向近杰 呂懋鑫 王夢(mèng)悅 張坤 李顥
摘要:目的 探究人腎皮質(zhì)近曲小管上皮細(xì)胞(HK-2)經(jīng)Ca2+作用后的焦亡經(jīng)典通路激活及黏附性變化對(duì)含鈣腎結(jié)石形成的作用及機(jī)制。方法 不同質(zhì)量濃度的CaCl2(0、0.1、0.5、1.0、2.0、4.0、8.0 g/L)培養(yǎng)HK-2細(xì)胞24 h,使用細(xì)胞計(jì)數(shù)試劑盒(CCK-8)及流式細(xì)胞凋亡術(shù)檢測(cè)篩選最佳處理濃度。使用透射電鏡觀察高鈣環(huán)境下腎小管上皮細(xì)胞微結(jié)構(gòu)的變化。在高鈣處理后用2,7-二氯熒光素二乙酸酯(DCFH-DA)檢測(cè)細(xì)胞內(nèi)活性氧(ROS)的產(chǎn)生,并采用實(shí)時(shí)熒光定量聚合酶鏈?zhǔn)椒磻?yīng)和Western blot法分別檢測(cè)高鈣刺激后HK-2細(xì)胞焦亡相關(guān)NOD樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3(NLRP3)、胱天蛋白酶1(Caspase-1)、gasderminD(GSDMD)和黏附分子骨橋蛋白(OPN)、CD44的mRNA和蛋白表達(dá)水平變化,酶聯(lián)免疫吸附試驗(yàn)檢測(cè)白細(xì)胞介素(IL)-1β、IL-18和黏附分子單核細(xì)胞趨化蛋白1(MCP-1)在高鈣刺激后的表達(dá)變化。結(jié)果 Ca2+對(duì)HK-2細(xì)胞生長(zhǎng)具有細(xì)胞毒性并且可以促進(jìn)其凋亡,Ca2+濃度越高,對(duì)HK-2細(xì)胞生長(zhǎng)的毒性越大且凋亡率越高。高鈣可以促進(jìn)HK-2細(xì)胞發(fā)生細(xì)胞膜完整性缺失、內(nèi)容物釋放及胞內(nèi)大量空泡產(chǎn)生等焦亡樣形態(tài)學(xué)改變。與對(duì)照組相比,1.0 g/L及2.0 g/L CaCl2組的ROS表達(dá)水平依次升高,焦亡相關(guān)基因NLRP3、Caspase-1、GSDMD、IL-1β、IL-18以及黏附相關(guān)基因OPN、CD44、MCP-1的mRNA和蛋白表達(dá)水平均依次升高(P<0.05)。結(jié)論 高鈣能使HK-2細(xì)胞發(fā)生氧化應(yīng)激損傷并產(chǎn)生ROS,從而激活NLRP3炎癥小體,進(jìn)而導(dǎo)致細(xì)胞焦亡經(jīng)典通路的激活和細(xì)胞黏附性的增加,最終間接促進(jìn)腎結(jié)石的形成。
關(guān)鍵詞:細(xì)胞焦亡;高鈣尿癥;活性氧;細(xì)胞黏附分子;腎結(jié)石
中圖分類號(hào):R349.5,R692.4文獻(xiàn)標(biāo)志碼:ADOI:10.11958/20231036
Molecular mechanisms of Ca2+-induced pyroptosis and adhesion changes of HK-2 cells in the formation of calcium-containing kidney stones
XIANG Jinjie, LYU Maoxin, WANG Mengyue, ZHANG Kun, LI Hao△
Department of Urology, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
△Corresponding Author E-mail: lihao834@sina.com
Abstract: Objective To investigate the possible role and mechanism of activation of pyroptosis classical pathway and alterations in cell adhesion in calcium-containing kidney stones after the action of high concentration of Ca2+ on HK-2 cells. Methods HK-2 cells were cultured in the presence of different concentrations of CaCl2 (0, 0.1, 0.5, 1.0, 2.0, 4.0 and 8.0 g/L) for 24 hours, and cell counting Kit-8 (CCK-8) and flow cytometry were used to determine the optimal treatment concentration. Subsequently, the ultrastructure of renal tubular epithelial