石文澤 李淇鑫 盧 超 胡 博 劉 遠(yuǎn)
基于Barker碼脈沖壓縮技術(shù)的鋼板多陣元Lamb波電磁超聲換能器設(shè)計(jì)與優(yōu)化
石文澤 李淇鑫 盧 超 胡 博 劉 遠(yuǎn)
(南昌航空大學(xué)無(wú)損檢測(cè)技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室 南昌 330063)
為了解決傳統(tǒng)Barker碼脈沖壓縮技術(shù)受脈沖功率放大器額定參數(shù)(占空比,最大脈沖寬度等)限制而導(dǎo)致的脈沖壓縮效果下降、檢測(cè)速度降低等問(wèn)題,提出一種基于Barker碼脈沖壓縮技術(shù)的多陣元Lamb波電磁超聲換能器(EMAT)。建立了基于tone-burst信號(hào)激勵(lì)-Barker碼脈沖壓縮技術(shù)的多陣元Lamb波EMAT檢測(cè)過(guò)程的有限元模型,分析了永磁體的配置形式、陣元序列長(zhǎng)度、激勵(lì)信號(hào)周期數(shù)、曲折線圈匝數(shù)等因素對(duì)脈沖壓縮后的主旁瓣比和主瓣寬度的影響,并進(jìn)行了實(shí)驗(yàn)驗(yàn)證。結(jié)果表明:曲折線圈匝數(shù)為4和Barker碼序列長(zhǎng)度為13位的多陣元EMAT在配置3對(duì)外置永磁體后,其信噪比(SNR)可提高9.8 dB。綜合考慮檢測(cè)回波的空間分辨率和SNR,多陣元Lamb波EMAT最佳參數(shù)為:曲折線圈匝數(shù)為10、激勵(lì)信號(hào)周期數(shù)為11、Barker序列為13位,并配置3對(duì)外置永磁體。
電磁超聲換能器 Barker碼脈沖壓縮 多陣元Lamb波EMAT 信噪比 空間分辨率
隨著工業(yè)技術(shù)的發(fā)展,鋼板在工業(yè)中扮演著越來(lái)越重要的角色,因其良好的性能被廣泛應(yīng)用于化工[1]、核電[2]、能源[3]等領(lǐng)域。在鋼板的服役過(guò)程中,腐蝕[4-7]是最常見的失效形式之一,而鍋爐[8]、核島、儲(chǔ)罐[9]等承壓類設(shè)備作為大部分工業(yè)的基礎(chǔ)設(shè)施,長(zhǎng)期處于高溫高壓等惡劣環(huán)境中,極易形成鋼板腐蝕且難以被檢出,一旦發(fā)生事故,就會(huì)導(dǎo)致整個(gè)工廠緊急關(guān)閉,并且會(huì)在停機(jī)、維修等方面產(chǎn)生高昂的費(fèi)用,甚至還會(huì)造成生命危險(xiǎn)。因此對(duì)在役大規(guī)格鋼板進(jìn)行原位快速檢測(cè)以保證其服役安全性,對(duì)保護(hù)公眾安全、保障經(jīng)濟(jì)增長(zhǎng)具有重要意義。
近幾年,超聲檢測(cè)因具有靈敏度高、通用性強(qiáng)、穿透性強(qiáng)、指向性好、便于檢測(cè)和接收、檢測(cè)速度快等優(yōu)點(diǎn)[10-12],被廣泛應(yīng)用。其中電磁超聲換能器(Electromagnetic Acoustic Transducer, EMAT)通常包括永磁體、線圈和待測(cè)導(dǎo)電或?qū)Т沤饘僭嚇尤糠?,通過(guò)電磁耦合原理激勵(lì)和接收超聲波,因其無(wú)需耦合劑、非接觸等優(yōu)點(diǎn)[13-14],被廣泛應(yīng)用于金屬試樣的表面粗糙度的識(shí)別與預(yù)測(cè)[15]、450℃高溫順磁鋼檢測(cè)[16]、鍋爐水冷壁管腐蝕缺陷檢測(cè)[17]、鑄鋼板坯邊鉆孔相控陣檢測(cè)[18]、變厚鋁板塑性形變[19]等應(yīng)用場(chǎng)合。其中電磁超聲導(dǎo)波技術(shù)在檢測(cè)大規(guī)格薄板類[20]和薄管類[21-23]構(gòu)件上優(yōu)勢(shì)明顯且應(yīng)用廣泛。為解決EMAT換能效率低和信噪比差等問(wèn)題,國(guó)內(nèi)外學(xué)者提出基于脈沖壓縮技術(shù)的電磁超聲檢測(cè)方法。
脈沖壓縮技術(shù)通過(guò)發(fā)射寬脈沖激勵(lì),經(jīng)濾波網(wǎng)絡(luò)后獲得窄脈沖[20-25],既擁有寬脈沖的強(qiáng)檢測(cè)能力,也擁有窄脈沖的高距離分辨率,在不增加EMAT檢測(cè)系統(tǒng)的輸出功率和噪聲抑制能力的條件下,可以有效地提高EMAT檢測(cè)回波的SNR和空間分辨率。目前,脈沖壓縮技術(shù)應(yīng)用于超聲檢測(cè)的研究已經(jīng)取得較大進(jìn)展,例如,F(xiàn)u Juan等[26]提出一種使用線性調(diào)頻載波的新型Barker編碼激勵(lì)方法,與常規(guī)使用正弦載波的Barker編碼激勵(lì)方法相比,其軸向分辨率可以提高一倍,SNR可以提高約3 dB。H. Mitsuta等[27]開發(fā)了一種基于脈沖壓縮技術(shù)的高靈敏度超聲波檢測(cè)系統(tǒng),與傳統(tǒng)使用尖脈沖激勵(lì)的超聲檢測(cè)系統(tǒng)相比,噪聲幅值降低了66%,可以檢測(cè)到直徑20mm的缺陷。S. Laureti等[28]開發(fā)了一種基于脈沖壓縮技術(shù)的壓電復(fù)合傳感器及其檢測(cè)系統(tǒng),可以在混凝土覆蓋深度55 mm下獲得良好的鋼筋檢測(cè)結(jié)果。
然而,在傳統(tǒng)脈沖壓縮技術(shù)中,常常因?yàn)榫幋a激勵(lì)信號(hào)持續(xù)時(shí)間過(guò)長(zhǎng),容易超過(guò)脈沖功率放大器的占空比和最大脈沖寬度等參數(shù)的限制,從而導(dǎo)致放大器性能下降,甚至完全功能性損壞。以RPR 4000高功率脈沖發(fā)生器/接收器為例,其技術(shù)規(guī)格要求占空比不超過(guò)1%,最大脈沖寬度不超過(guò)200ms,序列長(zhǎng)度13位、中心頻率0.2 MHz和碼元周期數(shù)4對(duì)應(yīng)的Barker碼激勵(lì)信號(hào)脈沖寬度為260ms,已經(jīng)超過(guò)放大器最大脈沖寬度的限制,將會(huì)對(duì)設(shè)備造成不可逆的損壞。另外,放大器的占空比會(huì)限制脈沖重復(fù)頻率的增加,導(dǎo)致檢測(cè)速度下降,同時(shí)過(guò)長(zhǎng)的Barker碼激勵(lì)信號(hào)將造成較大的檢測(cè)盲區(qū)。
