亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        順鉑誘導(dǎo)嚙齒類動(dòng)物慢性腎臟疾病的研究進(jìn)展

        2024-05-08 00:00:00王鑫鞏永鳳
        關(guān)鍵詞:順鉑慢性病綜述

        [收稿日期]2023-04-28;" [修訂日期]2023-10-06

        [基金項(xiàng)目]國(guó)家自然科學(xué)基金資助項(xiàng)目(81870485)

        [第一作者]王鑫(1994-),男,碩士。

        [通信作者]鞏永鳳(1976-),女,博士,教授。E-mail:ygong@bzmc.edu.cn。

        [摘要]

        長(zhǎng)期使用順鉑會(huì)導(dǎo)致臨床病人慢性腎臟疾?。–KD)的發(fā)生。目前,迫切需要建立一種合適的動(dòng)物模型來模擬臨床順鉑的實(shí)際應(yīng)用。本文綜述了順鉑誘導(dǎo)CKD動(dòng)物模型的研究進(jìn)展及影響模型構(gòu)建的主要因素,以期為優(yōu)化模型用來研究順鉑誘導(dǎo)CKD的機(jī)制和治療方式提供理論依據(jù)。

        [關(guān)鍵詞]" 順鉑;腎臟疾病;慢性病;纖維化;疾病模型,動(dòng)物;綜述

        [中圖分類號(hào)]" R692;R-332

        [文獻(xiàn)標(biāo)志碼]" A

        [文章編號(hào)]" 2096-5532(2024)01-0151-04

        doi:10.11712/jms.2096-5532.2024.60.009

        [開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]

        [網(wǎng)絡(luò)出版]" https://link.cnki.net/urlid/37.1517.r.20240306.1553.005;2024-03-09" 19:19:57

        Research advances in cisplatin-induced chronic kidney disease in rodents

        \ WANG Xin, GONG Yongfeng

        \ (Department of Pathology, Affiliated Center Hospital of Jiangnan University, Wuxi 214000, China)

        \; [Abstract]\ Long-term use of cisplatin can lead to the development of chronic kidney disease (CKD) in clinical patients. An appropriate animal model is urgently needed to simulate the clinical application of cisplatin. This paper reviews the research advances in cisplatin-induced CKD in rodent models and the main factors affecting model construction. Hopefully, it will provide a theoretical basis for optimization of the model to study the mechanism and treatment of cisplatin-induced CKD.

        [Key words]\ cisplatin; kidney disease; chronic disease; fibrosis; disease models, animal; review

        慢性腎臟疾病(CKD)是一種臨床病理綜合征,以持續(xù)的腎臟結(jié)構(gòu)和(或)功能發(fā)生改變?yōu)樘卣鳎?]。臨床上,順鉑作為一種強(qiáng)效的化療藥物,長(zhǎng)期使用會(huì)導(dǎo)致CKD的發(fā)生[2]。為了更好地模擬臨床化療藥物對(duì)腎臟的影響,往往通過反復(fù)低劑量順鉑注射來誘導(dǎo)嚙齒類動(dòng)物CKD[3]。目前順鉑注射構(gòu)建CKD動(dòng)物模型的方式并不統(tǒng)一,急需建立一種恰當(dāng)?shù)膭?dòng)物模型來研究順鉑誘導(dǎo)CKD的病理生理學(xué)以及發(fā)生機(jī)制。因此,本文對(duì)順鉑構(gòu)建臨床相關(guān)CKD模型的方法及其影響因素作一綜述。

        1" CKD動(dòng)物模型

        目前為止,構(gòu)建CKD動(dòng)物模型方式很多。腎單側(cè)缺血再灌注(UIRI)模型很早被建立并經(jīng)常被使用[4]。UIRI模型是通過微型血管夾阻斷一側(cè)腎臟血流。在此模型中,由于對(duì)側(cè)腎臟結(jié)構(gòu)和功能完好,小鼠得以長(zhǎng)期存活,并逐步發(fā)展成CKD。此模型模擬了人類CKD的功能學(xué)改變(腎小球?yàn)V過率降低、肌酐清除率降低以及血尿素氮增加等)和病理學(xué)改變(腎小管擴(kuò)張、腎小管間質(zhì)纖維化以及腎小球硬化等)。

