亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        絹絲/毛/棉色紡紗的組成調控與性能分析

        2024-04-29 00:00:00王鄧峰駱曉蕾陳文浩劉琳
        現(xiàn)代紡織技術 2024年2期

        摘要:絹絲質地柔軟光滑、手感舒適,在服裝與家居紡織品等領域中得到了廣泛應用,是中國絹紡產業(yè)的重要產品之一;然而,目前絹絲織物生產仍存在高能耗、高排污問題,且產品競爭力不足。為此,采用低污染的色紡技術對絹絲進行精確配色,并引入羊絨、羊毛、棉等纖維組分,制備色澤獨特且性能優(yōu)異的色紡紗,以滿足市場多樣化的需求。通過調控紗線中纖維組成與配比,探究其對混紡色紗條干、機械性能及色牢度的影響規(guī)律。通過引入不同顏色與配比的各類纖維后,纖維間的優(yōu)勢互補提升了絹絲系列產品的機械性能、色牢度,完善了絹絲產品性能的不足,實現(xiàn)了絹絲系列產品的多樣化,減少了絹紡業(yè)的生產能耗與排污。

        關鍵詞:絹絲;色紡紗;羊毛;棉纖維;機械性能;色牢度

        中圖分類號:TS146

        文獻標志碼:A

        文章編號:1009-265X(2024)02-0050-07

        絹絲又稱絹紡紗,是以養(yǎng)蠶、制絲、絲織中產生的疵繭、廢絲為原料加工而成的高支數(shù)紗線,其質地柔軟光滑,手感舒適,且富有光澤感,因此在服裝、家居紡織品等領域中得到了廣泛應用[1]。絹絲及其織物具有優(yōu)異的抗菌性和透氣性,因此在醫(yī)療、保健用品等方面也有應用。21世紀以來,中國絹紡業(yè)持續(xù)穩(wěn)定發(fā)展,產業(yè)鏈不斷完善,絹紡企業(yè)為適應國內外市場的需求和競爭,積極應對市場和技術變化,加大科技創(chuàng)新和產品升級力度。然而,絹絲織物在生產及產品性能改善上仍存在一些挑戰(zhàn):在生產上,絹紡業(yè)是一個耗能和排放量相對較大的產業(yè),生產中產生的廢水、廢氣和固體廢棄物等對環(huán)境造成了一定的污染[2];在產品性能上,絹絲織物較其他紡織品存在更易損壞、遇水易變形等問題,難以適應國際市場高質量、多品種的競爭要求[3]。

        色紡技術采用先染后紡的技術,將已染色的不同色纖維或不同色且不同種類的纖維進行混紡成紗,不僅能大大減少印染廢水的排放,還可以實現(xiàn)對紗線顏色的精確控制和多樣化組合,從而生產出具有獨特顏色和效果的紡織品[4-5]。色紡時,采用不同的纖維原料有利于纖維間實現(xiàn)優(yōu)勢互補,改善織物的外觀和手感,實現(xiàn)一定的紡織效果和性能[6]。如瞿才新等[7]利用色紡紗技術,將柔軟的絹絲與剛性的漢麻相混紡,不僅提升了紗線的可紡性,還提升了織物的保健性和附加值。利用色紡紗技術,紡織企業(yè)可以提高產品的附加值和市場競爭力,同時也可以實現(xiàn)節(jié)能減排的目的,有利于行業(yè)的可持續(xù)發(fā)展[8]。

        針對絹絲產品種類單一、競爭性不夠高以及生產過程產生的排污問題,本文以絹、棉、羊毛和羊絨等為原料,采用色紡技術開發(fā)不同組分及配比的色紡紗,通過對紗線的微觀形貌觀察、機械性能分析等研究不同纖維組成對色紡紗性能的影響,并通過調節(jié)配比和紡紗參數(shù),設計了一系列具有獨特色澤和性能的色紡紗,可為傳統(tǒng)絹紡行業(yè)發(fā)展提供一條新思路,以促進絹絲類產品向系列化、多元化、高品質化、綠色化的方向發(fā)展,提高絹紡產品附加值。

