摘要:為實(shí)現(xiàn)超雙疏棉織物的高效制備,將全氟癸基三甲氧基硅烷(PFDMS)與氨水和無(wú)水乙醇(EtOH)復(fù)配水解,通過(guò)一步浸漬法制備了耐久超雙疏棉織物。采用掃描電子顯微鏡、X射線光電子能譜儀對(duì)織物的表面形貌及元素組成進(jìn)行分析,探討了PFDMS用量及水解時(shí)間對(duì)織物表面潤(rùn)濕性的影響,測(cè)試了織物表面超雙疏涂層的穩(wěn)定性、耐久性和自清潔性能。結(jié)果表明:當(dāng)PFDMS與EtOH的體積比為3∶50時(shí),不同水解時(shí)間整理的棉織物均具有超雙疏特性,水解10 min時(shí)整理棉織物的水接觸角高達(dá)157.2°±0.3°,油接觸角為1500°±1.4°;PFDMS整理后的棉織物表面引入了CF2、CF3基團(tuán),F(xiàn)、Si元素的含量分別為0.66%和337%;整理棉織物經(jīng)10000次循環(huán)磨擦、600 min超聲波洗滌、24 h紫外光老化、24 h酸堿溶液或有機(jī)溶劑浸泡后,仍然具有超疏水和疏油特性。該方法及工藝簡(jiǎn)單高效,所制備的超雙疏棉織物在自清潔領(lǐng)域具有潛在的應(yīng)用前景和價(jià)值。
關(guān)鍵詞:棉織物;全氟癸基三甲氧基硅烷;超疏水;超疏油;自清潔
中圖分類(lèi)號(hào):TS195.2
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1009-265X(2024)02-0112-09
棉織物作為天然纖維織物之一,具有柔軟透氣、可再生、環(huán)保等優(yōu)點(diǎn),被廣泛應(yīng)用于服飾、室內(nèi)裝飾及戶(hù)外防護(hù)等領(lǐng)域[1-2]。然而,在實(shí)際使用中,以纖維素為主要成分的棉織物極易被牛奶、咖啡、可樂(lè)、醬油、植物油等常見(jiàn)液體沾染[3]。超雙疏表面是一種特殊的潤(rùn)濕性表面,對(duì)水和油的接觸角均大于150°,開(kāi)發(fā)具有防污[4]、抗紫外老化[5]及自清潔[6]等功能的超雙疏棉織物備受關(guān)注。
目前,人們普遍采用微/納米顆粒來(lái)構(gòu)筑粗糙結(jié)構(gòu),然后再利用含氟化合物進(jìn)行低表面能修飾的方法來(lái)制備超雙疏織物[7-8]。例如,Xu等[9]首先利用溶膠-凝膠法將硝酸鋅和埃洛石納米管(HNTs)混合制得HNTs/ZnO雜化顆粒,再將HNTs/ZnO顆粒與正硅酸乙酯(TEOS)、全氟癸基三乙氧基硅烷(PFDTES)以及氨水共混于乙醇溶液中進(jìn)行低表面能修飾,最后將聚二甲基硅氧烷(PDMS)與修飾后的HNTs/ZnO顆粒共混噴涂于棉織物表面,制備了具有超疏水、超疏油及光催化性能的棉織物。Yu等[10]受蛇皮褶皺現(xiàn)象的啟發(fā),先將全氟辛基三乙氧基硅烷(FOS)、氯化鋁(AlCl3)共混于乙醇溶液中,攪拌30 min后對(duì)棉織物進(jìn)行浸漬,再利用FOS單體對(duì)浸漬后的棉織物進(jìn)行氣相沉積,在織物表面構(gòu)筑了褶皺狀的超疏水/超疏油涂層。Gong等[11]先用植酸(PA)對(duì)棉織物進(jìn)行阻燃處理,再采用單寧酸(TA)、3-氨基丙基三乙氧基硅烷(APTES)及硝酸銀在棉織物表面構(gòu)筑粗糙結(jié)構(gòu),最后用全氟癸基硫醇(PFDT)對(duì)棉織物表面進(jìn)行低表面能修飾,制備出具有導(dǎo)電、阻燃和超雙疏性能的功能化棉織物。上述超雙疏棉織物的制備方法普遍存在工藝復(fù)雜、制備周期長(zhǎng)等不足,因此研究超雙疏棉織物的高效制備方法具有重要意義。
