明顯觀察到加和中間體DMPO\|O·-2和 DMPO\|·OH的檢測信號, 該結(jié)果與捕獲實驗相吻合, 進(jìn)一步證明了O·-2和·OH在光催化四環(huán)素中起主要作用.
綜上所述, 本文基于有機配體H4TCPQ與Mn金屬離子配位合成了新型的金屬有機骨架化合物([Mn2(TCPQ)(H2O)8]·xsolvent). 該化合物在水溶液中具有優(yōu)良的穩(wěn)定性. 由于有機配體的緊密堆積, 促進(jìn)了光生電子的產(chǎn)生和快速轉(zhuǎn)移, 因此該化合物具有較寬的可見光吸收范圍和較窄的帶隙. 該化合物對水中的四環(huán)素呈優(yōu)良的光催化活性. 結(jié)果表明, 在可見光照射30 min時, 降解TC的效率達(dá)到97.5%, 通過機理實驗和EPR檢測, 確定了O·-2和·OH為主要活性物種. 本文研究結(jié)果對設(shè)計新型可見光驅(qū)動的催化劑高效催化降解水體中的有機污染物有一定的借鑒作用.
參考文獻(xiàn)
[1]" SAHOO R," MONDAL S," MUKHERJEE D," et al. Metal\|Organic Frameworks for CO2 Separation from Flue and Biogas Mixtures [J]. Advanced Functional Materials," 2022," 32(45):" 2207197\|1\|2207197\|74.
[2]" SHIRKHODAIE M," SEIDI S," SHEMIRANI F," et al. Environmental Contaminant Analysis:" Concerns Inspiring the Emergence of MOF Composites [J]. TrAC Trends in Analytical Chemistry," 2023," 164:" 117109\|1\|117109\|18.
[3]" LIU Y Y," ZOU H Y," MA H Y," et al. Highly Efficient Activation of Peroxymonosulfate by MOF\|Derived CoP/CoOx Heterostructured Nanoparticles for the Degradation of Tetracycline [J]. Chemical Engineering Journal," 2022," 430:" 132816\|1\|132816\|13.
[4]" ZHOU Y," YANG Q," ZHANG D N," et al. Detection and Removal of Antibiotic Tetracycline in Water with a Highly Stable Luminescent MOF [J]. Sensors and Actuators B:" Chemical," 2018," 262:" 137\|143.
[5]" ZHU K," FAN R Q," WU J K," et al. MOF\|on\|MOF Membrane with Cascading Functionality for Capturing Dichromate Ions and P\|Arsanilic Acid Turn\|On Sensing [J]. ACS Applied Materials amp; Interfaces," 2020," 12(52):" 58239\|58251.
[6]" MUNOZSENMACHE J C," KIM S," ARRIETAPEREZ R R," et al. Activated Carbon\|Metal Organic Framework Composite for the Adsorption of Contaminants of Emerging Concern from Water [J]. ACS Applied Nano Materials," 2020," 3(3):" 2928\|2940.
[7]" CARBAJO J," QUINTANILLA A," CASAS J A. Characterization of the Gas Effluent in the Treatment of Nitrogen Containing Pollutants in Water by Fenton Process [J]. Separation and Purification Technology," 2019," 221:" 269\|274.
[8]" ZHENG J J," WANG Z W," MA J X," et al. Development of an Electrochemical Ceramic Membrane Filtration System for Efficient Contaminant Removal from Waters [J]. Environmental Science amp; Technology," 2018," 52(7):" 4117\|4126.
[9]" ALGHAFRI B," BORA T," SATHE P," et al. Photocatalytic Microbial Removal and Degradation of Organic Contaminants of Water Using PES Fibers [J]. Applied Catalysis B:" Environmental," 2018," 233:" 136\|142.
[10]" L S W," LIU J M," ZHAO N,nbsp; et al. Benzothiadiazole Functionalized Co\|Doped MIL\|53\|NH2 with Electron Deficient Units for Enhanced Photocatalytic Degradation of Bisphenol A and Ofloxacin under Visible Light [J]. Journal of Hazardous Materials," 2020," 387:" 122011\|1\|122011\|11.
[11]" QIAN Y T," ZHANG F F," PANG H. A Review of MOFs and Their Composites\|Based Photocatalysts:" Synthesis and Applications [J]. Advanced Functional Materials," 2021," 31(37):" 2104231\|1\|2104231\|34.