傳統(tǒng)解決方法是在減小編碼激勵(lì)信號(hào)持續(xù)時(shí)間和降低脈沖壓縮效果的基礎(chǔ)上,對(duì)EMAT進(jìn)行優(yōu)化設(shè)計(jì)或加入先進(jìn)的降噪算法,以提高信噪比。EMAT優(yōu)化設(shè)計(jì)一般是對(duì)線圈的尺寸結(jié)構(gòu)、永磁體的形狀尺寸及配置形式等方面進(jìn)行優(yōu)化設(shè)計(jì)。時(shí)亞等[29]通過(guò)正交試驗(yàn)設(shè)計(jì)對(duì)表面波EMAT進(jìn)行優(yōu)化,優(yōu)化后的多根分裂曲折線圈EMAT的接收信號(hào)幅值可以提高50.8%。劉素貞等[30]設(shè)計(jì)出一種新型窄永磁體聚焦式表面波EMAT,在同等磁通密度下激發(fā)的表面波信號(hào)時(shí)域幅值比常規(guī)EMAT提高了55.9%,信號(hào)頻域基頻幅值提升69.7%。D. Gandomzadeh等[31]研究了磁致伸縮換能器磁心幾何形狀對(duì)EMAT性能的影響,結(jié)果表明,磁心橫截面略微伸長(zhǎng)會(huì)增加最大徑向和縱向磁致伸縮力。Kang Lei等[32]建立了表面波EMAT傳播過(guò)程三維有限元模型,利用正交試驗(yàn)表,研究了EMAT設(shè)計(jì)參數(shù)對(duì)表面波的影響。經(jīng)過(guò)優(yōu)化后,EMAT檢測(cè)回波信號(hào)幅度增加了25.2%。Pei Cuixiang等[33]提出了一種改進(jìn)的曲折線圈EMAT,與傳統(tǒng)曲折線圈EMAT相比,磁通密度提高了1.9倍,且實(shí)驗(yàn)表明使用新型EMAT的SNR相比于傳統(tǒng)EMAT提高了5.3倍。在先進(jìn)降噪算法方面,Sun Mingjian等[34]使用經(jīng)驗(yàn)?zāi)B(tài)分解(Empirical Modes Decomposition, EMD)來(lái)處理超聲波信號(hào),并通過(guò)實(shí)驗(yàn)驗(yàn)證了該算法的可行性。Nie Zhichao 等[35]應(yīng)用小波和集合經(jīng)驗(yàn)?zāi)B(tài)分解(Ensemble Empirical Mode Decomposition, EEMD)對(duì)超聲波信號(hào)進(jìn)行去噪,以突出真實(shí)的頻域分量。Si Dan等[36]提出了一種改進(jìn)的變分模態(tài)分解(Variational Mode Decomposition, VMD)鏈接小波方法進(jìn)行EMAT去噪,與EMD-小波去噪算法和小波去噪算法相比,該方法的SNR分別提高了18%和37%。
EMAT優(yōu)化設(shè)計(jì)和先進(jìn)降噪算法可以顯著提高電磁超聲檢測(cè)回波的SNR,但是相對(duì)于脈沖壓縮技術(shù),其SNR提升作用有限。本研究提出一種基于tone-burst激勵(lì)的Barker碼脈沖壓縮技術(shù)的新型多陣元Lamb波EMAT,以解決傳統(tǒng)脈沖壓縮技術(shù)受脈沖功率放大器的占空比和最大脈沖寬度等參數(shù)限制和檢測(cè)盲區(qū)過(guò)大等難題。
本研究以大型薄壁鋼板為檢測(cè)對(duì)象,提出一種新型基于tone-burst激勵(lì)的Barker碼脈沖壓縮技術(shù)的多陣元Lamb波EMAT設(shè)計(jì)方法。首先,分析了基于Barker碼脈沖壓縮技術(shù)的多陣元EMAT設(shè)計(jì)原理;然后,建立了基于tone-burst激勵(lì)的Barker碼脈沖壓縮技術(shù)的多陣元Lamb波新型EMAT檢測(cè)過(guò)程有限元模型,通過(guò)數(shù)值計(jì)算,分析了外置永磁體、序列長(zhǎng)度、激勵(lì)信號(hào)周期數(shù)、曲折線圈匝數(shù)等參數(shù)對(duì)脈沖壓縮效果的影響;最后,制作了新型多陣元Lamb波EMAT,并進(jìn)行了實(shí)驗(yàn)驗(yàn)證。
圖1為單陣元Lamb波EMAT示意圖。多陣元EMAT與單陣元EMAT都是通過(guò)產(chǎn)生洛倫茲力來(lái)帶動(dòng)粒子振動(dòng),從而激發(fā)Lamb波,即線圈中通以高頻大功率激勵(lì)電流c,在試樣表面就會(huì)產(chǎn)生方向相反、頻率相同的感應(yīng)渦流e。相鄰導(dǎo)線的感應(yīng)渦流流向相反,在永磁體提供的靜態(tài)偏置s和c產(chǎn)生的交變磁場(chǎng)d作用下,產(chǎn)生洛倫茲力L。L帶動(dòng)粒子振動(dòng),在試樣內(nèi)部產(chǎn)生超聲波,并在兩個(gè)自由界面發(fā)生反射、折射,耦合后形成向兩側(cè)傳播的Lamb波。L計(jì)算表達(dá)式[37]為
圖1 單陣元Lamb波EMAT示意圖
超聲波在試樣中傳播的控制方程[37]為
Barker碼序列是一種相位編碼信號(hào),具有良好的自相關(guān)特性,目前已知的Barker碼序列共有9組,序列長(zhǎng)度最長(zhǎng)為13位,其序列為{1, 1, 1, 1, 1,-1,-1, 1, 1,-1, 1,-1, 1}。傳統(tǒng)Barker碼脈沖壓縮技術(shù)是將tone-burst信號(hào)作為Barker碼序列的碼元,得到的Barker碼信號(hào)作為EMAT的激勵(lì)電流,如圖2a所示。Barker碼信號(hào)和碼元序列表達(dá)式[38-39]為
(4)
式中,為子脈沖的個(gè)數(shù);為碼元編號(hào);C為Barker碼編碼序列;C為碼元的持續(xù)時(shí)間。
Barker碼信號(hào)[]加載到激勵(lì)EMAT,得到的接收信號(hào)為[],脈沖壓縮后的信號(hào)y[][38-39]為
式中,為超聲回波信號(hào)長(zhǎng)度;為自變量。