本文將1H,1H,2H,2H-全氟癸基三甲氧基硅烷(PFDMS)與氨水和無(wú)水乙醇復(fù)配水解,采用一步浸漬法對(duì)棉織物進(jìn)行整理,高效制備耐久性超雙疏棉織物;探究PFDMS的用量及水解時(shí)間對(duì)棉織物表面潤(rùn)濕性能的影響,采用掃描電子顯微鏡(SEM)、能量色散X射線光譜儀(EDX)及X射線光電子能譜儀(XPS)對(duì)棉織物的表面形貌、元素組成及化學(xué)環(huán)境進(jìn)行分析,并對(duì)涂層的機(jī)械穩(wěn)定性、化學(xué)耐久性、自清潔和抗污性能進(jìn)行了測(cè)試。
1材料與方法
1.1實(shí)驗(yàn)材料
棉織物(面密度為145 g/m2,市售),氨水(25%~28%,廣東光華科技股份有限公司),1H,1H,2H,2H-全氟癸基三甲氧基硅烷(C13H13F17O3Si,gt;97%,上海阿拉丁生化科技股份有限公司),無(wú)水乙醇、二氯甲烷(分析純,廣東光華科技股份有限公司),氫氧化鈉(分析純,成都金山化學(xué)試劑有限公司),甲醇(99.9%,瑞士阿達(dá)瑪斯公司),甲苯、鹽酸、丙酮(分析純,云南楊林工業(yè)開(kāi)發(fā)區(qū)汕滇藥業(yè)有限公司),蒸餾水(實(shí)驗(yàn)室自制),葵花籽植物油、咖啡、橙汁、醬油、可樂(lè)和牛奶均購(gòu)于當(dāng)?shù)爻小?/p>
1.2超雙疏棉織物制備
采用UP2200HE型超聲波清洗器(南京壘君達(dá)超聲電子設(shè)備有限公司),依次用乙醇和蒸餾水對(duì)棉織物進(jìn)行15 min的超聲波清洗,然后在溫度為90 ℃的101A-1型鼓風(fēng)干燥箱(上海市崇明實(shí)驗(yàn)儀器廠)中烘干備用。
將適量的PFDMS加入體積比為1∶1的氨水(NH4OH)和無(wú)水乙醇(EtOH)混合溶液中(實(shí)驗(yàn)中PFDMS與EtOH的體積比為1∶50、1∶25、3∶50),磁力攪拌水解10~120 min,然后將清洗后的棉織物置于水解溶液中浸漬5 min,取出,并用吸水紙去除表面多余的溶液,在120 ℃的烘箱中干燥1 h,完成超雙疏棉織物的制備。PFDMS整理棉織物的機(jī)理示意圖如圖1所示。
1.3性能分析與表征
利用JC2000D3R型接觸角測(cè)量?jī)x(上海中晨數(shù)字技術(shù)設(shè)備有限公司)測(cè)試其接觸角,以表面張力為72.8 mN/m的蒸餾水和表面張力為31 mN/m的葵花籽植物油為測(cè)試液,將4 μL的液滴滴在棉織物表面,隨機(jī)選取6個(gè)不同的位置測(cè)試,取其平均值作為測(cè)試結(jié)果。
采用TESCAN MIRA LMS型掃描電子顯微鏡(SEM,捷克Tescan公司,配有能量色散X射線光譜儀(EDX))及Thermo Scientific K-Alpha+型X射線光電子能譜儀(XPS,美國(guó)Thermo Fisher Scientific)對(duì)棉織物的表面形貌、元素組成及化學(xué)環(huán)境進(jìn)行分析。
將整理的棉織物依次置于無(wú)水乙醇和蒸餾水中分別進(jìn)行15 min的超聲波洗滌,然后在90 ℃下烘干后測(cè)其接觸角,此過(guò)程記為一次洗滌循環(huán),考察洗滌循環(huán)次數(shù)對(duì)棉織物接觸角的影響。
將整理的棉織物置于UVTest型紫外老化箱(美國(guó)ATLAS)中,在輻照強(qiáng)度0.53 W/m2、溫度50 ℃條件下老化4~24 h,考察其接觸角隨老化時(shí)間的變化以表征其耐老化性能。