[12]" WEN M C," LI G Y," LIU H L," et al. Metal\|Organic Framework\|Based Nanomaterials for Adsorption and Photocatalytic Degradation of Gaseous Pollutants:" Recent Progress and Challenges [J]. Environmental Science:" Nano," 2019," 6(4):" 1006\|1025.
[13]" 董雙石, 付紹珠, 于洋, 等. 還原氧化石墨烯復(fù)合方式對Ag\|TiO2 基光電極電子傳輸性能的影響" [J]. 吉林大學(xué)學(xué)報(地球科學(xué)版), 2020, 50(1): 234\|242. (DONG S S, FU S Z, YU Y, et al. Effect of Reduced Graphene Oxide Composite Method on Electron Transport Performance of Ag\|TiO2 Based Photoelectrodes [J]. Journal of Jilin University (Earth Science Edition), 2020, 50(1):
234\|242.)
[14]" 胡長朝, 蔡露, 李鈺, 等. NH2\|UiO\|66/BiOBr/Bi2S3光催化劑的合成及其光催化性能 [J]. 西華大學(xué)學(xué)報(自然科學(xué)版), 2022, 41(4): 1\|10. (HU C C, CAI L, LI Y, et al. Study on Synthesis and Photocatalytic Performance of NH2\|UiO\|66/BiOBr/Bi2S3 Photocatalyst [J]. Journal of Xihua University (Natural Science Edition), 2022, 41(4): 1\|10.)
[15]" PAL T K. Metal\|Organic Framework (MOF)\|Based Fluorescence “Turn\|On” Sensors [J]. Materials Chemistry Frontiers," 2023," 7(3):" 405\|441.
[16]" QASEM N A A," BEN M R," HABIB M A. An Efficient CO2 Adsorptive Storage Using MOF\|5 and MOF\|177 [J]. Applied Energy," 2018," 210:" 317\|326.
[17]" ZHANG H," LUO Y H," CHEN F Y," et al. Enhancing the Spatial Separation of Photogenerated Charges on Fe\|Based MOFs via Structural Regulation for Highly\|Efficient Photocatalytic Cr(Ⅵ) Reduction [J]. Journal of Hazardous Materials," 2023," 441:" 129875\|1\|129875\|11.
[18]" QIAN Q H," ASUNGER P A," LEE M J," et al. MOF\|Based Membranes for Gas Separations [J]. Chemical Reviews," 2020," 120(16):" 8161\|8266.
[19]" 許汐龍, 方嘉, 衣程程, 等. 金屬有機骨架材料吸附CO2的研究進(jìn)展 [J]. 西華大學(xué)學(xué)報(自然科學(xué)版), 2024, 43(2): 39\|49. (XU X L, FANG J, YI C C, et al. Research Progress of CO2 Adsorption Technology of Metal\|Organic Frameworks Materials [J]. Journal of Xihua University (Natural Science Edition), 2024, 43(2): 39\|49.)
[20]" 宋志強, 王玉高, 張宇姝, 等. 活性炭/金屬有機骨架復(fù)合吸附材料的制備及其CH4/N2吸附分離性能研究 [J]. 低碳化學(xué)與化工, 2023, 48(5): 163\|175." (SONG Z Q, WANG Y G, ZHANG Y S, et al. Study on Preparation of Activated Carbon/Metal\|Organic Frameworks Composite Adsorbent Materials and Their CH4/N2 Adsorption and Separation Performance [J]. Low\|Carbon Chemistry and Chemical Engineering, 2023, 48(5): 163\|175.)
[21]" ZHANG J," YAO S," LIU S," et al. Enhancement of Gas Sorption and Separation Performance via Ligand Functionalization within Highly Stable Zirconium\|Based Metal\|Organic Frameworks [J]. Crystal Growth amp; Design," 2017," 17(4):" 2131\|2139.
[22]" SONG M Y," WANG L J," LI J X," et al. Defect Density Modulation of La2TiO5:" An Effective Method to Suppress Electron\|Hole Recombination and Improve Photocatalytic Nitrogen Fixation [J]. Journal of Colloid and Interface Science," 2021," 602:" 748\|755.
[23]" HAN D L," HAN Y J," LI J," et al. Enhanced Photocatalytic Activity and Photothermal Effects of Cu\|Doped Metal\|Organic Frameworks for Rapid Treatment of Bacteria\|Infected Wounds [J]. Applied Catalysis B:" Environmental," 2020," 261:" 118248\|1\|118248\|12.
[24]" HE Y Y," DONG W B," LI X P," et al. Modified MIL\|100(Fe) for Enhanced Photocatalytic Degradation of Tetracycline under Visible\|Light Irradiation [J]. Journal of Colloid and Interface Science," 2020," 574:" 364\|376.