如圖2b所示,基于Barker碼脈沖壓縮技術(shù)的多陣元EMAT與傳統(tǒng)Barker碼脈沖壓縮技術(shù)應(yīng)用于單陣元EMAT的區(qū)別在于,多陣元EMAT將一個(gè)永磁體和一個(gè)曲折線圈視為一組陣元,通過(guò)控制每組陣元中永磁體的磁場(chǎng)方向與曲折線圈的電流方向來(lái)控制其洛倫茲力的方向,繼而使其激勵(lì)的Lamb波相位{0, 180°}與Barker碼序列{1,-1}一致,最終激勵(lì)出Barker碼形式的Lamb波。
經(jīng)過(guò)脈沖壓縮后,主瓣兩側(cè)會(huì)分布間隔時(shí)間相同、大小相等的旁瓣。通過(guò)引入加權(quán)因子,確定單次延時(shí)時(shí)間后,可以有效地抑制旁瓣。多陣元EMAT的延時(shí)時(shí)間與相鄰陣元的中心間距和Lamb波波速有關(guān),其計(jì)算公式為
基于Barker碼脈沖壓縮技術(shù)的多陣元Lamb波EMAT有限元建模如圖3所示,建模參數(shù)見表1。
圖3 有限元建模示意圖
表1 有限元模型參數(shù)
Tab.1 Finite element model parameters
圖3為5陣元EMAT按照洛倫茲力方向{1, 1, 1,-1, 1}進(jìn)行排列,可以產(chǎn)生Barker碼形式的Lamb波。鋼板的楊氏模量為214 GPa,泊松比為0.271。鋼板的左右端面設(shè)置為低反射邊界,用于消除端面反射回波。激勵(lì)EMAT為多陣元Lamb波EMAT,接收EMAT采用單陣元Lamb波EMAT。EMAT采用六分裂曲折線圈,相鄰導(dǎo)線間距為0.3 mm,匝間距為/2,為導(dǎo)波的波長(zhǎng)。在曲折線圈上加載的激勵(lì)電流的函數(shù)表達(dá)式為
式中,為激勵(lì)電流幅值;為每匝導(dǎo)線的序號(hào);中心頻率為0.24 MHz;為正弦脈沖串的周期數(shù)。
有限元模型中的空氣域、永磁體、曲折線圈和鋼板試樣的最大網(wǎng)格單元大小分別為2 mm、0.5 mm、0.02 mm、0.5 mm。對(duì)鋼板上邊界進(jìn)行邊界層網(wǎng)格細(xì)化,第1層厚度為0.005 2 mm,共5層,相鄰層網(wǎng)格單元大小增長(zhǎng)率為1.2。當(dāng)瞬態(tài)求解器最大計(jì)算步長(zhǎng)滿足max/100,最大網(wǎng)格單元大小滿足min/10時(shí),計(jì)算結(jié)果收斂。在有限元模型中,設(shè)置測(cè)點(diǎn)線段起始于激勵(lì)EMAT永磁體組的最左側(cè)和終止于接收EMAT永磁體的最右側(cè),位于鋼板試樣表面往下0.001 mm。考慮多陣元Lamb波EMAT中曲折線圈導(dǎo)線的趨膚效應(yīng)和鄰近效應(yīng),采用單匝線圈模型,對(duì)應(yīng)的控制方程見參考文獻(xiàn)[40]。
Lamb波的多模態(tài)效應(yīng)會(huì)影響脈沖壓縮效果,降低缺陷波信號(hào)經(jīng)脈沖壓縮和旁瓣抑制后的SNR和空間分辨率,所以有必要激勵(lì)單一模態(tài)的Lamb波。厚度為5.6 mm的鋼板Lamb波頻散曲線如圖4所示。圖4a、圖4b分別為相速度、群速度頻散曲線,當(dāng)激勵(lì)頻率為0.24 MHz,可以產(chǎn)生S0、A0兩種模態(tài)的Lamb波。A0模態(tài)波長(zhǎng)約為10.28 mm,對(duì)應(yīng)的曲折線圈匝間距為A/2=5.14 mm。由圖5可知,當(dāng)激勵(lì)頻率為0.24 MHz、永磁體寬度為51.4 mm時(shí),曲折線圈EMAT僅產(chǎn)生單一Lamb模態(tài)。
圖4 Lamb波在鋼板中的頻散曲線
在基于Barker碼脈沖壓縮技術(shù)的多陣元Lamb波EMAT中,保證每個(gè)陣元激勵(lì)出的Lamb波信號(hào)與對(duì)應(yīng)Barker碼碼元的一致性是提高脈沖壓縮效果的關(guān)鍵。由于每個(gè)陣元的磁場(chǎng)分布并不均勻,且各個(gè)陣元間的磁場(chǎng)分布不相同,位于多陣元EMAT前后兩端的磁場(chǎng)和位于中間的磁場(chǎng)分布存在較大差異,脈沖壓縮效果并不理想。因此,考慮多陣元EMAT外部增加外置永磁體,使多陣元EMAT的每個(gè)陣元磁場(chǎng)分布基本一致,以提高脈沖壓縮效果。5位陣元EMAT的三種永磁體配置形式如圖6所示。
圖5 鋼板Lamb波傳播云圖
圖6 5位陣元EMAT的三種永磁體配置形式示意圖
在多陣元EMAT有限元模型中,當(dāng)曲折線圈匝數(shù)為10匝、tone-burst信號(hào)的周期數(shù)為8、中心頻率為0.24 MHz時(shí),不同永磁體配置形式的多陣元EMAT對(duì)應(yīng)的Lamb波信號(hào)、脈壓信號(hào)和經(jīng)旁瓣抑制后的脈壓信號(hào)如圖8所示。由圖8可知,配置形式2號(hào)和配置形式3號(hào)的經(jīng)旁瓣抑制后的脈壓信號(hào)主旁瓣比(Peak-Side Level, PSL)比配置形式1號(hào)分別高出5.85 dB和5.05 dB,說(shuō)明外置永磁體能夠提高經(jīng)旁瓣抑制后的脈壓信號(hào)的PSL。配置形式2號(hào)的PSL略高于配置形式3號(hào),說(shuō)明接收EMAT與激勵(lì)EMAT間隔一定距離可以提高脈壓信號(hào)的PSL。在線段L(如圖3所示)處,三種永磁體配置形式對(duì)應(yīng)的鋼板表面磁場(chǎng)分布如圖7所示。由圖7和圖8可知,與配置形式1號(hào)相比,配置形式2號(hào)通過(guò)在5陣元EMAT兩側(cè)引入1對(duì)永磁體,可以使5陣元激勵(lì)EMAT中各個(gè)陣元(特別是第1陣元和第5陣元)對(duì)應(yīng)的偏置磁場(chǎng)分布更趨于一致,所激勵(lì)的超聲導(dǎo)波波形與Barker碼激勵(lì)信號(hào)特征更一致,因此配置形式2號(hào)對(duì)應(yīng)的脈沖壓縮效果更好。與配置形式2號(hào)相比,在配置形式3號(hào)中,接收EMAT靠近5陣元激勵(lì)EMAT,導(dǎo)致接收EMAT對(duì)應(yīng)的偏置磁場(chǎng)出現(xiàn)很大程度的畸變,因此其對(duì)應(yīng)的脈沖壓縮效果變差。