        其他嚙齒類動(dòng)物CKD模型包括雙側(cè)缺血再灌注損傷(BIRI)[5]、單側(cè)輸尿管梗阻(UUO)[6]、鏈脲佐菌素誘導(dǎo)糖尿病腎?。?]以及基因小鼠模型(db/db小鼠和ob/ob小鼠)[8]等。BIRI和UUO小鼠模型需要進(jìn)行手術(shù)操作,存在手術(shù)操作失誤及感染導(dǎo)致小鼠死亡的風(fēng)險(xiǎn);UUO小鼠模型常被用來研究腎小管間質(zhì)纖維化的機(jī)制,但并不能展示CKD模型的所有特性。不同動(dòng)物模型展示了CKD不同的病理生理學(xué)變化,例如,鏈脲佐菌素單獨(dú)使用或與其他藥物聯(lián)合使用,用于誘導(dǎo)1型或2型糖尿?。?]。

        另外,反復(fù)低劑量順鉑注射作為研究慢性腎損傷模型的方式被廣泛接受,因?yàn)檫@種干預(yù)模式模擬了臨床腫瘤病人長(zhǎng)期接受化療所引起的CKD中可見的大多數(shù)結(jié)構(gòu)以及功能變化[9]。順鉑注射造成嚙齒類動(dòng)物血中的尿素氮、肌酐含量升高,蛋白尿產(chǎn)生以及腎小管擴(kuò)張和間質(zhì)纖維化,這些功能學(xué)以及病理學(xué)變化和人類CKD的病理生理學(xué)變化一致[10]。雖然造模過程中避免了手術(shù)操作的繁瑣及感染后死亡的風(fēng)險(xiǎn),但也存在局限性,反復(fù)順鉑注射會(huì)導(dǎo)致嚙齒類動(dòng)物死亡,影響其成模效率[11]。

        2" 優(yōu)化順鉑構(gòu)建的CKD模型

        腫瘤病人接受順鉑治療逐步發(fā)展為CKD,目前尚缺乏合理的干預(yù)措施,主要原因之一在于缺乏合適的動(dòng)物模型。在過去研究中,順鉑構(gòu)建嚙齒類動(dòng)物模型主要被用于研究急性腎毒性損傷[12-13],而在嚙齒類動(dòng)物CKD中的研究較少。單次低劑量順鉑注射(小鼠:5~8 mg/kg;大鼠:1~3 mg/kg)僅引起腎臟輕微的損傷,在順鉑注射后4~5 d,小鼠腎臟組織形態(tài)學(xué)和功能學(xué)發(fā)生改變,分別表現(xiàn)為細(xì)胞核輕度嗜堿性以及出現(xiàn)少量壞死細(xì)胞和血糖升高及腎小球?yàn)V過率降低等[14-16]。重要的是,低劑量順鉑注射不會(huì)引起血尿素氮或血肌酐水平改變。而單次高劑量順鉑注射(小鼠:10~13 mg/kg;大鼠:3~8 mg/ kg)后1~2 d出現(xiàn)線粒體減少、局部腎小管刷狀緣丟失以及胞漿小泡增多;注射后3~4 d出現(xiàn)刷狀緣大量丟失以及壞死細(xì)胞脫落入腎小管管腔[17-18];而血尿素氮和血肌酐在注射后的3~7 d明顯降低,到第14天才恢復(fù)到基線[19]。顯而易見,順鉑注射量的提高會(huì)導(dǎo)致嚙齒類動(dòng)物腎臟損傷嚴(yán)重,修復(fù)期也相應(yīng)延長(zhǎng)。當(dāng)腎臟修復(fù)能力無(wú)法代償時(shí),逐漸發(fā)展成CKD。早期,有學(xué)者試圖通過提高單次順鉑注射劑量來構(gòu)建嚙齒類動(dòng)物CKD模型。研究表明,單次高劑量順鉑注射(3~8 mg/kg)不僅引起大鼠急性腎毒性,還會(huì)對(duì)大鼠腎臟結(jié)構(gòu)和功能產(chǎn)生長(zhǎng)期影響[20-21]。在順鉑注射的第20天后,大鼠腎臟出現(xiàn)間質(zhì)纖維化和腎小管擴(kuò)張[21]。雖然這種單次高劑量順鉑造模的方式很簡(jiǎn)單,但無(wú)法有效模擬臨床腫瘤病人長(zhǎng)期接受順鉑治療引起的CKD,并且高劑量順鉑注射會(huì)大大增加嚙齒類動(dòng)物的死亡率,導(dǎo)致成模率降低[3]。因此,反復(fù)低劑量順鉑注射成為CKD造模的更好方式。在過去數(shù)十年中,為了更好地模擬臨床病人順鉑化療的真實(shí)情境,造模過程中順鉑注射的劑量及次數(shù)不斷調(diào)整。DU等[22]構(gòu)建了異種移植瘤和同基因腫瘤小鼠模型,并對(duì)這些荷瘤小鼠每周注射10 mg/kg順鉑,持續(xù)3~4周,小鼠出現(xiàn)明顯的CKD病理特征。2016年TORRES等[23]對(duì)C57BL/6小鼠注射15 mg/kg順鉑,間隔2周再次注射,在第9周和第16周時(shí)小鼠腎功能顯著降低和出現(xiàn)間質(zhì)纖維化。與此同時(shí),SHARP等[3]比較了單劑量(25 mg/kg,注射1次)和反復(fù)低劑量(7或9 mg/kg,每周1次,注射4次)順鉑注射后的造模效果。研究發(fā)現(xiàn),反復(fù)低劑量順鉑注射后,炎癥性趨化因子及細(xì)胞因子表達(dá)顯著增加,纖維化標(biāo)志物表達(dá)顯著升高。同時(shí),與7 mg/kg順鉑的注射劑量相比較,9 mg/kg劑量順鉑注射導(dǎo)致約10% FVB/n小鼠死亡。同樣,有研究通過對(duì)C57BL/6小鼠在第0、1和3周腹腔注射10 mg/kg順鉑發(fā)現(xiàn),此CKD模型小鼠在第3周出現(xiàn)小管擴(kuò)張和中度腎臟間質(zhì)纖維化,并在第4周加重。雖然注射次數(shù)從2次到7次均進(jìn)行過嘗試,但大多數(shù)研究更加傾向于使用每周注射1次,連續(xù)注射4次的造模方式(圖1)[24]。

