摘 要:為診斷每位尿失禁患者的漏尿頻次,治療尿失禁問題,在尿片中嵌入織物功能電極,連接到自制的可穿戴式尿失禁患者漏尿頻次監(jiān)測系統(tǒng),制備出智能尿片,根據(jù)功能電極電阻值的變化監(jiān)測漏尿的頻次。結(jié)果表明:每個(gè)功能電極連續(xù)監(jiān)測次數(shù)可達(dá)15次以上,平均準(zhǔn)確率達(dá)86.2%,靈敏度達(dá)73.5 kΩ(0.1 mL)。該系統(tǒng)提出了一種尿失禁患者監(jiān)測漏尿頻次的簡便方法,也可用于患者評估基本健康狀況;同時(shí)也提供了一種智能柔性織物傳感器的應(yīng)用思路。
關(guān)鍵詞:織物傳感器;功能電極;智能尿片;尿失禁;漏尿頻次監(jiān)測
中圖分類號:TS106
文獻(xiàn)標(biāo)志碼:A
文章編號:1009-265X(2024)03-0091-11
收稿日期:20230719
網(wǎng)絡(luò)出版日期:20231101
基金項(xiàng)目:中國紡織工業(yè)聯(lián)合會(huì)科技指導(dǎo)性項(xiàng)目(2021060);中原工學(xué)院學(xué)科青年碩導(dǎo)培育計(jì)劃項(xiàng)目(SD202216)
作者簡介:周金利(1985—),女,河南偃師人,講師,博士,主要從事智能可穿戴方面的研究。
通信作者:熊帆,E-mail:6825@zut.edu.cn
尿失禁是指尿液不受控制地外溢[1]。全球大約有2億人受尿失禁困擾,隨著年齡的增長,其患病率和表現(xiàn)的嚴(yán)重程度也逐漸增加[2-3]。尿失禁具有病程長、病情不易診斷,無致命危險(xiǎn)但治愈率不理想等特點(diǎn),是一種醫(yī)學(xué)和社會(huì)問題[4-5]。與正常人相比,患者由于長期不自主漏尿及漏尿引起的身體異味,其生活質(zhì)量和睡眠質(zhì)量明顯降低,易產(chǎn)生焦慮、抑郁和羞恥感等負(fù)性情緒[6-8]。許多患者對尿失禁的認(rèn)知不足是影響就醫(yī)意向的重要因素,部分患者將尿失禁視為衰老過程中的正常變化,堅(jiān)持認(rèn)為尿失禁無需干預(yù),并不知哪些情況會(huì)出現(xiàn)漏尿現(xiàn)象以及每天的漏尿頻次,故尿失禁患者的治療是個(gè)棘手的醫(yī)學(xué)問題[9-11]。漏尿頻次是反映尿失禁病情的重要指標(biāo),頻次越高,病情越嚴(yán)重。
智能可穿戴紡織品的快速發(fā)展正在改善醫(yī)療保健質(zhì)量以及許多患者的生活質(zhì)量,越來越多的研究人員使用智能紡織品監(jiān)測尿失禁患者的健康狀況。Gaubert等[12]使用3種不同的紗線材料(銀20%和聚酰胺80%,不銹鋼30%和聚酯纖維70%,不銹鋼20%和棉80%)制備了不同間距的12種濕度傳感器,并將其通過縫紉方法集成到兒童內(nèi)衣中。研究結(jié)果表明,銀材料表現(xiàn)出最高的導(dǎo)電性,使用鍍銀紗線作為電極導(dǎo)電材料的傳感器在電極中的任何位置有尿液漏出都可以被監(jiān)測且監(jiān)測速度快,而以不銹鋼紗線做為電極導(dǎo)電材料的傳感器只有尿液在電極頂部漏出時(shí)能被監(jiān)測且監(jiān)測速度慢,故鍍銀紗線適用于做為柔性織物傳感器的導(dǎo)電材料。Ngo等[13]使用柔性絲網(wǎng)印刷的Interdigital electrodes(IDE)傳感器和生物兼容導(dǎo)電PEDOT:PSS材料,采用電池、傳感器信號讀取設(shè)備和無線模塊,設(shè)計(jì)了1個(gè)傳感陣列尺寸為70 cm×32 cm的叉指電極無線失禁傳感器系統(tǒng),并將其集成到普通尿不濕中,用于測量尿頻次及尿量。結(jié)果表明與傳統(tǒng)的電阻式濕度傳感器相比,電容法監(jiān)測尿量的可靠性更高,但監(jiān)測尿頻次不如電阻法效果理想。