        1實驗

        1.1實驗原料

        絹絲、棉纖維由嘉興市華益股份有限公司提供,羊絨和羊毛由康賽妮集團有限公司提供,在紡紗前均作染色處理。各纖維的染料配方如表1所示。染色過程中,絹絲染色pH為8.0,羊毛與羊絨的染色pH為5.0,棉的染色pH為10.0,所有纖維染色時的浴比均為1∶10。

        1.2絹絲系列色紡紗的生產工藝

        絹絲系列色紡紗工藝流程如圖1所示。在環(huán)境濕度不高于65%、溫度約28 °C條件下,按照表2所示的混紡比選取不同已作染色處理的纖維喂入設備,纖維先后會進入自動抓棉機、混棉機等設備,歷經開清棉、梳棉、并條、粗紗、細紗及并紗等

        加工工序紡制而成。粗紗機運作時,前羅拉轉速為50 r/min,錠速350 r/min,隔距10 cm,后牽伸倍數(shù)為1倍;細紗機運作時,前羅拉轉速為80 r/min,錠速800 r/min,羅拉中心距130 cm,后牽伸倍數(shù)1.05倍。其中粗紗、細紗工序的具體參數(shù)如表3和表4所示。

        1.3性能測試

        采用Ultra 55場發(fā)射掃描電子顯微鏡(SEM,德國卡爾蔡司公司)對紗線進行組成份分析,加速電壓為3 kV。依據(jù)國家標準GB/T 2543.2—2001《紡織品 紗線捻度的測定 第二部分:推捻加捻法》,利用退捻加捻法在Y6155型紗線捻度儀測定絹絲色紡紗的捻度,每組樣品測5次取平均。根據(jù)GB/T 14343—2008《化學纖維 長絲線密度試驗方法》測定紗線線密度。根據(jù)GB/T 3916—1997《紡織品 卷裝紗 單根紗線斷裂強力和斷裂伸長率的測定》,采用YG(B) 021H型紗線強度測試儀對所制得的六種試樣分別進行了拉伸性能測試,每一試樣測試5組。根據(jù)標準FZ/T 01086—2020《紡織品紗線毛羽測定方法投影計數(shù)法》,利用投影計數(shù)法測試方法測定所得紗線的毛羽。根據(jù)標準GB/T 3292.1—2008《紡織品紗線條干不勻試驗方法第1部分:電容法》,在YG137型條干均勻度測試儀上測試紗線條干均勻度。根據(jù)標準GB/T 3921—2008《紡織品 色牢度試驗 耐皂洗色牢度》、GB/T 3920—2008《紡織品 色牢度試驗 耐摩擦色牢度》及GB/T 8427《紡織品 色牢度試驗 耐人造光色牢度》對所得紗線進行耐濕、耐摩擦、耐光色牢度測試分析。上述所有測試均在標準溫濕度環(huán)境下進行。

        2結果與討論

        2.1絹絲系列色紡紗的組成分析

        所得絹絲色紡紗的SEM圖及其實物照片如圖2—圖3所示。絹絲原料的本質是蠶絲纖維,纖維表面光滑,具有三角形的橫截面形態(tài),純絹絲的微觀形貌如圖2(a)所示。這種結構能賦予紗線和織物較為光亮、絲滑的質感。羊絨表面均由鱗片結構,由于羊絨較細且沒有髓質層,因此其表面的鱗片間距較寬,以非疊加式單層環(huán)繞纖維生長,相比之下,羊毛較羊絨更粗,鱗片結構更明顯[9]。不同于蠶絲和羊絨,成熟的棉纖維截面為腰圓形態(tài),縱向具有天然轉曲形態(tài),如圖2(c)中標注所示。從圖2中的纖維分布可以看到,絹絲系列色紡紗中的纖維分布和預設配纖情況基本一致,圖3表明所得色紡紗色澤分布較均勻。