        除了注射劑量及次數(shù)影響模型,嚙齒類動(dòng)物種屬、性別和年齡等因素都會(huì)對(duì)造模結(jié)果產(chǎn)生影響。順鉑腎毒性的易感程度具有種屬特異性。據(jù)研究報(bào)道,相較于小鼠,大鼠對(duì)順鉑的腎毒性更加敏感[25]。另外,不同嚙齒類動(dòng)物品系對(duì)順鉑誘導(dǎo)CKD動(dòng)物模型具有影響。目前公認(rèn),C57BL/6小鼠對(duì)腎臟纖維化和CKD相關(guān)的腎小球改變以及對(duì)發(fā)展腎小管間質(zhì)纖維化具有抵抗作用[26-27]。作者團(tuán)隊(duì)構(gòu)建了相對(duì)穩(wěn)定的順鉑誘導(dǎo)CKD動(dòng)物模型,研究發(fā)現(xiàn),6~8周齡C57BL/6小鼠在順鉑注射的第42天,出現(xiàn)CKD相關(guān)的慢性炎癥以及輕度腎臟間質(zhì)纖維化(纖維化面積占10%~30%),而在第24天時(shí)未出現(xiàn)明顯纖維化[11]。由于此品系對(duì)腎臟纖維化的抵抗作用,導(dǎo)致成模周期需要42 d。SHARP等[3]對(duì)8周齡FVB小鼠注射7 mg/kg順鉑,連續(xù)注射4次,發(fā)現(xiàn)小鼠腎臟出現(xiàn)腎小管間質(zhì)纖維化,然而,小鼠血肌酐及血尿素氮并未有顯著性變化。

        衰老已被認(rèn)為是腎損傷加重的一個(gè)危險(xiǎn)因素,而且老年病人腎臟結(jié)構(gòu)發(fā)生改變,腎功能降低,對(duì)腎毒性更加敏感,發(fā)展為CKD的概率也更大[1,28]。研究發(fā)現(xiàn),嚙齒類動(dòng)物周齡的差異對(duì)順鉑腎毒性較為敏感,周齡大的大鼠比周齡小的大鼠更易發(fā)生腎臟順鉑堆積,且更易發(fā)生腎間質(zhì)纖維化[29-30]。另外,有研究發(fā)現(xiàn),周齡大的129Sv小鼠及SD大鼠對(duì)順鉑更加敏感,腎臟損傷更加嚴(yán)重[31],同樣的結(jié)果在C57BL/6小鼠上得到驗(yàn)證[11]。然而,SHARP等[32]認(rèn)為中度衰老并不會(huì)加重順鉑誘導(dǎo)的腎臟損傷及后期的纖維化程度。