Parkova等[14]、Kaurina等[15]為提高遺尿報(bào)警系統(tǒng)的舒適性,確定濕度傳感器的最佳類型,以棉織物為基底、聚酰胺鍍銀導(dǎo)電紗線為導(dǎo)電材料,使用針跡密度為2 mm的電腦繡花機(jī)刺繡出尺寸為80 mm×90 mm、間距為8 mm的單電極傳感器和雙電極傳感器,采用與尿液相似性質(zhì)的NaCl溶液作為導(dǎo)電液進(jìn)行實(shí)驗(yàn)。結(jié)果表明,傳感器信號監(jiān)測的速度不僅取決于導(dǎo)電紗線參數(shù)和電極的間距,還取決于紡織品基底的透濕性。Fernandes等[16]使用導(dǎo)電紗線在棉織物上繡出的兩個(gè)對稱圖案,采用1 mm厚的吸收性織物片將對稱圖案隔開,制備出柔性織物電極,并將其與放大器、處理器以及PC連接,利用濃度為0.1~0.6 molL的生理鹽水進(jìn)行滴定。結(jié)果表明隨著鹽水濃度的增加,電極電阻值從80 Ω到20 Ω的范圍內(nèi)呈指數(shù)下降且回升較快,驗(yàn)證了使用導(dǎo)電紗線做為織物傳感器的導(dǎo)電材料監(jiān)測尿頻次的可行性。Su等[17]使用銀漿、碳漿、AgAgCl油墨等材料制備了傳感電極,將其嵌入到紙尿褲導(dǎo)流層和吸水層之間,將其與便攜式檢測設(shè)備和智能手機(jī)上的數(shù)據(jù)處理應(yīng)用程序(APP)連接,開發(fā)出基于智能手機(jī)和尿布的可穿戴傳感系統(tǒng),用于監(jiān)測尿液中的生物標(biāo)志物(尿酸和葡萄糖)含量。該APP可根據(jù)數(shù)據(jù)繪制尿液生物標(biāo)志物隨時(shí)間的動(dòng)態(tài)曲線,將尿液生物標(biāo)志物的測量數(shù)據(jù)提供給醫(yī)生,以了解患者的健康狀況,此研究還驗(yàn)證了將傳感電極嵌入紙尿褲中監(jiān)測尿液漏出的可行性。
為準(zhǔn)確檢測尿失禁患者漏尿的頻次,本文首先采用刺繡方法將鍍銀紗線刺繡到無紡布上獲得功能電極;再通過熱壓的方式將功能電極嵌入到尿片中制備出智能尿片,將其通過開發(fā)板與上位機(jī)進(jìn)行連接采集數(shù)據(jù),進(jìn)而獲得一種基于智能柔性織物傳感器的可穿戴式尿失禁患者漏尿頻次監(jiān)測系統(tǒng),代替?zhèn)鹘y(tǒng)醫(yī)學(xué)上尿失禁患者尿墊實(shí)驗(yàn),開創(chuàng)了使用柔性織物傳感器監(jiān)測漏尿頻次的先例,為尿失禁患者病情的監(jiān)測提供了一種新穎且可行的方案。
1 實(shí)驗(yàn)材料與儀器
1.1 實(shí)驗(yàn)材料
功能電極的導(dǎo)電材料選用鍍銀紗線(細(xì)度:318 tex;電阻率:1.68×10-5 Ω·m;組成成分:18%銀和82%錦綸;生產(chǎn)廠家:深圳市國龍飛貿(mào)易有限公司)。由鍍銀紗線與普通繡花線(型號:402;組成成分:100%滌綸,生產(chǎn)廠家:寧波萌恒線業(yè)有限公司)各項(xiàng)力學(xué)性能參數(shù)對比(見表1)可知鍍銀紗線具有耐彎折及耐拉伸性等特點(diǎn),是功能電極導(dǎo)電材料的最優(yōu)選擇。
功能電極基底材料選用無紡布I(成分:聚丙烯(PP);工藝:水刺無紡布;規(guī)格:25 gm2;生產(chǎn)廠家:鄭州豫力新材料科技有限公司)與無紡布Ⅱ(成分:聚丙烯(PP);工藝:熔噴無紡布;規(guī)格:20 gm2;生產(chǎn)廠家:鄭州豫力新材料科技有限公司)。熱熔膠(型號及成分:TJS125聚醚砜(PES)熱熔膠膜;生產(chǎn)廠家:蘇州惠洋膠粘制品有限公司)