在多陣元Lamb波EMAT有限元模型中,當(dāng)曲折線圈匝數(shù)為10匝、tone-burst信號(hào)的周期數(shù)為8、中心頻率為0.24 MHz時(shí),不同序列長(zhǎng)度的多陣元EMAT對(duì)應(yīng)的Lamb波信號(hào)、脈壓信號(hào)和經(jīng)旁瓣抑制后的脈壓信號(hào)如圖9所示。由圖9可知,脈壓信號(hào)經(jīng)旁瓣抑制后,PSL可提升11.51~14.74 dB,主瓣寬度由114.42~240.71ms縮減至70ms左右,這說(shuō)明多陣元Lamb波EMAT能提高檢測(cè)回波的PSL和空間分辨率。當(dāng)序列長(zhǎng)度為5位、7位和13位時(shí),對(duì)應(yīng)的脈沖壓縮比分別為1.62、1.95和3.38,PSL分別為29.33 dB、29.72 dB和37.09 dB。序列長(zhǎng)度的增加有利于提高多陣元EMAT的脈沖壓縮效果。
圖8 不同永磁體配置形式的Lamb波信號(hào)、脈壓信號(hào)和經(jīng)旁瓣抑制后的脈壓信號(hào)
圖9 不同序列長(zhǎng)度的Lamb波信號(hào)、脈壓信號(hào)和經(jīng)旁瓣抑制后的脈壓信號(hào)
圖10為不同陣元間距對(duì)應(yīng)的鋼板表層電渦流密度分布。由圖10可知,當(dāng)改變陣元間距時(shí),第一陣元和第二陣元相鄰導(dǎo)線對(duì)應(yīng)的電渦流幅值基本不變(偏差在3%以內(nèi)),同時(shí)第四陣元和第五陣元相鄰導(dǎo)線對(duì)應(yīng)的電渦流幅值也基本不變(偏差在2%以內(nèi)),由此可見,陣元間距對(duì)鋼板表層電渦流密度分布的影響可以忽略不計(jì)。圖11為不同陣元間距對(duì)應(yīng)的鋼板表面磁場(chǎng)分布,圖12為不同陣元間距的Lamb波信號(hào)、脈壓信號(hào)和經(jīng)旁瓣抑制后的脈壓信號(hào),從圖11和圖12可以看出,隨著陣元間距的增加,其鋼板表面磁場(chǎng)分布逐漸發(fā)生畸變,各個(gè)陣元對(duì)應(yīng)的磁場(chǎng)分布越來(lái)越不一致,因此經(jīng)旁瓣抑制后的脈壓信號(hào)的PSL隨著陣元間距的增加逐漸減小,陣元間距10 mm和陣元間距20 mm對(duì)應(yīng)的PSL相較于陣元間距0 mm分別減小了5.42 dB和6.8 dB??紤]到多陣元Lamb波EMAT的體積在實(shí)際應(yīng)用過(guò)程中的影響,其陣元間距越小越好??芍?,當(dāng)tone-burst激勵(lì)信號(hào)的周期數(shù)為2、5、8、11、14、17時(shí),對(duì)應(yīng)的主瓣寬度逐漸增加,而PSL呈先增長(zhǎng)后降低的趨勢(shì)。周期數(shù)為8的tone-burst信號(hào)對(duì)應(yīng)的PSL最大,為31.16 dB,此時(shí)主瓣寬度較小,為80.65ms,即不會(huì)對(duì)信號(hào)的空間分辨率產(chǎn)生較大影響,因此多陣元EMAT的tone-burst激勵(lì)信號(hào)的周期數(shù)最佳值為8。
圖10 不同陣元間距對(duì)應(yīng)的鋼板表層電渦流密度分布
圖11 不同陣元間距對(duì)應(yīng)的鋼板表面磁場(chǎng)分布
采用不同周期數(shù)的tone-burst激勵(lì)信號(hào),得到的經(jīng)旁瓣抑制后的脈壓信號(hào)如圖13所示。由圖13
圖12 不同陣元間距的Lamb波信號(hào)、脈壓信號(hào)和經(jīng)旁瓣抑制后的脈壓信號(hào)
曲折線圈匝數(shù)不僅會(huì)影響Lamb波信號(hào)的強(qiáng)度,還會(huì)使延時(shí)時(shí)間發(fā)生改變,從而在對(duì)Barker碼形式的Lamb信號(hào)進(jìn)行旁瓣抑制時(shí),影響其抑制效果。曲折線圈匝數(shù)的變化還會(huì)影響EMAT的體積大小,從而限制其在現(xiàn)場(chǎng)檢測(cè)中的應(yīng)用。分別將曲折線圈匝數(shù)設(shè)置為4、6、8和10匝,對(duì)應(yīng)的經(jīng)旁瓣抑制后的脈壓信號(hào)如圖14所示。由圖14可知,曲折線圈匝數(shù)增加后,經(jīng)旁瓣抑制后的脈壓信號(hào)的主瓣寬度和PSL均有不同變化。當(dāng)曲折線圈匝數(shù)為4、6、8和10匝時(shí),4匝對(duì)應(yīng)的PSL最大,為39.41 dB,主瓣寬度最小,為46.41ms,因此,多陣元EMAT的曲折線圈匝數(shù)最佳值為4。
少數(shù)民族流動(dòng)人口大量流入城市,給流入地帶來(lái)了新的勞動(dòng)力資源,帶來(lái)了多姿多彩的民族文化,給城市增添了多元文化色彩,為城市文化多樣性和廣泛傳播民族文化作出了貢獻(xiàn)。同時(shí),也對(duì)昆明市的教育、就業(yè)、醫(yī)療、養(yǎng)老、社會(huì)福利、住房保障、社會(huì)治安、公共服務(wù)等方面帶來(lái)了新的挑戰(zhàn)。
圖14 不同線圈匝數(shù)對(duì)應(yīng)的經(jīng)旁瓣抑制后的脈壓信號(hào)
基于Barker碼脈沖壓縮技術(shù)的鋼板多陣元Lamb波EMAT檢測(cè)實(shí)驗(yàn)系統(tǒng)如圖15所示。同時(shí),圖15還提供了永磁體和曲折線圈的設(shè)計(jì)參數(shù)。信號(hào)發(fā)生器產(chǎn)生中心頻率為0.24 MHz的tone-burst信號(hào),經(jīng)功率放大器和激勵(lì)端阻抗匹配器,得到大幅值高頻的激勵(lì)電流,在通過(guò)多陣元Lamb波EMAT,激發(fā)出Barker碼形式Lamb波。Lamb波信號(hào)由單陣元EMAT接收,接收到的信號(hào)經(jīng)接收端阻抗匹配器、帶通濾波器,后由前置放大器進(jìn)行放大,再經(jīng)數(shù)據(jù)采集卡模數(shù)轉(zhuǎn)換后,可在PC上實(shí)現(xiàn)數(shù)據(jù)顯示和存儲(chǔ)。序列長(zhǎng)度是5位的多陣元EMAT示意圖如圖15所示,試樣為45號(hào)鋼鋼板,其長(zhǎng)、寬、高分別為1 800 mm、1 200 mm和5.6 mm。