        2.2絹絲系列色紡紗的條干分析

        毛羽與條干不勻率是影響紗線條干外觀和風格的重要質量指標,直接影響到織造效率和織物風格。絹絲系列色紡紗規(guī)格信息表見表5,從表5中數(shù)據(jù)可知,所有絹絲色紡紗的條干不勻率范圍保持在10.3%~12.6%,表明在上述工藝設計下,紗線能保持較為均勻的條干。試樣1由純絹絲構成,捻度為620捻/(10 cm),絹絲纖維相對較長,三角形的截面形態(tài)有利于纖維之間的抱合,因此所得紗線毛羽較少。在與棉纖維混紡后,試樣2中棉纖維配比占40%,由于棉纖維為較短的纖維,因此相對于純絹絲紗的毛羽要明顯增加,達到16.7 根/m[10]。與15%羊絨混紡后,通過牽伸與加捻操作控制紗線線密度為33.33 tex,是所制紗線中最細的紗線。盡管羊絨也為短纖維,但由于羊絨纖維較為柔軟,有利于與絹絲纖維抱合,且含量相對試樣2中棉含量少,因此試樣3的毛羽有所降低。在進行三組分混合后,試樣4中棉纖維占比較羊絨高,但在高加捻條件下,紗線的毛羽減少至9.7 根/m。試樣5、6由絹絲、羊毛及棉混紡得到,配比一致,但試樣6被捻程度更高,紗線更細,因此毛羽較5更少。總體來看,所得6中絹絲色紡紗的毛羽由于短纖維的混紡,毛羽均有所提升。

        2.3絹絲系列色紡紗的機械性能

        所得絹絲系列色紡紗的斷裂強度及斷裂伸長結果見表6。純絹絲紗的斷裂強度為20.69 cN/tex,斷裂伸長為7.81%。與40%棉纖維混紡后,捻度為520 捻/(10 cm),試樣2的力學強度及斷裂伸長均有所下降。這是因為,一方面,試樣2較試樣1捻度顯著下降,纖維之間的抱合程度不強,因而紗線的斷裂強度不及試樣1;另一方面,棉纖維屬于纖維素纖維,伸展性能不及蛋白類纖維,因而斷裂后的斷裂伸長率也有所下降。試樣3中為85%的絹絲與15%的羊毛混紡,捻度為580 捻/(10 cm),其斷裂強度較試樣1顯著下降至12.54 cN/tex,斷裂伸長則提升至10.04%。羊絨纖維細而軟,表面具有類環(huán)狀鱗片結構并具有一定程度的卷曲。相比于纖維素纖維,羊絨纖維具有低強高伸的特點,因而試樣3盡管斷裂強度有所下降,但斷裂伸長則變大。3組分混紡后,試樣4、5、6的的斷裂強度較純絹絲的試樣1和雙組分的試樣2與試樣3均有所提升,且斷裂伸長率較除羊絨混紡的試樣3外高,意味著纖維之間確實實現(xiàn)了優(yōu)勢互補。棉纖維機械性能優(yōu)異,為增強紗線強度做出了貢獻,而毛纖維的存在不僅增強了纖維之間的抱合能力,也有助于紗線整體斷裂伸長率的提升。