實(shí)驗(yàn)中導(dǎo)電液選用人工尿液(pH:6.5;生產(chǎn)廠家:東莞市創(chuàng)峰自動(dòng)化科技有限公司)。液體載體選用蓓姿凈味成人紙尿片(材料:復(fù)合吸收芯體、無紡布、PE膜;長度240 mm、寬度75 mm;生產(chǎn)廠家:金佰利(中國)有限公司;適用人群:漏尿(失禁)人群),專為尿失禁人群設(shè)計(jì)的吸水巾,具有吸收流速更快尿液的吸水芯體。
1.2 實(shí)驗(yàn)儀器
功能電極制備儀器為Brother自動(dòng)繡花縫紉一體機(jī)(NV180,兄弟(中國)商業(yè)有限公司),此儀器可在制版軟件上自主設(shè)計(jì)圖案自動(dòng)刺繡;電極圖案制版軟件為PE-DESIGN 10。
數(shù)據(jù)采集模塊主控芯片為nRF52832芯片(Nordic公司)。
2 傳感器的設(shè)計(jì)與制備
2.1 功能電極結(jié)構(gòu)的設(shè)計(jì)
設(shè)計(jì)采用鍍銀導(dǎo)電紗線通過刺繡的方式在導(dǎo)流無紡布上制備出柔性織物功能電極,并將其嵌入尿片中作為傳感器的敏感元件。一般情況下,尿片的結(jié)構(gòu)大同小異,基本都是由表層、導(dǎo)流層、吸收芯層、底層4部分組成[18-19]。在本文中,敏感元件(功能電極)作為傳感層,嵌入尿片的表層和導(dǎo)流層之間。功能電極結(jié)構(gòu)及尿液流路示意圖如圖1所示。
2.2 電極的圖案設(shè)計(jì)及制備
尿液中含有多種離子,如氯(Cl-)、鈉(Na+)等,具有良好的導(dǎo)電率。當(dāng)電極內(nèi)未連通的電路與尿液接觸后,電極會(huì)瞬間形成通路,產(chǎn)生電連接,從而電阻值發(fā)生變化,反應(yīng)為有尿液漏出。為制備出性能最優(yōu)的傳感器,本文結(jié)合導(dǎo)電液(尿液)在所選無紡布中擴(kuò)散半徑[20]設(shè)計(jì)了4種圖案(A、B、C、D),每種圖案分別劃分0.4、0.6、0.8、1.0 cm 4種間距,如圖2(a)所示。
將無紡布Ⅱ疊在無紡布Ⅰ上,作為復(fù)合基底材料,疊放的原則是保證在刺繡過程中,基底材料不變形。隨后將制備的復(fù)合基底材料夾持在電腦繡花機(jī)的矩形夾具上,面線與底線均為鍍銀紗線,在刺繡機(jī)上導(dǎo)入在PE-DESIGN 10軟件中設(shè)計(jì)好的圖案進(jìn)行刺繡。圖2(b)和圖2(c)分別為刺繡過程圖和電極實(shí)物圖。
2.3 智能尿片制備
將制備好的功能電極按圖1所示的方式嵌入到普通尿片中,采用PES熱熔膠熱壓制成智能尿片。
3 測試過程
本文搭建的試驗(yàn)臺如圖3所示。定量滴定人工尿液,使已嵌入敏感元件的智能尿片短路,集成nRF52832芯片的開發(fā)板采集到尿片中電極電阻
值的實(shí)時(shí)數(shù)據(jù),并實(shí)時(shí)傳輸?shù)诫娔X端串口調(diào)試助手,測試中芯片的采樣頻率為50 Hz,采樣電阻數(shù)值范圍在0~100 kΩ。完成1次實(shí)驗(yàn)后,將原始數(shù)據(jù)保存,再用MATLAB進(jìn)行數(shù)據(jù)濾波處理,得到更直觀的電阻值變化曲線。
選取經(jīng)典圖案A的4個(gè)傳導(dǎo)間距0.4、0.6、08、1.0 cm進(jìn)行測試,搭建好試驗(yàn)臺使智能尿片、數(shù)據(jù)采集芯片、電腦通過杜邦線3者相連,打開電腦端串口調(diào)試助手使其接收數(shù)據(jù),控制酸式滴定管在尿片上的隨機(jī)位置、隨機(jī)間隔時(shí)間,每次滴液1 mL人工尿液進(jìn)行實(shí)驗(yàn),綜合對比分析,篩選出數(shù)據(jù)最優(yōu)、最能直觀反映出滴下液滴次數(shù)的傳感間距。