圖15 多陣元Lamb波EMAT檢測(cè)實(shí)驗(yàn)系統(tǒng)
實(shí)驗(yàn)中采用的三種永磁體的配置形式如圖6所示,分別采用4匝和10匝曲折線圈配合方形永磁體作為5位和13位多陣元EMAT的單個(gè)陣元。圖16為有外置永磁體的配置形式3號(hào)得到超聲波信號(hào)。由圖16可知,有外置永磁體的配置形式3號(hào)并不能獲取較好的檢測(cè)信號(hào)。由圖7可知,與配置形式2號(hào)和配置形式1號(hào)相比,在配置形式3號(hào)中,由于接收EMAT靠近5陣元激勵(lì)EMAT,接收EMAT對(duì)應(yīng)的偏置磁場(chǎng)出現(xiàn)很大程度的畸變,因此其對(duì)應(yīng)的脈沖壓縮效果最差。
圖16 有外置永磁體的配置形式3號(hào)對(duì)應(yīng)的超聲信號(hào)
無(wú)外置永磁體的配置形式1號(hào)和有外置永磁體的配置形式2號(hào)得到的超聲波信號(hào)如圖17所示。由圖17可知,這兩種配置形式均能得到清晰的直達(dá)波,且能分辨直達(dá)波與端面回波。直達(dá)波經(jīng)過(guò)旁瓣抑制后的脈壓信號(hào)如圖18所示,在多陣元EMAT增加外置永磁體后,與無(wú)外置永磁體相比,5位序列長(zhǎng)度配合10匝曲折線圈、13位序列長(zhǎng)度配合10匝曲折線圈、5位序列長(zhǎng)度配合4匝曲折線圈對(duì)應(yīng)的直達(dá)波SNR分別提高了7.41 dB、0.4 dB、1.89 dB。通過(guò)設(shè)置外置永磁體,能夠提高經(jīng)旁瓣抑制后脈壓信號(hào)的信噪比。
由圖18可知,當(dāng)多陣元Lamb波EMAT為5位序列時(shí),采用10匝曲折線圈對(duì)應(yīng)無(wú)外置永磁體和1對(duì)外置永磁體的SNR較采用4匝曲折線圈對(duì)應(yīng)的SNR分別提高了0.06 dB、5.58 dB,說(shuō)明10匝線圈較4匝線圈能取得更好的信噪比。當(dāng)多陣元Lamb波EMAT采用10匝線圈時(shí),采用13位序列對(duì)應(yīng)無(wú)外置永磁體和采用1對(duì)外置永磁體對(duì)應(yīng)的SNR較采用5位序列對(duì)應(yīng)的SNR分別提高了9.17 dB、2.16 dB。說(shuō)明13位序列較5位序列能取得更好的信噪比。綜上所述,對(duì)于多陣元EMAT,曲折線圈匝數(shù)應(yīng)選擇10,Barker序列長(zhǎng)度應(yīng)選擇13位。
對(duì)于13位序列長(zhǎng)度配合4匝曲折線圈的多陣元EMAT來(lái)說(shuō),其脈沖壓縮效果并不理想,考慮通過(guò)設(shè)置多對(duì)外置永磁體,使其內(nèi)部偏置磁場(chǎng)更加均勻,得到的超聲波信號(hào)如圖19所示。經(jīng)過(guò)旁瓣抑制后的脈壓信號(hào)如圖20所示,可以看出,隨著外置永磁體數(shù)量逐漸增加,其信噪比也逐漸提高,1對(duì)、2對(duì)和3對(duì)外置永磁體對(duì)應(yīng)的SNR較無(wú)外置永磁體的SNR分別提高了0.78 dB、8.66 dB和9.8 dB。這說(shuō)明采用多對(duì)外置永磁體,可以顯著提高經(jīng)旁瓣抑制后脈壓信號(hào)的信噪比。雖然外置永磁體的對(duì)數(shù)增加后能夠顯著提高信噪比,但同時(shí)也會(huì)增加探頭的體積,體積過(guò)大會(huì)在現(xiàn)場(chǎng)檢測(cè)中受到極大的限制,實(shí)際應(yīng)用也十分困難,因此外置永磁體的對(duì)數(shù)選擇應(yīng)綜合考慮實(shí)際需求。
圖19 13位序列長(zhǎng)度和4匝曲折線圈多陣元EMAT配置不同對(duì)數(shù)的外置永磁體對(duì)應(yīng)的超聲波信號(hào)
將不同周期數(shù)的tone-burst激勵(lì)信號(hào)分別通入13位序列長(zhǎng)度配置10匝曲折線圈的多陣元EMAT,經(jīng)過(guò)旁瓣抑制后的脈壓信號(hào)如圖21所示。隨著tone-burst激勵(lì)信號(hào)周期數(shù)的增加,經(jīng)旁瓣抑制后的脈壓信號(hào)主瓣寬度呈不斷增加的趨勢(shì),SNR呈先增加后減小的趨勢(shì)。綜合考慮到檢測(cè)所需的空間分辨率和SNR,應(yīng)選取11周期的tone-burst信號(hào),對(duì)應(yīng)的主瓣寬度不超過(guò)120ms、SNR>35 dB。
圖20 13位序列長(zhǎng)度和4匝曲折線圈多陣元EMAT配置不同對(duì)數(shù)的外置永磁體得到的經(jīng)旁瓣抑制后的脈壓信號(hào)
1)本研究所設(shè)計(jì)的新型多陣元EMAT,在通入一定周期、頻率的tone-burst信號(hào)后,根據(jù)多陣元EMAT換能機(jī)理,能夠成功激勵(lì)出Barker碼編碼形式的Lamb波。Lamb波信號(hào)經(jīng)過(guò)脈沖壓縮后,通過(guò)計(jì)算延時(shí)時(shí)間并進(jìn)行旁瓣抑制,可有效地抑制旁瓣。采用基于tone-burst信號(hào)激勵(lì)-Barker碼脈沖壓縮技術(shù)的多陣元Lamb波EMAT可以同時(shí)提高超聲波信號(hào)的信噪比和空間分辨率。
2)在配置了一對(duì)外置永磁體的情況下,采用激勵(lì)EMAT和接收EMAT靠近這一方案時(shí),無(wú)法獲取良好的超聲波信號(hào)。采用激勵(lì)EMAT和接收EMAT間隔一定距離這一方案,能夠得到清晰的超聲波信號(hào)。通過(guò)設(shè)置外置永磁體,能夠提高經(jīng)旁瓣抑制后脈壓信號(hào)的SNR;增加外置永磁體對(duì)數(shù)可以顯著提高經(jīng)旁瓣抑制后脈壓信號(hào)的SNR。
3)隨著激勵(lì)信號(hào)周期數(shù)的增加,經(jīng)旁瓣抑制后的脈壓信號(hào)主瓣寬度呈不斷增加的趨勢(shì),檢測(cè)回波SNR呈先增加后減小的趨勢(shì)。綜合考慮到檢測(cè)回波的空間分辨率和SNR,多陣元Lamb波EMAT最佳參數(shù)為:曲折線圈匝數(shù)為10、激勵(lì)信號(hào)周期數(shù)為11、Barker序列為13位,并配置3對(duì)外置永磁體。