cells under high Ca2+ condition was observed by transmission electron microscopy after Ca2+ treatment. DCFH-DA staining was used to detect intracellular reactive oxygen species production, and quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis were performed to examine the expression of pyroptosis-related proteins NLRP3, Caspase-1, gasdermin D (GSDMD), adhesive molecules osteopontin (OPN) and CD44 at mRNA and protein levels after high concentration Ca2+ treatment. The expression levels of pyroptosis-related inflammatory factors interleukin (IL)-1β, IL-18 and adhesive molecule monocyte chemotactic protein-1 (MCP-1) were detected by enzyme-linked immunosorbent assay (ELISA) after high Ca2+ stimulation. Results Ca2+ showed cytotoxicity for HK-2 cell growth and can promote apoptosis. The higher the Ca2+ concentration, the more toxicity and apoptosis rate for HK-2 cell growth. High concentration of Ca2+ can promote pyroptosis-like morphological changes in HK-2 cells, including loss of cell membrane integrity, release of contents and numerous intracellular vacuoles. Compared with the control group, the expression levels of ROS were sequentially increased in the 1.0 g/L CaCl2 group and the 2.0 g/L CaCl2 group, and the expression levels of pyroptosis-related genes NLRP3, Caspase-1, GSDMD, and the pyroptosis-associated inflammatory factors IL-1β and IL-18, as well as the adhesion molecules OPN, CD44 and MCP-1 were significantly increased (P<0.05). Conclusion High Ca2+ treatment can cause oxidative stress damage in HK-2 cells to produce ROS, which activates NLRP3 inflammasome, leads to the activation of the classical pathway of pyroptosis and increase the adhesion of cells, and ultimately leads to the formation of kidney stones.
Key words: pyroptosis; hypercalciuria; reactive oxygen species; cell adhesion molecules; kidney stones