在確定好的最優(yōu)傳導(dǎo)間距下,重復(fù)上述實(shí)驗(yàn)步驟,確定A、B、C、D這4種圖案的智能尿片中性能最優(yōu)的圖案。實(shí)驗(yàn)過程中對總的滴液量不做要求,達(dá)到尿片飽和量結(jié)束1次實(shí)驗(yàn),每種圖案通過多輪測試,最后綜合對比分析選出最優(yōu)傳感結(jié)構(gòu)設(shè)計(jì)。
為了避免實(shí)驗(yàn)誤差,需要對采集到的原始數(shù)據(jù)進(jìn)行處理,本文采用中值濾波來簡單處理原始數(shù)據(jù),中值濾波是一種基于排序統(tǒng)計(jì)的非線性濾波方法,它的核心思想是通過選擇窗口內(nèi)像素值的中間值(即中值)來替代中心像素值,從而實(shí)現(xiàn)去噪的效果。中值濾波方法可以用式(1)表示:
式中:v是窗口內(nèi)的像素值向量,vmed是通過中值濾波計(jì)算得到的中值。
在實(shí)際濾波中,由于每個(gè)實(shí)驗(yàn)樣品采樣總數(shù)據(jù)不同,每次需要改變中值濾波的跨度(n)。該跨度既要保證對原始數(shù)據(jù)濾波光滑,又要保證不失真。本實(shí)驗(yàn)中采集的每一份原始數(shù)據(jù)都將運(yùn)用此算法進(jìn)行濾波處理。
4 結(jié)果分析
本文主要采用準(zhǔn)確率(Accuracy)作為評價(jià)尿頻次傳感器性能的主要判斷依據(jù),靈敏度、分辨率和相似度等指標(biāo)作為輔助。該傳感器還有兩個(gè)指標(biāo),分別是恢復(fù)初始態(tài)所需時(shí)間和最大檢測次數(shù),分別反映智能尿片的靈敏程度和實(shí)用程度。實(shí)驗(yàn)過程中,將監(jiān)測情況分為尿液漏出(正類別)和正常(負(fù)類別)現(xiàn)象。
a)準(zhǔn)確率:定義用式(2)表示,
Accuray%=TP+TNTP+TN+FP+FN×100(2)
式中:TP—真正例(True positive),預(yù)測為尿漏,實(shí)際為尿漏的情況;
TN—真負(fù)例(True negative),預(yù)測為正常,實(shí)際也為正常的情況;
FP—假正例(False positive),預(yù)測為尿漏,實(shí)際為正常的情況;
FN—假負(fù)例(False negative),預(yù)測為正常,實(shí)際為尿漏的情況。
b)靈敏度:每次模擬尿漏所引起的電阻變化,這是1個(gè)相對變化率概念。
c)分辨率:每次模擬尿漏所引起的電阻變化所對應(yīng)的最小時(shí)間或者尿液量,本文以時(shí)間(S)來表示。
d)相似度:在相同條件下,進(jìn)行重復(fù)測量時(shí),測量波形之間的相互接近程度。
e)恢復(fù)初始態(tài)所需時(shí)間:恢復(fù)下一次尿頻次測量的所需時(shí)間(s)。
f)最大檢測次數(shù):該智能尿片能檢測漏尿次數(shù)的最大值,超出該值,其功能失效。
4.1 最優(yōu)傳導(dǎo)間距的確定
測試過程中,每當(dāng)有人工尿液滴落到功能電極中,功能電極電阻值將會(huì)驟然下降,每次驟然下降的瞬間記為1次漏尿過程。經(jīng)實(shí)驗(yàn),圖4為圖案A的4個(gè)傳導(dǎo)間距電阻值變化測試數(shù)據(jù)。由圖4分析得到4個(gè)傳導(dǎo)間距的實(shí)驗(yàn)數(shù)據(jù)如表2所示。
由該實(shí)驗(yàn)可知,每次電阻值明顯下降就是1次漏尿過程,0.6 cm傳導(dǎo)間距在準(zhǔn)確率上顯著好于其他3種傳導(dǎo)間距,說明準(zhǔn)確率與傳導(dǎo)間距的相關(guān)性較大,0.4 cm傳導(dǎo)間距過近,傳感本身電磁相互干擾,原始數(shù)據(jù)采集過程中混亂情況較多;0.8 cm傳導(dǎo)間距又略大于1次滴液擴(kuò)散長度,在實(shí)際測試中偶爾會(huì)出現(xiàn)滴液2次卻只能檢測到1次的情況,假負(fù)例出現(xiàn)的情況略微多;1.0 cm傳導(dǎo)間距明顯大于1次滴液的擴(kuò)散長度,在實(shí)際測試中幾乎都是滴液2次才檢測到1次,假負(fù)例出現(xiàn)情況更多,