        此外,性別對(duì)順鉑構(gòu)建嚙齒類動(dòng)物CKD模型的影響值得關(guān)注。一些研究者發(fā)現(xiàn)雄性Wistar大鼠對(duì)順鉑腎毒性的易感性高于雌性Wistar大鼠;另一些研究者則并沒有發(fā)現(xiàn)性別在其中發(fā)揮的作用[33]。研究者同樣在小鼠上進(jìn)行了實(shí)驗(yàn),結(jié)果顯示,雄性C57BL/6小鼠對(duì)順鉑腎毒性更敏感[34];另外一些研究則發(fā)現(xiàn)雌性C57BL/6J和129Sv小鼠更敏感[35]。因此,性別對(duì)構(gòu)建CKD模型的影響仍有待考究。

        既往研究顯示,要優(yōu)化順鉑誘導(dǎo)的CKD動(dòng)物模型,應(yīng)重點(diǎn)關(guān)注嚙齒類動(dòng)物順鉑注射劑量及次數(shù),同時(shí)種屬、性別和年齡等因素也不可忽視。

        3" 順鉑誘導(dǎo)的CKD模型在多種藥理學(xué)化合物臨床療效試驗(yàn)中的應(yīng)用

        順鉑誘導(dǎo)的CKD動(dòng)物模型,除了被用于闡明CKD的病理機(jī)制外,也被用于測(cè)試藥物、化學(xué)物質(zhì)和天然化合物等的治療效果。表1列舉了一些以順鉑誘導(dǎo)的CKD動(dòng)物模型為平臺(tái)的實(shí)驗(yàn)。表中列出的化合物都處于臨床前階段,用于測(cè)試CKD的治療效果。

        關(guān)于表1,在不考慮何種化學(xué)物質(zhì)治療的情況下,所有的順鉑誘導(dǎo)CKD模型最終都可能以氧化損傷作為導(dǎo)致腎臟炎癥和纖維化的共同機(jī)制。因此,應(yīng)用表1中抗氧化物質(zhì)的復(fù)合物能夠有效治療順鉑誘導(dǎo)的慢性腎臟損傷。然而,探討化合物/化學(xué)物質(zhì)對(duì)抗順鉑導(dǎo)致的慢性腎臟損傷的機(jī)制需要進(jìn)行多次實(shí)驗(yàn)驗(yàn)證,這是由于各個(gè)實(shí)驗(yàn)室的測(cè)試條件及實(shí)驗(yàn)設(shè)計(jì)各不相同。另外,從表中可以發(fā)現(xiàn)多種物質(zhì)的聯(lián)合使用或許能夠?yàn)镃KD病人提供協(xié)同效益。

        4" 總結(jié)與展望

        長(zhǎng)期以來,順鉑治療癌癥這一方式得到廣泛認(rèn)可,順鉑被認(rèn)為是一種高效的抗腫瘤藥物,但長(zhǎng)期使用順鉑化療會(huì)導(dǎo)致臨床病人CKD的發(fā)生。目前對(duì)于順鉑引起的CKD的病理生理學(xué)變化及機(jī)制尚不清楚,需要進(jìn)一步研究順鉑的作用途徑及信號(hào)通路來幫助了解順鉑誘導(dǎo)CKD的發(fā)病機(jī)制。新的治療或診斷方法的發(fā)現(xiàn)主要通過動(dòng)物模型研究,因此,構(gòu)建一個(gè)簡(jiǎn)單易行、可復(fù)制和穩(wěn)定的CKD實(shí)驗(yàn)?zāi)P褪潜夭豢缮俚牟襟E。迄今為止,尚未有一個(gè)良好的模型來模擬臨床上順鉑誘導(dǎo)的CKD。本文闡述了順鉑構(gòu)建CKD模型的影響因素,包括順鉑劑量及次數(shù)、小鼠性別、年齡和種屬差異等。因此,可以通過CKD動(dòng)物模型來探索順鉑引起的慢性腎臟損傷的治療策略,為臨床病人減輕副作用。

        [參考文獻(xiàn)]

        [1]FERENBACH D A, BONVENTRE J V. Mechanisms of ma-

        ladaptive repair after AKI leading to accelerated kidney ageing and CKD[J]. Nature Reviews Nephrology, 2015,11(5):264-276.