細(xì)胞焦亡是一種新的程序性細(xì)胞死亡,也是機(jī)體的一種天然免疫反應(yīng)。其經(jīng)典通路為炎癥小體介導(dǎo)并激活胱天蛋白酶(Caspase)-1,隨后活化的Caspase-1切割孔道形成蛋白gasderminD(GSDMD)轉(zhuǎn)化為GSDMD-N并在細(xì)胞膜上寡聚化形成焦亡孔隙,同時(shí)伴隨白細(xì)胞介素(interleukin,IL)-1β、IL-18等炎性因子的釋放,促進(jìn)免疫炎癥反應(yīng)的發(fā)生[1-2]。細(xì)胞焦亡廣泛參與諸多疾病的發(fā)生與調(diào)控,如代謝性疾?。?-4]、腎臟纖維化[5]以及多種腫瘤的發(fā)生與轉(zhuǎn)移[6]等。腎結(jié)石也屬于一種代謝性疾病,其發(fā)病率在北美、歐洲和亞洲分別為7%~14%、5%~9%和1%~5%[7],且復(fù)發(fā)率高達(dá)50%以上[8]。因此,探討腎結(jié)石的發(fā)病機(jī)制對(duì)其預(yù)防和治療具有重要意義。研究發(fā)現(xiàn),大多數(shù)腎結(jié)石患者均有代謝異常,以高鈣尿癥最常見(jiàn),占40%~60%[9]。另有研究認(rèn)為,高鈣尿是腎結(jié)石復(fù)發(fā)的主要診斷指標(biāo),結(jié)石復(fù)發(fā)患者24 h尿鈣濃度比未復(fù)發(fā)患者高近50%[10]。有研究發(fā)現(xiàn)草酸鈣(calcium oxalate,CaOx)結(jié)石的形成與腎小管上皮細(xì)胞發(fā)生的氧化應(yīng)激損傷以及晶體黏附性增加有關(guān),同時(shí)在結(jié)石形成中,細(xì)胞晶體誘導(dǎo)的炎癥反應(yīng)也起著至關(guān)重要的作用[11-12]。本研究通過(guò)體外實(shí)驗(yàn)?zāi)M腎結(jié)石和特發(fā)性高鈣尿癥患者體內(nèi)的高鈣環(huán)境,旨在探討高鈣與細(xì)胞焦亡在腎結(jié)石形成中的作用機(jī)制,以期為腎結(jié)石的預(yù)防和治療提供參考。
1 材料與方法
1.1 材料 HK-2細(xì)胞購(gòu)自武漢普諾賽生命科技有限公司。DMEM/F12細(xì)胞培養(yǎng)基購(gòu)自上海逍鵬生物科技有限公司;胎牛血清購(gòu)自上海依科賽生物;兔抗人NOD樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3(NLRP3)、Caspase-1、GSDMD、骨橋蛋白(OPN)、吞噬細(xì)胞糖蛋白-1(Pgp-1即CD44),β-肌動(dòng)蛋白(β-actin),羊抗兔、鼠IgG抗體,IL-18酶聯(lián)免疫吸附試驗(yàn)(ELISA)試劑盒以及細(xì)胞計(jì)數(shù)試劑盒(CCK-8)購(gòu)自武漢三鷹公司;IL-1β、單核細(xì)胞趨化蛋白-1(MCP-1)ELISA試劑盒購(gòu)自欣博盛生物科技有限公司;細(xì)胞凋亡檢測(cè)試劑盒購(gòu)自北京索萊寶科技有限公司;活性氧(ROS)檢測(cè)試劑盒購(gòu)自北京博奧森生物技術(shù)有限公司;RNA Easy Fast總RNA提取試劑盒購(gòu)自天根生化科技有限公司;逆轉(zhuǎn)錄試劑盒和實(shí)時(shí)熒光定量聚合酶鏈?zhǔn)椒磻?yīng)(qRT-PCR)試劑購(gòu)自南京諾唯贊生物科技股份有限公司。
1.2 研究方法
1.2.1 細(xì)胞培養(yǎng) HK-2細(xì)胞使用含10%胎牛血清、1%青/鏈霉素的DMEM/F12培養(yǎng)基在37 ℃、5%CO2的恒溫培養(yǎng)箱中培養(yǎng)。取對(duì)數(shù)生長(zhǎng)期細(xì)胞進(jìn)行后續(xù)實(shí)驗(yàn)。
1.2.2 CCK-8法檢測(cè)細(xì)胞活性 96孔板每孔接種約1×104個(gè)HK-2細(xì)胞,分為7組,每組6個(gè)復(fù)孔,每孔使用100 μL含不同質(zhì)量濃度(0、0.1、0.5、1.0、2.0、4.0、8.0 g/L)CaCl2的培養(yǎng)液處理24 h,隨后每孔中加入10 μL的CCK-8試劑,并置于37 ℃的恒溫培養(yǎng)箱中孵育2 h,在450 nm波長(zhǎng)處用多功能酶標(biāo)儀測(cè)定各孔光密度(OD)值,細(xì)胞存活率=[(OD實(shí)驗(yàn)孔-OD空白孔)/(OD對(duì)照孔-OD空白孔)]×100%。選擇與對(duì)照(0 g/L CaCl2處理)組比較細(xì)胞存活率出現(xiàn)顯著下降、但不低于50%的質(zhì)量濃度進(jìn)行后續(xù)實(shí)驗(yàn)。
1.2.3 流式細(xì)胞術(shù)檢測(cè)細(xì)胞凋亡 細(xì)胞接種于6孔板,每孔使用不同質(zhì)量濃度(0、0.1、0.5、1.0、2.0、4.0、8.0 g/L)CaCl2的培養(yǎng)液處理24 h后收集細(xì)胞。每管加入400 μL Binding Buffer重懸細(xì)胞,分出3管分別用于空白、FITC和PI單陽(yáng)對(duì)照。取100 μL懸液于5 mL流式管中,加入5 μL FITC和PI染料避光孵育5 min,再加入400 μL磷酸鹽緩沖溶液(PBS)混勻后流式細(xì)胞儀上機(jī)檢測(cè)。選擇與對(duì)照(0 g/L CaCl2處理)組比較細(xì)胞凋亡率出現(xiàn)顯著上升的濃度進(jìn)行后續(xù)實(shí)驗(yàn)。