因此可以直接不考慮1.0 cm傳導(dǎo)間距。另外,在平均恢復(fù)初始態(tài)時(shí)間上,0.4 cm傳導(dǎo)間距和0.8 cm傳導(dǎo)間距都較大,0.4 cm的傳導(dǎo)間距出現(xiàn)這種情況,是因?yàn)槠涿黠@小于1次滴液擴(kuò)散長度,基底材料的恢復(fù)初始態(tài)所需時(shí)間就比較長,容易誤報(bào);而0.8 cm傳導(dǎo)間距又略大于1次滴液擴(kuò)散長度,在實(shí)際測試中會(huì)出現(xiàn)滴液2次只能檢測到1次的情況,基底材料吸收兩次液滴量需要恢復(fù)初始態(tài)的時(shí)間就會(huì)拉長,因此也不考慮0.4 cm和08 cm傳導(dǎo)間距。綜上所述,選用圖案A的0.6 cm傳導(dǎo)間距,其準(zhǔn)確率達(dá)到75%以上,該方案能在平均3 min“恢復(fù)初始態(tài)”,恢復(fù)下一次漏尿測試,最大檢測次數(shù)在10次以上,平均靈敏度達(dá)47.0 kΩ(0.1 mL),滿足期望目標(biāo)。
4.2 最優(yōu)圖案確定
最優(yōu)傳導(dǎo)間距下4種圖案電阻值變化測試數(shù)據(jù)如圖5所示。由圖5分析得到表3。通過表3可以看出,圖案B和圖案D的準(zhǔn)確率明顯低于75%,圖案B因?yàn)閳D案過于復(fù)雜,本身電磁相互干擾,假負(fù)例出現(xiàn)的情況較多,圖案D的最大檢測次數(shù)過小。而在圖案A和圖案C的一系列對比中發(fā)現(xiàn),圖案C無論是從準(zhǔn)確率、最大檢測次數(shù)、平均恢復(fù)初始態(tài)所需時(shí)間,甚至平均靈敏度方面都全面優(yōu)于圖案A。
綜上所述,在0.6 cm的相同傳導(dǎo)間距下,選用圖案C作為最終的設(shè)計(jì)方案,檢測到漏尿的準(zhǔn)確率達(dá)86.7%,為最高準(zhǔn)確率。該方案能在平均3 min“完全恢復(fù)初始態(tài)”,恢復(fù)下一次尿頻次測試,最大檢測次數(shù)在10次以上,平均靈敏度達(dá)49.6 kΩ(01 mL),符合實(shí)驗(yàn)要求。
4.3 準(zhǔn)確率的驗(yàn)證
通過實(shí)驗(yàn)并分析得出圖案C的0.6 cm傳導(dǎo)間距為最佳設(shè)計(jì)方案后,通過數(shù)十次實(shí)驗(yàn)反復(fù)驗(yàn)證,
取5次該方案最大檢測數(shù)據(jù),如圖6所示。由圖6分析得到表4。
表4可以看出:0.6 cm圖案C的尿頻次傳感的5次平均準(zhǔn)確率達(dá)86.2%,5次的平均最大檢測次數(shù)為15次,能在平均4 min“完全恢復(fù)初始態(tài)”,恢復(fù)下一次尿頻次測試,平均靈敏度達(dá)73.5 kΩ(0.1 mL),故本實(shí)驗(yàn)傳感器結(jié)構(gòu)中敏感元件的最佳設(shè)計(jì)方案為:傳導(dǎo)間距為0.6 cm的圖案C。
5 結(jié) 論
本文采用鍍銀紗線與無紡布作為功能電極的傳感材料,并對傳感結(jié)構(gòu)與傳感圖案進(jìn)行設(shè)計(jì),以熱熔方式將功能電極嵌入尿片中制備成智能尿片,通過nRF5283數(shù)據(jù)采集芯片與計(jì)算機(jī)上位機(jī)連接,設(shè)計(jì)了一種基于智能柔性織物傳感器的可穿戴式尿失禁患者漏尿頻次監(jiān)測系統(tǒng)。通過實(shí)驗(yàn)測試,選出了最佳傳感器結(jié)構(gòu)設(shè)計(jì)方案。結(jié)果表明:選用以傳導(dǎo)間距為0.6 cm的圖案C的功能電極制備出的織物傳感器監(jiān)測漏尿頻次效果最佳,經(jīng)測試其監(jiān)測漏尿頻次的平均準(zhǔn)確率高達(dá)86.2%,最大檢測可達(dá)15次以上,平均靈敏度高達(dá)73.5 kΩ(0.1 mL),滿足預(yù)期目標(biāo)。