        [2]DUAN Z Y, CAI G Y, LI J J, et al. Cisplatin-induced renal toxicity in elderly people[J]. Therapeutic Advances in Medical Oncology, 2020,12:1758835920923430.

        [3]SHARP C N, DOLL M A, DUPRE T V, et al. Repeated administration of low-dose cisplatin in mice induces fibrosis[J]. American Journal of Physiology Renal Physiology, 2016,310(6):F560-F568.

        [4]ZAGER R A, JOHNSON A C M, BECKER K. Acute unila-

        teral ischemic renal injury induces progressive renal inflammation, lipid accumulation, histone modification, and end-stage kidney disease[J]. American Journal of Physiology Renal Physiology, 2011,301(6):F1334-F1345.

        [5]LEE K, JANG H R, JEON J, et al. Repair phase modeling of ischemic acute kidney injury: recovery vs. transition to chronic kidney disease[J]. American Journal of Translational Research, 2022,14(1):554-571.

        [6]CHEVALIER R L, FORBES M S, THORNHILL B A. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy[J]. Kidney International, 2009,75(11):1145-1152.

        [7]TESCH G H, ALLEN T J. Rodent models of streptozotocin-induced diabetic nephropathy[J]. Nephrology, 2007,12(3):261-266.

        [8]ALLEN T J, COOPER M E, LAN H Y. Use of genetic mouse models in the study of diabetic nephropathy[J]. Current Diabetes Reports, 2004,4(6):435-440.

        [9]RAVICHANDRAN K, WANG Q, OZKOK A, et al. CD4 T cell knockout does not protect against kidney injury and wor-

        sens cancer[J]. Journal of Molecular Medicine, 2016,94(4):443-455.

        [10]PERE M, VEERI-HALER . Cisplatin-induced rodent model of kidney injury: characteristics and challenges[J]. BioMed Research International, 2018, 2018:1462802.

        [11]王鑫,李慧,王向東,等.順鉑注射對(duì)C57BL/6小鼠腎臟功能和結(jié)構(gòu)影響[J].青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2021,57(6):801-806.

        [12]LI J Z, XU Z, JIANG L, et al. Rictor/mTORC2 protects against cisplatin-induced tubular cell death and acute kidney injury[J]. Kidney International, 2014,86(1):86-102.

        [13]SOLANKI M H, CHATTERJEE P K, XUE X Y, et al. Magnesium protects against cisplatin-induced acute kidney injury without compromising cisplatin-mediated killing of an ovarian tumor xenograft in mice[J]. American Journal of Physiology Renal Physiology, 2015,309(1):F35-F47.

        [14]WAINFORD R D, WEAVER R J, STEWART K N, et al. Cisplatin nephrotoxicity is mediated by gamma glutamyltranspeptidase, not via a C-S lyase governed biotransformation pathway[J]. Toxicology, 2008, 249(2-3):184-193.

        [15]JODRELL D I, NEWELL D R, MORGAN S E, et al. The renal effects of N10-propargyl-5,8-dideazafolic acid (CB3717) and a non-nephrotoxic analogue ICI D1694, in mice[J]. British Journal of Cancer,1991,64(5):833-838.

        [16]MCKEAGE M J, MORGAN S E, BOXALL F E, et al. Lack of nephrotoxicity of oral ammine/amine platinum (IV) dicarboxylate complexes in rodents[J]. British Journal of Cancer,1993,67(5):996-1000.

        [17]DOBYAN D C, LEVI J, JACOBS C, et al. Mechanism of cis-platinum nephrotoxicity: II. morphologic observations[J]. The Journal of Pharmacology and Experimental Therapeutics,1980, 213(3):551-556.

        [18]SINGH G. A possible cellular mechanism of cisplatin-induced nephrotoxicity[J]. Toxicology,1989,58(1):71-80.

        [19]MIZUSHIMA Y, NAGAHAMA H, YOKOYAMA A, et al. Studies on nephrotoxicity following a single and repeated administration of cis-diamminedichloroplatinum (CDDP) in rats[J]. The Tohoku Journal of Experimental Medicine,1987,151(2):129-135.

        [20]YAMATE J, MACHIDA Y, IDE M, et al. Cisplatin-induced renal interstitial fibrosis in neonatal rats, developing as solitary nephron unit lesions[J]. Toxicologic Pathology, 2005,33(2):207-217.