將整理的棉織物置于HD-A507型印刷油墨脫色耐磨試驗(yàn)機(jī)(海達(dá)儀器有限公司)的磨擦平臺(tái),利用重908 g的磨擦頭(帶有500目的砂紙)對(duì)棉織物進(jìn)行往復(fù)磨擦,考察織物磨擦后的接觸角隨磨擦次數(shù)的變化以表征其耐磨性能。
用鹽酸或氫氧化鈉配制pH值為1~13的酸堿溶液,將整理后的棉織物置入酸堿溶液中浸泡24 h,取出并用蒸餾水沖洗,然后在90 ℃下烘干后測(cè)試棉織物表面的接觸角以表征其耐酸堿性能。
將整理的棉織物分別用乙醇、丙酮、甲苯、甲醇和二氯甲烷等有機(jī)溶劑浸泡24 h,取出后依次用乙醇和蒸餾水沖洗,然后在90 ℃下烘干,測(cè)試棉織物表面的接觸角,以分析其耐有機(jī)溶劑的浸蝕性能。
分別將40 μL的牛奶、咖啡、橙汁、可樂(lè)和醬油滴在整理前后棉織物表面,靜置10 s后用吸水紙擦拭,觀察織物表面殘留的污漬痕跡,以分析其抗污性能。
將貼有所整理棉織物的載玻片傾斜30°,并在棉織物表面均勻散布石墨粉,讓水滴在棉織物上方持續(xù)滴落,以織物表面殘留石墨粉的多少來(lái)評(píng)價(jià)其自清潔性能。
2結(jié)果與討論
2.1表面潤(rùn)濕性分析
分別以蒸餾水和植物油為測(cè)試液,用不同PFDMS含量的水解溶液對(duì)棉織物進(jìn)行整理,其表面的接觸角隨水解時(shí)間的變化規(guī)律如圖2所示。由圖2(a)和圖2(b)可知,經(jīng)PFDMS整理的棉織物其水接觸角均大于150°,具有超疏水特性,而油接觸角均大于130°,具有疏油特性。在氨水和無(wú)水乙醇體積比不變的情況下,隨著PFDMS用量的增加,所整理棉織物的水/油接觸角逐漸增大。當(dāng)PFDMS與EtOH的體積比為3∶50時(shí),PFDMS整理的棉織物呈現(xiàn)出超雙疏特性,水解時(shí)間為10 min時(shí),所整理棉織物的水接觸角為157.2°±0.3°,油接觸角為150.0°±1.4°;水解時(shí)間延長(zhǎng)至120 min時(shí),整理織物的水接觸角高達(dá)162.3°±0.4°,油接觸角為153.3°±0.4°。這是由于PFDMS富含低表面能CF基團(tuán),而延長(zhǎng)PFDMS的水解時(shí)間可使其發(fā)生充分的縮聚反應(yīng),賦予整理棉織物優(yōu)異的超雙疏性能[12]。綜合考慮整理效率和效果,以下的測(cè)試和分析均采用PFDMS與EtOH的體積比為3∶50并水解10 min所整理的棉織物樣品。
2.2表面形貌與化學(xué)環(huán)境分析
采用SEM對(duì)整理前后的棉織物進(jìn)行表面形貌觀察,結(jié)果如圖3所示。由圖3(a)可知,天然棉織物纖維表面除部分褶皺外,整體較為光滑;而經(jīng)PFDMS整理的棉織物纖維表面則附著有致密的粗糙化涂層(見(jiàn)圖3(b))。這一方面是由于PFDMS具有較長(zhǎng)的分子鏈,在水解-縮聚過(guò)程中易形成致密的涂層結(jié)構(gòu)[13],另一方面是由于棉織物本身含有豐富的羥基,可與PFDMS的水解預(yù)聚物(硅醇基團(tuán))發(fā)生充分的反應(yīng)。結(jié)合表1中EDX的分析結(jié)果可以看出,相較于天然棉織物,PFDMS整理棉織物表面新增了F、Si兩種元素,F(xiàn)元素含量為066%,Si元素含量為3.37%,表明PFDMS成功整理在棉織物表面。