4)將本研究應(yīng)用于其他厚度的金屬板或管的導(dǎo)波檢測(cè)時(shí),需要保證各個(gè)陣元的間距一致,這是脈沖壓縮能否成功的關(guān)鍵。陣元間距的一致度越高,其超聲波信號(hào)的脈沖壓縮效果越好。此外,需要保證各個(gè)陣元磁場(chǎng)分布的均勻性和一致性,將有利于提高脈沖壓縮效果。
[1] Vakhguelt A, Kapayeva S D, Bergander M J. Com- bination non-destructive test (NDT) method for early damage detection and condition assessment of boiler tubes[J]. Procedia Engineering, 2017, 188: 125- 132.
[2] 郭俊營(yíng), 李忠誠(chéng), 李文旭, 等. 美國(guó)在役核電廠安全殼鋼襯里銹蝕及修復(fù)技術(shù)研究進(jìn)展[J]. 建筑結(jié)構(gòu), 2022, 52(3): 127-134.
Guo Junying, Li Zhongcheng, Li Wenxu, et al. Research progress on corrosion and repair technology of steel linear of containment in US external nuclear power plants[J]. Building Structure, 2022, 52(3): 127-134.
[3] Ma?eika L, Rai?utis R, Jankauskas A, et al. High sensitivity ultrasonic NDT technique for detecting creep damage at the early stage in power plant steels[J]. International Journal of Pressure Vessels and Piping, 2022, 196: 104613.
[4] Yu Shuo, Jin Hao, Cao Miaofeng. Study on corrosion characteristic of semi-ring steel plate for strength- ening shield tunnel under DC stray current[J]. Con- struction and Building Materials, 2022, 347: 128631.
[5] Su Sanqing, Wang Pu, Shi Pengpeng, et al. Experi- ment and simulation on testing steel plate with corrosion defects via magnetic flux leakage method[J]. Journal of Magnetism and Magnetic Materials, 2022, 560: 169595.
[6] Zhang Yusheng, Ming Hongliang, Tang Lichen, et al. Effect of the frequency on fretting corrosion behavior between Alloy 690TT tube and 405 stainless steel plate in high temperature pressurized water[J]. Tribology International, 2021, 164: 107229.
[7] 徐慶林, 王向軍, 張建春, 等. 921A鋼板腐蝕電場(chǎng)的Frumkin修正[J]. 電工技術(shù)學(xué)報(bào), 2020, 35(14): 2951-2958.
Xu Qinglin, Wang Xiangjun, Zhang Jianchun, et al. Frumkin correction of corrosion electric field generated by 921A steel[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 2951-2958.
[8] Singh S, Singh Grewal J, Rakha K. Erosion wear performance of HVOF and cold spray coatings deposited on T-91 boiler steel[J]. Materials Today: Proceedings, 2022, 62: 7509-7516.
[9] Zou D L, Hao Y F, Wu H, et al. Safety assessment of large-scale all steel LNG storage tanks under wind-borne missile impact[J]. Thin-Walled Structures, 2022, 174: 109078.
[10] 劉素貞, 陳云龍, 張闖, 等. 融合多維超聲時(shí)頻域特征的鋰離子電池荷電狀態(tài)估計(jì)[J]. 電工技術(shù)學(xué)報(bào), 2023, 38(17): 4539-4550, 4563.
Liu Suzhen, Chen Yunlong, Zhang Chuang,et al. State of charge estimation of lithium-ion batteries fused with multidimensional ultrasonic time- frequency domain features[J]. Transactions of China Electrotechnical Society, 2023, 38(17): 4539-4550, 4563.
[11] 劉素貞, 袁路航, 張闖, 等. 基于超聲時(shí)域特征及隨機(jī)森林的磷酸鐵鋰電池荷電狀態(tài)估計(jì)[J]. 電工技術(shù)學(xué)報(bào), 2022, 37(22): 5872-5885.