從醫(yī)學(xué)角度,大多數(shù)尿失禁患者病情復(fù)雜、在臨床上監(jiān)測患者病情較為困難。本文驗(yàn)證了通過柔性織物傳感器監(jiān)測尿失禁患者漏尿頻次的可行性,制作成本低、監(jiān)測準(zhǔn)確率高、患者可穿戴,具有推廣潛力。但是,尿失禁患者病情的監(jiān)測不止尿頻次這一項(xiàng),還有尿量以及尿液中所含成分等指標(biāo),此研究為這些指標(biāo)的監(jiān)測奠定了基礎(chǔ),將在進(jìn)一步的研究中取得驗(yàn)證。
參考文獻(xiàn):
[1]"LUKACZ E S, SANTIAGO-LASTRA Y, ALBO M E, et al. Urinary incontinence in women: A review[J]. JAMA, 2017, 318(16): 1592-1604.
[2]"王珊,趙妹,李明,等.濟(jì)南市養(yǎng)老機(jī)構(gòu)老年人尿失禁患病現(xiàn)狀及影響因素分析[J].護(hù)士進(jìn)修雜志,2020,35(1):6-10.
WANG Shan, ZHAO Mei, LI Ming, et al. The prevalence and influencing factors of urinary incontinence among elderly people in pension institutions in Jinan[J]. Journal of Nurses Training, 2020, 35(1): 6-10.
[3]"劉千秋,楊丹,寧婧,等.尿失禁患者病恥感的評估及干預(yù)研究進(jìn)展[J].智慧健康,2021,7(10):29-32.
LIU Qianqiu, YANG Dan, NING Jing, et al. Evaluation and intervention stigma in patients with urinary incontinence[J]. Smart Healthcare, 2021, 7(10): 29-32.
[4]"SAKAMOTO H, TANAKA A, SUEMATSU R, et al. Self-powered wireless urinary-incontinence sensor system detecting urine amount and diaper change timing in under 10 minutes[C]International Symposium on Medical Information and Communication Technology (ISMICT). Sydcey, Australia: IEEE, 2018: 1-4.
[5]"李靜靜,王小娟,萬小娟,等.社區(qū)女性尿失禁患者應(yīng)對方式及其影響因素分析[J].護(hù)理學(xué)報(bào),2014,21(7):8-11.
LI Jingjing, WANG Xiaojuan, WAN Xiaojuan, et al. Coping style of community women with urinary incontinence and its influencing factors[J]. Journal of Nursing (China), 2014, 21(7): 8-11.
[6]"王莎,劉立芳,何國平.社區(qū)中老年女性尿失禁患者心理干預(yù)的研究進(jìn)展[J].解放軍護(hù)理雜志,2016,33(7):32-35.