為進(jìn)一步探究PFDMS整理后棉織物表面的元素種類(lèi)及化學(xué)環(huán)境,采用XPS對(duì)整理前后的棉織物進(jìn)行分析,結(jié)果如圖4所示。由圖4(a)可知,經(jīng)PFDMS整理后的棉織物表面在103.65、154.64 eV及689.25 eV處新增了明顯的Si 2s、Si 2p和F 1s 的信號(hào)峰,這與上述EDX分析相符。天然棉織物與PFDMS整理棉織物表面的C 1s高分辨率譜圖分別如圖4(b)和圖4(c)所示。相較于天然棉織物,
PFDMS整理的棉織物在290.7 eV和293.0 eV處新增了明顯的CF2、CF3基團(tuán)特征峰[14],而在284.8、286.3 eV和288.4 eV處的CC、CO和CO特征峰[15]也有所減弱,這表明PFDMS水解產(chǎn)物成功鍵接在棉織物表面,所引入的CF2、CF3基團(tuán)與棉織物自身的微納米級(jí)粗糙結(jié)構(gòu)共同構(gòu)筑了超雙疏表面。
2.3超雙疏涂層的穩(wěn)定性和耐久性分析
穩(wěn)定性與耐久性對(duì)功能化織物的實(shí)際應(yīng)用至關(guān)重要。PFDMS整理棉織物的接觸角隨洗滌循環(huán)次數(shù)變化如圖5所示,從圖5中可以看出:PFDMS整理棉織物的接觸角隨著洗滌次數(shù)的增加略有下降的趨勢(shì),在經(jīng)歷20次洗滌循環(huán)后(洗滌時(shí)長(zhǎng)共計(jì)600 min),水接觸角為156.1°±1.3°,油接觸角為147.7°±1.0°,水、油接觸角分別僅下降了1.1°和2.3°。這是由于PFDMS成功鍵接在棉織物表面,賦予了整理棉織物較好的耐超聲波洗滌性能。
PFDMS整理棉織物經(jīng)紫外老化后的接觸角隨老化時(shí)間的變化如圖6所示。PFDMS整理織物的水、油接觸角隨老化時(shí)間的變化有一定波動(dòng),水接觸角的變化幅度在3.0°以?xún)?nèi),油接觸角的變化幅度較?。ú怀^(guò)1.0°),經(jīng)過(guò)24 h紫外老化后仍然保持有超雙疏特性,這是由于PFDMS涂層中的CF鍵極為穩(wěn)定[14],賦予超雙疏織物優(yōu)異的耐紫外光老化性能。
超雙疏材料的耐機(jī)械磨擦性能是影響其實(shí)際應(yīng)用的關(guān)鍵。PFDMS整理棉織物表面的水、油接觸角與循環(huán)磨擦次數(shù)之間的關(guān)系如圖7所示。當(dāng)磨擦2000次后,織物表面仍具有超雙疏特性,水接觸角為158.1°±1.3°,油接觸角為151.4°±5.0°;而隨著磨擦次數(shù)的增加,PFDMS整理棉織物的接觸角呈下降趨勢(shì),當(dāng)循環(huán)磨擦10000次后,其水接觸角為154.3°±0.9°,油接觸角為138.4°±1.2°,具有較好的超疏水、疏油性能。
用pH值為1~13的酸堿溶液對(duì)PFDMS所整理的棉織物進(jìn)行24 h浸泡以考察其耐酸堿性能,浸泡后的接觸角隨浸泡溶液pH值的變化如圖8(a)所示,從圖8(a)可以看出,PFDMS整理棉織物的接觸角隨浸泡溶液pH值的減小略有下降,但減小幅度與浸泡前相比未超過(guò)3.0°,表現(xiàn)出優(yōu)異的耐酸堿性能。PFDMS整理的棉織物經(jīng)甲苯、甲醇、乙醇、丙酮和二氯甲烷等不同有機(jī)溶劑浸泡24 h后的接觸角變化如圖8(b)所示,從圖8(b)可以看出,經(jīng)二氯甲烷浸泡后的水接觸角、甲苯浸泡后的油接觸角與浸泡前相比有所下降,下降值分別為2.3°和1.5°,仍表現(xiàn)出較好的耐有機(jī)溶劑性能。這一方面是由于PFDMS涂層本身具有耐酸堿及耐有機(jī)溶劑浸蝕的性能[7-8],另一方面是PFDMS構(gòu)筑的微納超疏水涂層捕獲了空氣形成氣墊,減少了酸堿溶液或有機(jī)溶劑與棉織物表面的有效接觸所致[16]。