        2.4絹絲系列色紡紗的色牢度分析

        表7—表8分別為單組份紡織品測得的色牢度和色紡紗織造得到的紡織品的色牢度測試結果。根據(jù)表7可知,棉織物的色牢度表現(xiàn)最佳,絹絲次之,而羊毛與羊絨的色牢度表現(xiàn)相對最差。在加工成色紡紗后,幾種樣品的色牢度也受到了紗線中纖維的種類與配比影響。耐濕色牢度中,試樣5與6的色牢度相對較高,而其他樣品色牢度處于同一水平,且均未低于4級,說明洗滌條件對三種纖維的色牢度影響均不大。光照射下,6種紗線的色牢度則均顯著下降,均保持在3級或3~4級的水平,較其他條件測試的色牢度下降更為顯著,表明光照射對色牢度的影響均較大[11]。對比試樣1,試樣2的耐干/濕摩擦色牢度較試樣1均有顯著提升,說明在絹絲中加入棉纖維會增加紗線的耐干/濕摩擦色牢度。試樣3的耐干/濕摩擦色牢度均是3~4級,不及試樣1,表明羊絨對紗線的耐干/濕摩擦色牢度不及絹絲,因此添加羊絨會使得紗線的色牢度略有下降。從環(huán)境條件看,光輻射是對紗線色牢度下降影響最大;從組成看,棉纖維的存在有助于提升紗線的色澤保持能力,而羊絨的存在或會使得纖維的色澤保持能力略有下降。

        3結語

        為解決絹絲在生產上的高能耗與高排污問題及其在產品性能不足問題,本文結合綠色環(huán)保的色紡技術實現(xiàn)對紗線的精確均勻配色,并將絹絲與羊絨、羊毛、棉纖維引入紗線中,實現(xiàn)纖維之間的優(yōu)勢互補,以完善絹絲產品的性能,實現(xiàn)絹絲系列產品的多樣化。通過調控組分與工藝參數(shù),研究發(fā)現(xiàn)紗線中短纖維含量提升會增加紗線條干中的毛羽,而在一定程度上提升加捻程度,不僅能減少絹絲色紡紗線條干中的毛羽,還能提升紗線的機械性能。在機械性能方面,機械性能優(yōu)異的棉纖維有助于增強色紡紗的機械強度,而毛纖維有助于纖維之間抱合能力的提升,有利于提升色紡紗的斷裂伸長率。在色牢度方面,絹絲與羊絨、羊毛作為蛋白類纖維,對色澤的保持能力不及棉纖維,因而含有棉纖維的絹絲混紡色紗在不同環(huán)境下對色澤的保持能力要優(yōu)于其他紗線。

        參考文獻:

        [1]劉博,叢洪蓮,吳光軍.絹絲/羊絨混紡全成形針織服裝的設計和開發(fā)[J].絲綢,2020,57(9):114-119.

        LIU Bo, CONG Honglian, WU Guangjun. Design and development of fully-formed garment based on silk/cashmere blend yarn[J]. Journal of Silk, 2020, 57(9): 114-119.

        [2]丁然,林旭,張梅飛,等.真絲綢數(shù)碼印花的免漿前處理工藝探究[J].現(xiàn)代紡織技術,2019,27(6):91-95.

        DING Ran, LIN Xu, ZHANG Meifei, et. Study non-paste pretreatment process of silk fabric digital printing[J]. Advanced Textile Technology, 2019, 27(6): 91-95.

        [3]NASROLLAHZADEH M, SAJJADI M, IRAVANI S, et al.Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review[J]. Carbohydrate Polymers, 2021, 251: 116986.

        [4]繆定蜀.低碳環(huán)保智能的色紡技術探析[J].棉紡織技術,2018,46(5):66-71.

        MIAO Dingshu. Analyses oflow carbon environmental intelligent colored spinning technology[J]. Cotton Textile Technology, 2018, 46(5): 66-71.

        [5]王云鵬,姜偉,張建明,等.植物染色紡紗測配色模型研究[J].棉紡織技術,2021,49(7):20-24.

        WANG Yunpeng, JIANG Wei, ZHANG Jianming, et al. Studr oncolor measuring and matching model for plant dyeing colored spun yarn [J]. Cotton Textile Technology, 2021, 49(7): 20-24.