WANG Sha, LIU Lifang, HE Guoping. Research progress of psychological intervention for middle-aged and elderly women with urinary incontinence in community[J]. Journal of PLA Nursing, 2016, 33(7): 32-35.
[7]"DEBUS G, KSTNER R. Psychosomatic aspects of urinary incontinence in women[J]. Geburtshilfe Und Frauenheil-kunde, 2015, 75(2): 165-169.
[8]"COULOMBE A, GURINEAU J, MEZGHANI N. Smart apparel design for urinary incontinence detection[J]. IOP Conference Series: Materials Science and Engineering, 2023, 1266(1): 012007.
[9]"盧永莉,毛寶宏,王燕俠,等.成年女性尿失禁就醫(yī)意向及生活質(zhì)量研究進(jìn)展[J].國際婦產(chǎn)科學(xué)雜志,2021,48(4):420-424.
LU Yongli, MAO Baohong, WANG Yanxia, et al. Research progress on medical intention and quality of life of adult women with urinary incontinence[J]. International Journal of Obstetrics and Gynecology, 2021,48(4):420-424.
[10]"YAACOB L H, ABDUL MOKTI S, MUHAMMAD J. Health seeking behaviour of menopausal women with urinary incontinence in NorthEast Malaysia[J]. Journal of Women amp; Aging, 2020, 32(5): 537-545.
[11]"DURALDE E R, WALTER L C, VAN DEN EEDEN S K, et al. Bridging the gap: Determinants of undiagnosed or untreated urinary incontinence in women[J]. American Journal of Obstetrics and Gynecology, 2016, 214(2): 266.
[12]"GAUBERT V, GIDIK H, KONCAR V. Boxer underwear incorporating textile moisture sensor to prevent nocturnal enuresis[J]. Sensors, 2020, 20(12): 3546.
[13]"NGO H D, HOANG T H, BAEUSCHER M, et al. A novel low cost wireless incontinence sensor system (screen-printed flexible sensor system) for wireless urine detection in incontinence materials[C]Eurosensors. Basel Switzerland: MDPI, 2018: 716.
[14]"PARKOVA I. Woven textile moisture sensor for enuresis alarm treatment[J]. Key Engineering Materials, 2014, 604: 146-149.
[15]"KAURINA I, VALIEVSKIS A, BRIEDIS U, Et al. Design of textile moisture sensor for enuresis alarm system[J]. Material Science, 2012 (7): 1691-3132.
[16]"FERNANDES B, GAYDECKI P, JOWITT F, et al. Urinary incontinence: A vibration alert system for detecting pad overflow[J]. Assistive Technology, 2011, 23(4): 218-224.
[17]"SU H, SUN F, LU Z, et al. A wearable sensing system based on smartphone and diaper to detect urine in situ for patients with urinary incontinence[J]. Sensors and Actuators B: Chemical, 2022, 357: 131459.
[18]"李國標(biāo).復(fù)合吸收芯層的設(shè)計(jì)及其在紙尿褲中的應(yīng)用研究[D].福州:福建師范大學(xué),2015:1-3.
LI Guobiao. Design and Application Research about Composite Absorption Core Layer of Disposal Diapers[D]. Fuzhou: Fujian Normal University, 2015: 1-3.
[19]"王雨.熱風(fēng)用紙尿褲導(dǎo)流層的性能研究[D].天津:天津工業(yè)大學(xué),2017:4-9.
WANG Yu. Study on the Performance of Deflector Layer of Hot-air Diapers[D]. Tianjin: Tiangong University, 2017: 4-9.
[20]"葉文婷,王榮武.成人紙尿褲使用性能研究[J].產(chǎn)業(yè)用紡織品,2021,39(10):19-26.
YE Wenting, WANG Rongwu. Study on the performance of adult diapers[J]. Technical Textiles, 2021,39(10):19-26.