Liu Suzhen, Yuan Luhang, Zhang Chuang,et al. State of charge estimation of LiFeO4batteries based on time domain features of ultrasonic waves and random forest[J]. Transactions of China Electrotechnical Society, 2022, 37(22): 5872-5885.
[12] 吳立峰, 劉昊, 林仲欽, 等. 低溫環(huán)境下鋰離子電池荷電狀態(tài)與超聲透射飛行時(shí)間的關(guān)系研究[J]. 電工技術(shù)學(xué)報(bào), 2022, 37(21): 5617-5626.
Wu Lifeng, Liu Hao, Lin Zhongqin, et al. Relation- ship between state of charge of lithium-ion battery and ultrasonic transmission flight time at low temperature[J]. Transactions of China Electro- technical Society, 2022, 37(21): 5617-5626.
[13] 劉繼倫, 劉素貞, 金亮, 等. 用于測(cè)厚和裂紋檢測(cè)的正交橫波電磁超聲換能器仿真分析及實(shí)驗(yàn)研究[J]. 電工技術(shù)學(xué)報(bào), 2022, 37(11): 2686-2697.
Liu Jilun, Liu Suzhen, Jin Liang, et al. Simulation and experiment of orthogonal shear waves with electromagnetic acoustic transducer for thickness measurement and crack detection[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2686- 2697.
[14] 蔡智超, 李毅博. 基于Halbach陣列電磁超聲縱波換能器優(yōu)化設(shè)計(jì)[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(21): 4408-4417.
Cai Zhichao, Li Yibo. Optimum design of electro- magnetic acoustic longitudinal wave transducer based on Halbach array[J]. Transactions of China Elec- trotechnical Society, 2021, 36(21): 4408-4417.
[15] 蔡智超, 孫翼虎, 趙振勇, 等. 基于時(shí)頻分析和深度學(xué)習(xí)的表面粗糙度超聲模式識(shí)別方法[J]. 電工技術(shù)學(xué)報(bào), 2022, 37(15): 3743-3752.
Cai Zhichao, Sun Yihu, Zhao Zhenyong, et al. A deep learning-based electromagnetic ultrasonic recognition method for surface roughness of workpeice[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3743-3752.
[16] Zhai Guofu, Liang Bao, Li Xi, et al. High-temperature EMAT with double-coil configuration generates shear and longitudinal wave modes in paramagnetic steel[J]. NDT & E International, 2022, 125: 102572.
[17] Tu Jun, Zhong Zhiwu, Song Xiaochun, et al. An external through type RA-EMAT for steel pipe inspection[J]. Sensors and Actuators A: Physical, 2021, 331: 113053.
[18] Tkocz J, Greenshields D, Dixon S. High power phased EMAT arrays for nondestructive testing of as-cast steel[J]. NDT & E International, 2019, 102: 47-55.
[19] 趙國(guó)梁, 劉素貞, 張闖, 等. 變厚板塑性形變超聲非線性響應(yīng)及其實(shí)驗(yàn)[J]. 電工技術(shù)學(xué)報(bào), 2022, 37(20): 5092-5103.
Zhao Guoliang, Liu Suzhen, Zhang Chuang et al. Ultrasonic nonlinear response of plate with varying thickness in plastic deformation and experiment[J]. Transactions of China Electrotechnical Society, 2022, 37(20): 5092-5103.
[20] 劉素貞, 王淑娟, 張闖, 等. 鋼板電磁超聲表面波的仿真分析及缺陷定量檢測(cè)[J]. 電工技術(shù)學(xué)報(bào), 2020, 35(1): 97-105.
Liu Suzhen, Wang Shujuan, Zhang Chuang, et al. Simulation analysis of electromagnetic acoustic surface wave of steel plate and quantitative defect detection[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 97-105.
[21] 武建偉. 超聲導(dǎo)波技術(shù)在管道檢測(cè)中的試驗(yàn)分析[J]. 電工技術(shù), 2023(3): 148-150.
Wu Jianwei. Analysis of experiment in pipeline detection using ultrasonic guided wave technology[J]. Electric Engineering, 2023(3): 148-150.
[22] 劉素貞, 張嚴(yán)偉, 張闖, 等. 電磁超聲管道周向蘭姆波仿真分析及缺陷檢測(cè)特性研究[J]. 電工技術(shù)學(xué)報(bào), 2017, 32(22): 144-151.
Liu Suzhen, Zhang Yanwei, Zhang Chuang, et al. Research on simulation analysis of electromagnetic ultrasonic circumferential lamb waves and defect feature detection in pipeline[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 144-151.
[23] Seung H M, Park C I, Kim Y Y. An omnidirectional shear-horizontal guided wave EMAT for a metallic plate[J]. Ultrasonics, 2016, 69: 58-66.
[24] Palmer S B, Dixon S. Industrially viable non-contact ultrasound[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2003, 45(3): 211-217.
[25] Ramp H O, Wingrove E R. Principles of pulse com- pression[J]. IRE Transactions on Military Electronics, 1961, MIL-5(2): 109-116.
[26] Fu Juan, Wei Gang, Huang Qinghua, et al. Barker coded excitation with linear frequency modulated carrier for ultrasonic imaging[J]. Biomedical Signal Processing and Control, 2014, 13: 306-312.
[27] Mitsuta H, Sakai Kaoru. High sensitivity detection of ultrasonic signal for nondestructive inspection using pulse compression method[J]. Microelectronics Reliability, 2019, 92: 172-178.
[28] Laureti S, Ricci M, Mohamed M N I B, et al. Detection of rebars in concrete using advanced ultrasonic pulse compression techniques[J]. Ultrasonics, 2018, 85: 31-38.
[29] 時(shí)亞, 石文澤, 陳果, 等. 鋼軌踏面檢測(cè)電磁超聲表面波換能器優(yōu)化設(shè)計(jì)[J]. 儀器儀表學(xué)報(bào), 2018, 39(8): 239-249.
Shi Ya, Shi Wenze, Chen Guo, et al. Optimal design of electromagnetic ultrasonic surface wave transducer for rail tread detection[J]. Chinese Journal of Scientific Instrument, 2018, 39(8): 239-249.
[30] 劉素貞, 劉繼倫, 張闖, 等. 一種新型窄磁鐵聚焦式電磁超聲表面波換能器[J/OL]. 中國(guó)電機(jī)工程學(xué)報(bào): 1-13[2023-05-24]. http://kns.cnki.net/kcms/detail/ 11.2107.TM.20220406.1932.004.html.