2.4抗污及自清潔性能測(cè)試
經(jīng)PFDMS整理的棉織物具有較好的超雙疏特性,對(duì)牛奶、咖啡、橙汁、可樂(lè)和醬油等液體的抗污性能如圖9所示。由圖9(a)可以明顯看出,天然棉織物由于表面含有豐富的親水基團(tuán),液體迅速浸潤(rùn)其表面,且用吸水紙擦拭后仍有明顯的污漬殘留;而經(jīng)PFDMS整理后,各種液體在棉織物表面均呈球形狀(見(jiàn)圖9(b)),用吸水紙擦拭后未留任何污漬,說(shuō)明
PFDMS整理的棉織物具有優(yōu)異的抗污性能。
在以石墨粉為污染物的自清潔測(cè)試中,棉織物的自清潔性能如圖11所示。水滴在接觸天然棉織物表面后,與碳粉混合并粘附在織物表面(見(jiàn)圖10(a));而水滴在PFDMS整理后的棉織物表面快速滾落,同時(shí)將其表面上的石墨粉全部帶走(見(jiàn)圖10(b)),表明PFDMS整理棉織物具有類(lèi)似荷葉表面的自清潔性能。
3結(jié)論
本文以1H,1H,2H,2H-全氟癸基三甲氧基硅烷(PFDMS)為功能化單體,采用一步浸漬法對(duì)棉織物進(jìn)行整理,在棉織物表面簡(jiǎn)單高效地制備了超雙疏涂層。研究了PFDMS用量及水解時(shí)間對(duì)棉織物表面潤(rùn)濕性能的影響,分析了超雙疏涂層的機(jī)械穩(wěn)定性、化學(xué)耐久性、自清潔性和抗污性能。主要結(jié)論如下:
a)隨著PFDMS用量的增加,所整理棉織物的水、油接觸角增大,當(dāng)PFDMS與EtOH的體積比為3∶50、水解時(shí)間為10 min時(shí),所整理棉織物的水接觸角高達(dá)157.2°±0.3°,油接觸角為150.0°±14°,具有優(yōu)異的超疏水/超疏油特性。
b)棉織物表面經(jīng)PFDMS整理后形成了致密的粗糙化涂層,引入了低表面能的CF2和CF3基團(tuán),新出現(xiàn)的F、Si元素含量分別為0.66%和3.37%。
c)對(duì)整理棉織物用超聲波洗滌、砂紙磨擦、紫外老化、不同pH值的酸堿溶液及有機(jī)溶劑浸泡等測(cè)試表明,PFDMS所整理的棉織物具有優(yōu)異的機(jī)械穩(wěn)定性和化學(xué)耐久性。
d)PFDMS整理棉織物具有自清潔性,對(duì)常見(jiàn)的牛奶、咖啡、橙汁、可樂(lè)和醬油等液體具有優(yōu)異的抗污性。
e)該方法及工藝簡(jiǎn)單高效,所制備的超雙疏棉織物在防水、抗污等自清潔領(lǐng)域具有潛在的應(yīng)用前景和價(jià)值。
參考文獻(xiàn):
[1]WANG Y C, XIAO Y, FU X W, et al. Facile preparation of cotton fabric with superhydrophilicity-oleophobicity in air and superoleophobicity under water by using branched polyethyleneimine/perfluorooctanoic acid composites[J]. New Journal of Chemistry, 2021, 45(34): 15321-15327.
[2]陳春暉,許多,李治江,等.疏水親油復(fù)合棉織物的制備及其性能[J].現(xiàn)代紡織技術(shù),2022,30(4):115-123.