        [6]趙振,楊周杰.粗紡羊絨/絹絲/TencelTM混紡紗線工藝探討[J].紡織導報,2020(4):44-46.

        ZHAO Zheng, YANG Zhoujie. Discussion on thespinning process of woolen cashmere/spun silk/TencelTM blended yarn[J]. China Textile Leader, 2020(4): 44-46.

        [7]瞿才新,周紅濤,宋秋霞.漢麻絹絲色紡紗的開發(fā)[J].棉紡織技術,2013,41(1):47-49.

        QU Caixin, ZHOU Hongtao, SONG Qiuxia. Development ofhemp spun silk colored spun yarn[J]. Cotton Textile Technology, 2013, 41(1): 47-49.

        [8]潘真禎,肖嵐,汪軍.基于SCP范式的中國色紡紗產業(yè)分析[J].紡織導報,2022(6):62-66.

        PAN Zhenzheng, XIAO Lan, WANG Jun. SCP paradigm analysis on China’s colored spun yarn industry[J]. China Textile Leader, 2022(6): 62-66.

        [9]曾滔.再生絲毛混紡紗線與織物工藝研究及產品開發(fā)[D].杭州:浙江理工大學,2018:1-68.

        ZENG Tao. Research and Product Development of Regenerated Silk Wool Blende Yarn and Fabric[D]. Hangzhou: Zhejiang Sci-Tech University, 2018: 1-68.

        [10]蔡文杰,王波.不同配棉和捻系數(shù)對牛仔面料風格的影響[J].染整技術,2023,45(1):47-49.

        CAI Wenjie, WANG Bo. Influence of different cotton assorting and twist factor on the style of denim fabric[J]. Textile Dyeing and Finishing Journal, 2023, 45(1): 47-49.

        [11]章梅,周微波,章淑娟,等.滌綸分散染料轉移印花織物的耐光穩(wěn)定性及其提升工藝[J].現(xiàn)代紡織技術,2023,31(4):208-216.

        ZHANG Mei, ZHOU Weibo, ZHANG Shunjuan, et al. Lightstability of the polyester disperse dye transfer printing fabric and its promotion process[J]. Advanced Textile Technology, 2023, 31(4): 208-216.

        Composition control and performance of silk/wool/cotton colored spun yarn

        WANG Dengfeng1, LUO Xiaolei1, CHEN Wenhao2, LIU Lin1

        (1.School of Materials Science amp; Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;

        2.Consinee Group Co., Ltd. Ningbo 315000, China)

        Abstract:

        Silk, due to its soft and smooth texture and comfortable touch, has been widely used in fields such as clothing and home textiles, and the silk industry is one of China's important textile industries. However, there are still some challenges in the production and performance of silk fabrics. In terms of production, the silk industry is an energy-intensive and relatively high-emission industry, and the waste water produced during its production process causes certain pollution to the environment, so environmental protection measures need to be strengthened. In terms of products, silk fabrics are prone to damage and deformation when exposed to water, making it difficult to meet the high-quality and diverse competition requirements of the international market. In terms of color spinning technology, the technique of dyeing before spinning is adopted, which blends differently colored fibers or fibers of different colors and types into yarn. This not only greatly reduces the discharge of dyeing wastewater but also enables precise control of yarn color and diverse combinations, thereby producing textiles with unique colors and effects. Therefore, herein, cotton, cashmere, and wool fibers were selected as raw materials and combined with color spinning technology to address the high pollution and inadequate product performance issues in the silk industry.