[25]" 王玉清, 姜淼, 吳剛強, 等. Co基催化劑在氫甲?;磻?yīng)中的應(yīng)用研究進(jìn)展 [J]. 低碳化學(xué)與化工, 2023, 48(2): 52\|61. (WANG Y Q, JIANG M, WU G Q, et al. Research Progress on Application of Co\|Based Catalysts in Hydroformylation Reaction [J]. Low\|Carbon Chemistry and Chemical Engineering, 2023, 48(2): 52\|61.)
[26]" 張愛紅, 楊勇, 何安幫, 等. 雙金屬ZIF衍生的 ZnxCoy/N\|C催化劑及其高效電催化還原CO2制CO的性能研究 [J]. 低碳化學(xué)與化工, 2023, 48(3): 62\|68. (ZHANG A H, YANG Y, HE A B, et al. Study on Bimetallic ZIF\|Derived ZnxCoy/N\|C Catalyst and Its High Efficiency Electrocatalytic Reduction of CO2 to CO [J]. Low\|Carbon Chemistry and Chemical Engineering,
2023, 48(3): 62\|68.)
[27]" MI S Y," WANG L S," GUO H D," et al. AIE\|Photoactive Metal\|Organic Framework for the Efficient Elimination of Cr(Ⅵ) and Tetracycline in an Aqueous Solution [J]. Crystal Growth amp; Design," 2023," 24(1):" 405\|413.
[28]" SHELDRICK G M. Crystal Structure Refinement with SHELXL [J]. Acta Crystallographica Section C:" Structural Chemistry," 2015," 71(1):" 3\|8.
[29]" SPEK A L. Structure Validation in Chemical Crystallography [J]. Acta Crystallographica Section D:" Biological Crystallography," 2009," 65(2):" 148\|155.
[30]" AKBARI B F," GHOLAMI A," AYATI A," et al. UV\|Switchable Phosphotungstic Acid Sandwiched between ZIF\|8 and Au Nanoparticles to Improve Simultaneous Adsorption and UV Light Photocatalysis toward Tetracycline Degradation [J]. Microporous and Mesoporous Materials," 2020, 303:" 110275\|1\|110275\|9.
[31]" HUO P W," GUAN J R," ZHOU M J," et al. Carbon Quantum Dots Modified CdSe Loaded Reduced Graphene Oxide for Enhancing Photocatalytic Activity [J]. Journal of Industrial and Engineering Chemistry," 2017," 50:" 147\|154.
[32]" WANG J," ZHANG G K," LI J," et al. Novel Three\|Dimensional Flowerlike BiOBr/Bi2SiO5 p\|n Heterostructured Nanocomposite for Degradation of Tetracycline:" Enhanced Visible Light Photocatalytic Activity and Mechanism [J]. ACS Sustainable Chemistry amp; Engineering," 2018," 6(11):" 14221\|14229.
[33]" WANG D B," JIA F Y," WANG H," et al. Simultaneously Efficient Adsorption and Photocatalytic Degradation of Tetracycline by Fe\|Based MOFs [J]. Journal of Colloid and Interface Science," 2018," 519:" 273\|284.
[34]" HOU C T," YUAN X P," NIU M M," et al. In situ Composite of Co\|MOF on a Ti\|Based Material for Visible Light Multiphase Catalysis:" Synthesis and the Photocatalytic Degradation Mechanism [J]. New Journal of Chemistry," 2022," 46(23):" 11341\|11349.
[35]" HE X," FANG H," GOSZTOLA D J," et al. Mechanistic Insight into Photocatalytic Pathways of MIL\|100 (Fe)/TiO2 Composites [J]. ACS Applied Materials amp; Interfaces," 2019," 11(13):" 12516\|12524.
[36]" CAO H L," CAI F Y," YU K," et al. Photocatalytic Degradation of Tetracycline Antibiotics over CdS/Nitrogen\|Doped\|Carbon Composites Derived from in situ Carbonization of Metal\|Organic Frameworks [J]. ACS Sustainable Chemistry amp; Engineering," 2019, "7(12):" 10847\|10854.
[37]" LIU Z W," LI Y," LI C," et al. MOF\|Derived Biochar Composites for Enhanced High Performance Photocatalytic Degradation of Tetracycline Hydrochloride [J]. RSC Advances," 2022," 12(49):" 31900\|31910.
(責(zé)任編輯: 單" 凝)