CHEN Chunhui, XU Duo, LI Zhijiang, et al. Preparation and properties of hydrophobic-oleophylic composite cotton fabrics[J]. Advanced Textile Technology, 2022, 30(4): 115-123.
[3]MONDAL S, PAL S, CHAUDHURI A, et al. Fluoropolymer adhered bioinspired hydrophobic, chemically durable cotton fabric for dense liquid removal and self-cleaning application[J]. Surface Engineering, 2021, 37(3): 299-307.
[4]吳明星,汪進(jìn)前,蓋燕芳.改性棉織物微/納米拒水表面
的構(gòu)建及其性能[J].現(xiàn)代紡織技術(shù),2022,30(5):197-205.
WU Mingxing, WANG Jinqian, GE Yanfang. Construction and properties of micro/nano water repellent surface of modified cotton fabrics[J]. Advanced Textile Technology, 2022, 30(5): 197-205.
[5]譚衛(wèi),馬明波,周文龍.基于納米Cs0.33WO3的自清潔多功能棉織物的制備及其性能[J].現(xiàn)代紡織技術(shù),2022,30(5):213-221.
TAN Wei, MA Mingbo, ZHOU Wenlong. Preparation of self-cleaning multifunctional cotton fabrics based on nano-Cs0.33WO3and properties[J]. Advanced Textile Technology, 2022, 30(5): 213-221.
[6]李慧慧,王群,賈偉科,等.多功能超疏水紡織品的制備及應(yīng)用研究進(jìn)展[J].現(xiàn)代紡織技術(shù),2022,30(3):39-46.
LI Huihui, WANG Qun, JIA Weike, et al. Recent advances in the fabrication and application of multi-functional super-hydrophobic textiles[J]. Advanced Textile Technology, 2022, 30(3): 39-46.
[7]CHEN B X, YANG M J, LIN X L, et al. Strategy toward fluorinated polyhedral oligomeric silsesquioxane wrapping nanoparticles for superomniphobic surfaces[J]. Chemical Communications, 2022, 58(26): 4263-4266.
[8]MONDAL S, PAL S, CHAUDHURI A, et al. Fabrication of fluoropolymer-modified hydrophobic functionalization of cotton fabric by admicellar polymerization[J]. The Journal of The Textile Institute, 2019, 110(12): 1747-1754.
[9]XU W, XU L H, PAN H, et al. Superamphiphobic cotton fabric with photocatalysis and ultraviolet shielding property based on hierarchical ZnO/halloysite nanotubes hybrid particles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022,654: 129995.
[10]YU M Q, LYU W, LIAO Y Z, et al. Snakeskin-inspired hierarchical winkled surface for ultradurable superam-phiphobic fabrics via short-fluorinated polymer reactive infusion[J]. Advanced Fiber Materials, 2023,5(2): 543-553.
[11]GONG X A, XIONG Z, CHEN X N, et al. Multifunctional superamphiphobic cotton fabrics with highly efficient flame retardancy, self-cleaning, and electromagnetic interference shielding[J]. ACS Applied Materials amp; Interfaces, 2023,15(2): 3395-3408.
[12]RUAN M, XU J, LU L L, et al. Theoretical study of perfluorodecyltrimethoxysilane and polyethylene glycol adsorption/dissociation reactions on dry and hydrated Al2O3 (0001) surface[J]. Computational and Theoretical Chemistry, 2020,1191: 113027.
[13]RODICˇ P, MILOEV I. One-step ultrasound fabrication of corrosion resistant, self-cleaning and anti-icing coatings on aluminium[J]. Surface and Coatings Technology, 2019,369: 175-185.
[14]YANG M P, LIU W Q, JIANG C, et al. Facile preparation of robust superhydrophobic cotton textile for self-cleaning and oil-water separation[J]. Industrial amp; Engineering Chemistry Research, 2019, 58(1): 187-194.
[15]XU Q B, KE X T, ZHANG Y Y, et al. Preparation of durable superhydrophobic cotton fabric for self-cleaning and oil-water separation[J]. Fibers and Polymers, 2022, 23(6): 1572-1581.