Liu Suzhen, Liu Jilun, Zhang Chuang, et al. A new electromagnetic acoustic transducer design with narrow magnet for generating focused surface wave[J/OL]. Proceedings of the CSEE: 1-13[2023-05-24]. http://kns.cnki.net/kcms/detail/11.2107.TM.20220406. 1932.004.html.
[31] Gandomzadeh D, Abbaspour-Fard M H. Numerical study of the effect of core geometry on the per- formance of a magnetostrictive transducer[J]. Journal of Magnetism and Magnetic Materials, 2020, 513: 166823.
[32] Kang Lei, Dixon S, Wang Kaican, et al. Enhancement of signal amplitude of surface wave EMATs based on 3-D simulation analysis and orthogonal test method[J]. NDT & E International, 2013, 59: 11-17.
[33] Pei Cuixiang, Zhao Siqi, Xiao Pan, et al. A modified meander-line-coil EMAT design for signal amplitude enhancement[J]. Sensors and Actuators A: Physical, 2016, 247: 539-546.
[34] Sun Mingjian, Shen Yi, Zhang Wei. A wavelet threshold denoising method for ultrasonic signal based on EMD and correlation coefficient analysis[C]//2010 3rd International Congress on Image and Signal Processing, Yantai, China, 2010: 3992-3996.
[35] Nie Zhichao, Wang Kui, Zhao Mingjie. Application of wavelet and EEMD joint denoising in nonlinear ultrasonic testing of concrete[J]. Advances in Materials Science and Engineering, 2018: 1-11.
[36] Si Dan, Gao Bin, Guo Wei, et al. Variational mode decomposition linked wavelet method for EMAT denoise with large lift-off effect[J]. NDT & E International, 2019, 107: 102149.
[37] Hao Kuansheng, Huang Songling, Zhao Wei, et al. Modeling and finite element analysis of transduction process of electromagnetic acoustic transducers for nonferromagnetic metal material testing[J]. Journal of Central South University, 2011, 18(3): 749-754.
[38] Harris F J. On the use of windows for harmonic analysis with the discrete Fourier transform[J]. Proceedings of the IEEE, 1978, 66(1): 51-83.
[39] Miller R. Fundamentals of radar signal processing (richards, M. A.; 2005)[book review[J]. IEEE Signal Processing Magazine, 2009, 26(3): 100-101.
[40] Jafari-Shapoorabadi R, Konrad A, Sinclair A N. Comparison of three formulations for eddy-current and skin effect problems[J]. IEEE Transactions on Magnetics, 2002, 38(2): 617-620.
Design and Optimization of Multi-Array Lamb Wave EMAT for Steel Plates Based on Barker Code Pulse Compression Technology
(Key Laboratory of Nondestructive Testing Ministry of Education Nanchang Hangkong University Nanchang 330063 China)
Traditional Barker code pulse compression technology is constrained by rated parameters of pulse power amplifiers (duty cycle, maximum pulse width), resulting in reduced pulse compression effectiveness and detection speed. Amulti-element Lamb wave Electromagnetic Acoustic Transducer (EMAT) based on Barker code pulse compression technology is proposed. In this multi-element EMAT, the combination of a permanent magnet and a meander line coil is considered an independent element, and the direction of the Lorentz force is controlled by the magnetic field direction of the permanent magnet and the current direction of the meander line coil in each group of array elements. In this way, the excited Lamb wave phase {0, 180°} is consistent with the Barker code sequence {1,-1}, ultimately generating Lamb waves in Barker code form. A finite element model for the multi-element Lamb wave EMAT detection process is established based on Barker code pulse compression technology with tone-burst excitation. The influence of factors (permanent magnet configuration, array element sequence length, excitation signal cycle count, and meander line coil turns) on peak-side lobe ratio and main lobe width after pulse compression is analyzed.
The results show that configuring external permanent magnets improves the signal-to-noise ratio (SNR) of pulse-compressed signals after side lobe suppression when the multi-element Lamb wave EMAT is excited by tone-burst signals. The SNR of the detection echo can be increased by 9.8 dB when the multi-element EMAT with a four-turn meander line coil and a 13-bit Barker code sequence length is configured with three pairs of external permanent magnets. As the number of excitation signal cycles increases, the main lobe width of the pulse-compressed signal after sidelobe suppression exhibits a continuously increasing trend, and the SNR initially increases and then decreases. As the length of the Barker sequence increases, the SNR of the pulse-compressed signal after sidelobe suppression shows a continuously increasing trend. Considering the spatial resolution and SNR of the detected echo, the optimal parameters of the multi-element Lamb wave EMAT area 10-turn meander line coil, 11 excitation signal cycles, a 13-bit Barker sequence, and a configuration with three pairs of external permanent magnets.
The new multi-element EMAT successfully generates Lamb waves in Barker code form when excited with a tone-burst signal. After the pulse compression, the Lamb wave signal effectively suppresses sidelobes by calculating delay time and performing sidelobe suppression. The multi-element Lamb wave EMAT based on tone-burst excitation and Barker code pulse compression technology improves ultrasonic signals' SNR and spatial resolution. When applied to guided wave detection inmetal plates or pipes with varying thicknesses, maintaining consistent spacing between array elements is crucial for pulse compression effects. Ensuringuniform and consistent magnetic field distribution for each array element is also beneficial.
Electromagnetic ultrasonic transducer, Barker code pulse compression, multi-element Lamb wave EMAT, signal-to-noise ratio, spatial resolution
國(guó)家自然科學(xué)基金(52065049, 12064001)、國(guó)防基礎(chǔ)科研計(jì)劃(JCKY2022401C005)、江西省主要學(xué)科與技術(shù)帶頭人培訓(xùn)計(jì)劃(20204BCJL22039, 20225BCJ23023)、江西省杰出青年基金(20212ACB214010)、江西省重點(diǎn)研發(fā)計(jì)劃(20212BBE51006, 20223BBE51034)和南昌航空大學(xué)研究生創(chuàng)新專項(xiàng)資金(YC2021-S694)資助項(xiàng)目。
2023-03-03
2023-05-06
10.19595/j.cnki.1000-6753.tces.230249
TG115.28+5
石文澤 男,1986年生,副教授,研究方向?yàn)榧す?電磁超聲檢測(cè)。E-mail: 70658@nchu.edu.cn
盧 超 男,1971年生,教授,博士生導(dǎo)師,研究方向?yàn)槌暀z測(cè)及儀器等。E-mail: luchaoniat@163.com(通信作者)
(編輯 郭麗軍)