Research on the urine leakage frequency monitoring system based on intelligent flexible fabric sensors
ZHOU Jinli1, WANG Zheng1, ZHOU Zhiting2, LI Yunfei1, XIONG Fan1, LI Hongping3
(1.College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China;
2.College of Textiles, Donghua University, Shanghai 201620, China;
3.Chongqing Natural Gas Sales Center, Sinopec Tianranqi Company, Chongqing 400000, China)
Abstract:
Urinary incontinence (UI) refers to a condition in which urine cannot be controlled and leaks out on its own when abdominal pressure increases during exercise, sneezing, coughing, laughing, etc. According to statistics, approximately 200 million people worldwide suffer from urinary incontinence. The proportion of female patients is significantly higher than that of male patients, and the prevalence gradually increases with age. In China, the incidence of urinary incontinence in adult women is about 30.9%, that is, one in every three women suffers from this disease. Urinary incontinence is usually long-lasting, difficult to diagnose, non-fatal, and difficult to treat. Therefore, compared with normal people, the quality of life and sleep quality of patients with urinary incontinence are significantly lower, and their depression is more severe, which seriously affects their daily life.
The treatment of patients with urinary incontinence is a difficult medical problem, and currently, patients with urinary incontinence have low medical seeking rates. Most patients' lack of knowledge about urinary incontinence is an important factor affecting their intention to seek medical treatment. UI is judged based on the International Advisory Committee on Urinary Incontinence Questionnaire (ICI-Q-SF), which includes four questions, namely, to assess the frequency of urinary leakage, the amount of urine leakage, the impact of urinary incontinence, and the cause of urinary incontinence. Tables can be used to investigate the incidence of urinary incontinence and the extent to which it affects patients. Hospitals use a urine pad test to evaluate urinary incontinence. In clinical practice, a one-hour urine pad test is generally used to determine urine leakage. That is, the patient is allowed to drink pure water for 15 minutes and then perform 30 minutes of appropriate exercise such as walking and climbing stairs, and the test lasts for 15 minutes by repeating standing and sitting ≥10 times, coughing ≥10 times, running in place for one minute, bending down five times, and finally washing hands for one minute to end the test. The test detection process is cumbersome, involves long waiting time, low repeatability, and even has a certain degree of subjectivity.
With the development of science and technology, the technological innovation of smart wearable textiles has been widely used in monitoring urinary incontinence. This is an innovation in the medical field that applies advanced technology. Its core is to integrate flexible sensors and electronic components into textiles and enable it to monitor urinary frequency and other related data in patients with urinary incontinence. Smart wearable textiles include sensors embedded in textiles that can detect the flow of urine, changes in resistance, or other related parameters. Through data transmission and processing, the occurrence of urinary incontinence events can be captured and recorded, including the frequency and amount of urine leakage. Some systems can also be integrated with mobile apps or cloud services so that data can be accessed and monitored at any time by healthcare professionals or patients themselves. Because these devices incorporate technologies such as flexible sensors, wireless communication, and data processing, they are portable, miniaturized, intelligent, and capable of real-time monitoring. Compared with traditional monitoring methods, this technology is more private and does not involve embarrassing testing processes. Therefore, smart flexible wearable textiles have begun to be used to monitor the condition of urinary incontinence patients, bringing convenience and accuracy to urinary incontinence monitoring, which is expected to improve patients' quality of life and promote the development of medical care.
The frequency of urinary leakage is an important indicator for evaluating the condition of urinary incontinence patients. The higher the frequency of urinary leakage, the more serious the condition. In order to accurately diagnose the frequency of urinary leakage in each urinary incontinence patient and further address this problem, we proposed a method using intelligent flexible fabric sensors, silver-plated yarn and non-woven fabric as sensing materials for functional electrodes and designs. We designed the sensing structure and sensing pattern, and used hot melt technology to embed these functional electrodes into disposable diapers specially used for urinary incontinence patients to create functional smart diapers. At the same time, we improved and optimized the main control chip nRF5283, and wrote a data median filtering program to preprocess the urinary frequency signal. Based on the change in resistance value in the functional electrode that reflects the frequency of urine leakage, we optimally selected the conduction spacing and pattern of the sensor and conducted performance tests. Experimental results show that each electrode module of pattern C with a conduction spacing of 0.6 cm can be detected more than 15 times, with an average accuracy of 86.2% and a sensitivity of 73.5 kΩ0.1 mL, achieving the expected goals. This smart flexible fabric sensor can be used to assess the basic health status of urinary incontinence patients and provides a simple method to prepare smart flexible fabric sensors to monitor urinary frequency.
Keywords:
fabric sensors; functional electrodes; smart diapers; urinary incontinence; urine leakage frequency monitoring