        [21]BEHLING E B, SENDO M C, FRANCESCATO H D, et al. Comparative study of multiple dosage of quercetin against cisplatin-induced nephrotoxicity and oxidative stress in rat kidneys[J]. Pharmacological Reports, 2006,58(4):526-532.

        [22]DU Y, ZHAO Y J, LI C, et al. Inhibition of PKCδ reduces amyloid-β levels and reverses Alzheimer disease phenotypes[J]. The Journal of Experimental Medicine, 2018, 215(6):1665-1677.

        [23]TORRES R, VELAZQUEZ H, CHANG J J, et al. Three-dimensional morphology by multiphoton microscopy with clea-

        ring in a model of cisplatin-induced CKD[J]. Journal of the American Society of Nephrology, 2016, 27(4):1102-1112.

        [24]KATAGIRI D, HAMASAKI Y, DOI K, et al. Interstitial renal fibrosis due to multiple cisplatin treatments is ameliorated by semicarbazide-sensitive amine oxidase inhibition[J]. Kidney International, 2016,89(2):374-385.

        [25]KATAYAMA R, NAGATA S, IIDA H, et al. Possible role of cysteine-S-conjugate β-lyase in species differences in cisplatin nephrotoxicity[J]. Food and Chemical Toxicology, 2011,49(9):2053-2059.

        [26]WALKIN L, HERRICK S E, SUMMERS A, et al.

        The role of mouse strain differences in the susceptibility to fibrosis: a

        syste-

        matic review[J]. Fibrogenesis amp; Tissue Repair, 2013,6(1):18.

        [27]SUGIMOTO H, GRAHOVAC G, ZEISBERG M, et al. Renal fibrosis and glomerulosclerosis in a new mouse model of diabetic nephropathy and its regression by bone morphogenic protein-7 and advanced glycation end product inhibitors[J]. Diabetes, 2007,56(7):1825-1833.

        [28]SOBAMOWO H, PRABHAKAR S S. The kidney in aging: physiological changes and pathological implications[J]. Progress in Molecular Biology and Translational Science, 2017,146:303-340.

        [29]APPENROTH D, WINNEFELD K, BRUNLICH H. Nephrotoxicity and pharmacokinetics of cisplatinum in young and adult rats[J]. Biomedica Biochimica Acta,1988,47(8):791-797.

        [30]YAMATE J, TATSUMI M, NAKATSUJI S, et al. Immunohistochemical observations on the kinetics of macrophages and myofibroblasts in rat renal interstitial fibrosis induced by cis-diamminedichloroplatinum[J]. Journal of Comparative Patho-

        logy, 1995,112(1):27-39.

        [31]SHI M J, MCMILLAN K L, WU J X, et al. Cisplatin nephrotoxicity as a model of chronic kidney disease[J]. Laboratory Investigation, 2018,98(8):1105-1121.

        [32]SHARP C N, DOLL M, DUPRE T V, et al. Moderate aging does not exacerbate cisplatin-induced kidney injury or fibrosis despite altered inflammatory cytokine expression and immune cell infiltration[J]. American Journal of Physiology Renal Physiology, 2019,316(1):F162-F172.

        [33]ESHRAGHI-JAZI F, NEMATBAKHSH M. Sex Difference in Cisplatin-Induced Nephrotoxicity: Laboratory and Clinical Findings[J]. J Toxicol, 2022,2022:3507721.

        [34]TOWNSEND D M, TEW K D, HE L, et al. Role of gluta-

        thione S-transferase pi in cisplatin-induced nephrotoxicity[J]. Biomedecine amp; Pharmacotherapie, 2009,63(2):79-85.

        [35]WEI Q Q, WANG M H, DONG Z. Differential gender diffe-

        rences in ischemic and nephrotoxic acute renal failure[J]. American Journal of Nephrology, 2005, 25(5):491-499.

        [36]LI C Z, XIE N, LI Y, et al. N-acetylcysteine ameliorates cisplatin-induced renal senescence and renal interstitial fibrosis through sirtuin1 activation and p53 deacetylation[J]. Free Radical Biology amp; Medicine, 2019,130:512-527.

        [37]GUO X J, XU L Y, VELAZQUEZ H, et al. Kidney-targeted renalase agonist prevents cisplatin-induced chronic kidney di-

        sease by inhibiting regulated necrosis and inflammation[J]. Journal of the American Society of Nephrology, 2022,33(2):342-356.