[16]LIU X L, GU Y C, MI T F, et al. Dip-coating approach to fabricate durable PDMS/STA/SiO2 superhydrophobic polyester fabrics[J]. Coatings, 2021, 11(3): 326.
Preparation of durable superamphiphobic coatings on cotton fabric surfaces and their properties
SHAO Mingjun, JIAN Yulan, SAN Fuhua, CHAI Xijuan, XIE Linkun
(a.Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products; b.College of Materials
and Chemical Engineering, Southwest Forestry University, Kunming 650224, China)
Abstract:
With the development of economics and the improvement of living standards, people have more and more requirements for the functionality of cotton fabrics. The preparation of superamphiphobic cotton fabrics with self-cleaning, UV irradiation stability, and antifouling has attracted extensive attention in recent years. Currently, superhydrophobic/superoleophobic cotton fabrics are commonly prepared by pre-constructing micro/nano-rough structures on the surface of cotton fabrics and then modified with low surface energy by fluorinated compounds. However, the preparation methods for superamphiphobic cotton fabrics mostly have the shortcomings for complex processes and relatively long term. Therefore, it is of great significance to explore simple and efficient processes for preparing durable superamphiphobic cotton fabrics.
Cotton fabrics were finished by impregnation method by using the hydrolyzed solution of perfluorodecyltrimethoxysilane(PFDMS), ammonia water, and anhydrous ethanol at the volume ratio of 1∶50∶50, 1∶25∶25, 3∶50∶50. The effects of the PFDMS concentrations and their hydrolyzed time on the surface amphiphobic of the fabrics were investigated. The surface morphology, elemental composition, wettability and mechanical stabilities, and chemical durability of the cotton fabrics were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle tester, abrasion testing machine and UV aging tester. Meanwhile, the anti-fouling and self-cleaning characteristics of the superamphiphobic cotton fabrics were tested and evaluated.
The results showed that the water/oil contact angle of PFDMS-coated cotton fabrics gradually increased with increasing concentration of the PFDMS solution. The cotton fabrics were finished at the volume ratio of PFDMS to ammonia and anhydrous ethanol with 3:50:50, and hydrolyzed for 10 min. It is showed superamphiphobic with a water contact angle of 157.2°±0.3° and an oil contact angle of 150.0°±1.4°. SEM and EDX analysis showed that the surface of cotton fabrics finished with PFDMS had dense rough coatings, and two additional 0.66% of F and 3.37% Si elements were found on the surface. The XPS analysis showed obvious signal peaks of Si 2s, Si 2p and F 1s, and CF2 and CF3 groups were found in the high-resolution of C 1s fit peaks. After 20 times of ultrasonic washing cycles (washing time was 600 min) for PFDMS-coated cotton fabrics, the water contact angle was 156.1°±1.3° and the oil contact angle was 147.7°±1.0°. After 10,000 times of abrasion for PFDMS-coated cotton fabrics, the water contact angle was 154.3°±0.9° and the oil contact angle was 138.4°±1.2°. After 24 h of UV aging, and 24 h of acid-base solution or organic solvent immersion, the contact angle of the surface of the superamphiphobic cotton fabric changed compared with that before the test, but the changes did not exceed 3.0°. The cotton fabric finished with PFDMS shows better self-cleaning properties and excellent anti-fouling to milk, coffee, orange juice, cola and soy sauce liquids. This process is efficient, and the prepared cotton fabric has better mechanical stability and chemical durability. The prepared durable superamphiphobic cotton fabric has the potential applications in the field of anti-fouling and self-cleaning.
Keywords:
cotton fabric; perfluorodecyltrimethoxysilane; superhydrophobic; superoleophobic; self-cleaning
收稿日期:20230615
網(wǎng)絡(luò)出版日期:20231019
基金項(xiàng)目:云南省農(nóng)業(yè)基礎(chǔ)研究聯(lián)合專(zhuān)項(xiàng)重點(diǎn)項(xiàng)目(202101BD070001-011);國(guó)家級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃(202110677009)
作者簡(jiǎn)介:邵明軍(1997—),男,河南信陽(yáng)人,碩士研究生,主要從事材料表面雙疏功能化方面的研究。
通信作者:解林坤,E-mail:xielinkun@163.com