        We designed a series of color spinning yarns with unique luster and performance by adjusting the fiber composition and ratio in the color spinning process. We investigated the influence of different fiber compositions on the performance of color spinning yarns through the observation of the microstructure of fibers in the yarn and the analysis of mechanical properties. Color spinning technology not only achieves complementary advantages between fiber components, but also overcomes the dyeing differences caused by different raw material structures, thereby improving product quality and added value. It provides a new approach for the development of the traditional silk spinning industry, promoting the development of silk products towards serialization, diversification, high quality, and environmental friendliness. Firstly, through SEM analysis of the distribution and composition of the yarn, the fiber distribution in the silk-colored yarn is basically consistent with the preset blending situation, and the resulting mixed color yarn has a uniform color distribution. Then, through the analysis of yarn hairiness and unevenness of the dryness, the influence of fiber composition and forming process on the appearance and style of the yarn was studied. It is found that the addition of short fibers such as cotton and wool will increase the yarn hairiness and unevenness of the dryness, but the phenomenon of hairiness and unevenness of the dryness can be reduced by increasing the twisting degree. Through mechanical performance analysis, it is found that blending cotton fibers with excellent mechanical strength in silk contributes to enhancing the mechanical strength of dyed spinning, while adding wool fibers helps improve the cohesion between fibers, thereby promoting the elongation at break of dyed spinning. In addition, the twisting process can effectively improve the overall mechanical performance of dyed spinning. In terms of color fastness, silk, cashmere, and wool are all protein fibers, which are less prone to dyeing and prone to fading compared to plant fibers. Therefore, the color fastness under different environmental conditions was studied and analyzed. From the environmental conditions, light radiation has the greatest impact on the color fastness of yarns; from the composition, the presence of cotton fibers helps to improve the color retention ability of yarns, while the presence of cashmere may slightly decrease the color retention ability of fibers.

        This study provides a new approach for the development of the traditional silk spinning industry, which can achieve the direction of serialization, diversification, and high quality of silk products. At the same time, colored spun yarn is a blended yarn among different types of dyed fibers, which can improve the performance deficiencies of silk products and achieve diversification of silk series products. Furthermore, its productive process has significant energy-saving and emission-reducing advantages.

        Keywords:

        silk yarn; colored spun yarn; wool; cotton fiber; mechanical properties; color fastness

        收稿日期:20230529

        網絡出版日期:20230830

        基金項目:寧波市重大科技任務攻關項目(2021Z033)

        作者簡介:王鄧峰(1994—),安徽合肥人,博士研究生,主要從事紡織纖維材料的開發(fā)與應用研究。

        通信作者:劉琳,Email:linliu@zstu.edu.cn

        亚洲日韩一区二区三区| 国产羞羞视频在线观看| 中文字幕乱偷乱码亚洲| 亚洲麻豆av一区二区| 日韩三级一区二区不卡| 国产乱码一区二区三区爽爽爽| 中国精学生妹品射精久久 | 一本一道久久综合狠狠老| 国产乱人伦AV在线麻豆A| 四虎国产精品免费久久麻豆| 日本女u久久精品视频| 国产女优一区在线观看| 无码国产色欲xxxx视频| 亚洲av永久无码精品秋霞电影影院 | 超碰性爱| 日本免费一区二区在线看片| 先锋中文字幕在线资源| 伊人久久成人成综合网222| 人妻丰满熟妇AV无码片| 日本高清无卡一区二区三区| 在线麻豆精东9制片厂av影现网| 国产精品爽爽久久久久久竹菊| 99精品一区二区三区无码吞精| 国产主播一区二区三区在线观看 | 无套内射无矿码免费看黄| 麻豆AⅤ精品无码一区二区| 国产一区二区三区探花| 天堂在线资源中文在线8| 无码乱人伦一区二区亚洲一| 人妻被黑人粗大的猛烈进出| 香蕉亚洲欧洲在线一区| 国产白色视频在线观看| 天天做天天爱天天综合网2021| 国产山东熟女48嗷嗷叫| 午夜无码国产18禁| 亚洲综合久久中文字幕专区一区 | 国产精成人品日日拍夜夜免费| 无码AV高潮喷水无码专区线| 国产三级精品三级在专区中文| 日本免费一区二区在线视频播放 | 装睡被陌生人摸出水好爽|