        [38]LI C Z, SHEN Y T, HUANG L W, et al. Senolytic therapy ameliorates renal fibrosis postacute kidney injury by alleviating renal senescence[J]. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2021,35(1):e21229.

        [39]LI S Y, LIVINGSTON M J, MA Z W, et al. Tubular cell senescence promotes maladaptive kidney repair and chronic kidney disease after cisplatin nephrotoxicity[J]. JCI Insight, 2023,8(8):e166643.

        [40]EL-WASEIF E G, SHARAWY M H, SUDDEK G M. The modulatory effect of sodium molybdate against cisplatin-induced CKD: role of TGF-β/Smad signaling pathway[J]. Life Sciences, 2022,306:120845.

        [41]DEWAELES E, CARVALHO K, FELLAH S, et al. Istradefylline protects from cisplatin-induced nephrotoxicity and peripheral neuropathy while preserving cisplatin antitumor effects[J]. The Journal of Clinical Investigation, 2022,132(22):e152924.

        [42]TSAI Y S, CHEN Y P, LIN S W, et al. Lactobacillus rhamnosus GKLC1 ameliorates cisplatin-induced chronic nephroto-

        xicity by inhibiting cell inflammation and apoptosis[J]. Biomedecine amp; Pharmacotherapie, 2022,147:112701.

        [43]ADHIKARI A, MONDAL S, CHATTERJEE T, et al. Re-

        dox nanomedicine ameliorates chronic kidney disease (CKD) by mitochondrial reconditioning in mice[J]. Communications Bio-

        logy, 2021,4(1):1013.

        [44]MAGHMOMEH A O, EL-GAYAR A M, EL-KAREF A, et al. Arsenic trioxide and curcumin attenuate cisplatin-induced renal fibrosis in rats through targeting Hedgehog signaling[J]. Naunyn-Schmiedeberg’s Archives of Pharmacology, 2020,393(3):303-313.

        (本文編輯" 劉寧)

        猜你喜歡
        順鉑慢性病綜述
        肥胖是種慢性病,得治!
        癌癥只是慢性病
        SEBS改性瀝青綜述
        石油瀝青(2018年6期)2018-12-29 12:07:04
        NBA新賽季綜述
        NBA特刊(2018年21期)2018-11-24 02:47:52
        居民慢性病患病率十年增一倍
        細(xì)胞自噬與人卵巢癌細(xì)胞對(duì)順鉑耐藥的關(guān)系
        紫杉醇聯(lián)合順鉑冶療食管癌的效果觀察
        逆轉(zhuǎn)慢性病每個(gè)人都可能是潛在的慢性病候選人!
        奈達(dá)鉑與順鉑同步放化療治療中晚期宮頸癌的療效差異
        吉西他濱聯(lián)合順鉑治療晚期三陰乳腺癌的療效觀察
        视频一区二区三区中文字幕狠狠| 久久精品国产亚洲av四虎| 欧美日韩久久久精品a片| 欧美在线成人免费国产| 一道本加勒比在线观看| 日本一本免费一二区| 国产精品久久久久av福利动漫| 国产精品亚洲A∨天堂| 日本大片在线一区二区三区| 国产内射一级一片内射视频| 国产av综合影院| 国产精品大屁股1区二区三区| 青青草视频在线免费观看91| 尹人香蕉久久99天天拍| 国产农村乱子伦精品视频| 丁香婷婷色| 日韩女优一区二区在线观看 | 先锋影音av资源我色资源| AV无码系列一区二区三区| 亚洲精品偷拍自综合网| av 日韩 人妻 黑人 综合 无码| 国产欧美乱夫不卡无乱码| 国产三级三级三级看三级日本| 一本久道竹内纱里奈中文字幕| 亚洲色成人网站www永久四虎| 国产V日韩V亚洲欧美久久| 亚洲熟女av一区少妇| 久久精品国产99国产精品亚洲 | 一区二区国产在线观看| 女同国产日韩精品在线| 熟女人妻中文字幕av| 亚洲小说区图片区另类春色| 精品少妇人妻成人一区二区| 色视频不卡一区二区三区| 国产精品成人3p一区二区三区| 国产毛片视频网站| 日韩中文字幕乱码在线| 女人张开腿让男人桶爽| 免费做爰猛烈吃奶摸视频在线观看| 亚洲精品高清av在线播放| 女同视频一区二区在线观看|