1.2.4 透射電鏡法觀察細(xì)胞微結(jié)構(gòu)變化 用含1.0、2.0 g/L CaCl2的培養(yǎng)液處理HK-2細(xì)胞24 h,消化后1 000 r/min離心5 min收集細(xì)胞,加入2.5%戊二醛固定細(xì)胞團(tuán)2 h后使用1%瓊脂糖包裹,并使用1%鋨酸再固定2 h,隨后按照50%-70%-80%-90%-95%-100%-100%乙醇-100%丙酮-100%丙酮進(jìn)行逐步脫水,每次15 min,丙酮包埋劑滲透,包埋切片,鈾鉛雙染并干燥過(guò)夜后使用FEI Tecnai G2 Spirit透射電子顯微鏡采集圖像分析。
1.2.5 2,7-二氯熒光素二乙酸酯(DCFH-DA)法檢測(cè)細(xì)胞內(nèi)ROS水平 HK-2細(xì)胞接種于6孔板與激光共聚焦培養(yǎng)皿,對(duì)照組使用不含CaCl2的培養(yǎng)液,實(shí)驗(yàn)組使用含不同濃度(1.0、2.0 g/L)CaCl2的培養(yǎng)液培養(yǎng)24 h。采用DCFH-DA探針?lè)z測(cè)細(xì)胞內(nèi)ROS水平[13],激光共聚焦顯微鏡觀察細(xì)胞內(nèi)ROS熒光強(qiáng)度,流式細(xì)胞儀檢測(cè)高鈣環(huán)境下腎小管上皮細(xì)胞內(nèi)氧化應(yīng)激水平。
1.2.6 qRT-PCR 采用試劑盒提取各組細(xì)胞總RNA,Thermo Nanodrop 2000紫外分光光度計(jì)測(cè)定總RNA濃度。將1 μg的總RNA逆轉(zhuǎn)錄為cDNA,隨后進(jìn)行qRT-PCR實(shí)驗(yàn)。反應(yīng)體系(20 μL):2 × ChamQ Universal SYBR qPCR Master Mix 10 μL,上、下游引物各0.5 μL,cDNA 1 μL,ddH2O 8 μL。反應(yīng)條件:預(yù)變性95 ℃ 30 s;變性95 ℃ 10 s,退火、延伸60 ℃ 30 s,循環(huán)40次。引物序列見(jiàn)表1。以GAPDH為內(nèi)參,2-ΔΔCt法檢測(cè)HK-2細(xì)胞焦亡相關(guān)基因NLRP3、Caspase-1、GSDMD,焦亡炎癥因子IL-1β、IL-18和黏附相關(guān)基因OPN、CD44、MCP-1的mRNA表達(dá)水平變化。
1.2.7 Western blot法檢測(cè)細(xì)胞內(nèi)焦亡和黏附相關(guān)蛋白相對(duì)表達(dá)水平 將細(xì)胞接種于6孔板中,使用含1.0、2.0 g/L CaCl2的培養(yǎng)基培養(yǎng)細(xì)胞24 h后提取各組細(xì)胞總蛋白。二喹啉甲酸(BCA)蛋白定量法測(cè)定各組蛋白質(zhì)濃度,蛋白質(zhì)樣品使用10%的十二烷基硫酸鈉-聚丙烯酰胺凝膠分離并轉(zhuǎn)移到PVDF膜,于含5%脫脂奶粉的TBST中室溫封閉2 h,洗膜后加入對(duì)應(yīng)一抗NLRP3(1∶1 000)、Caspase-1(1∶2 000)、GSDMD(1∶2 000)、OPN(1∶1 000)、CD44(1∶2 000)、β-actin(1∶5 000)4 ℃孵育過(guò)夜,二抗(1∶5 000)室溫下孵育1 h。ECL試劑顯色,多功能成像系統(tǒng)拍照,以β-actin為內(nèi)參蛋白,Image J軟件分析目的蛋白條帶相對(duì)灰度。
1.2.8 ELISA檢測(cè)IL-18、IL-1β、MCP-1表達(dá)水平 用含1.0、2.0 g/L CaCl2的培養(yǎng)液處理HK-2細(xì)胞24 h后收集培養(yǎng)液,4 ℃、1 000 r/min離心10 min、取上清液,參照試劑盒說(shuō)明書檢測(cè)細(xì)胞培養(yǎng)上清液中IL-18、IL-1β及MCP-1表達(dá)水平。
1.3 統(tǒng)計(jì)學(xué)方法 采用Graphpad Prism 9.4.0軟件進(jìn)行數(shù)據(jù)分析。符合正態(tài)分布的計(jì)量數(shù)據(jù)以[x] ±s表示,多組間比較采用單因素方差分析,組間多重比較采用LSD-t法。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 不同質(zhì)量濃度Ca2+對(duì)HK-2細(xì)胞存活率及凋亡率的影響 細(xì)胞存活率隨Ca2+質(zhì)量濃度升高而降低;與對(duì)照組比較,Ca2+質(zhì)量濃度≥1.0 g/L時(shí)細(xì)胞存活率明顯降低(P<0.05),Ca2+質(zhì)量濃度≥4.0 g/L時(shí)細(xì)胞存活率低于50%。細(xì)胞凋亡率隨Ca2+質(zhì)量濃度升高而增加;與對(duì)照組比較,Ca2+質(zhì)量濃度≥1.0 g/L時(shí),細(xì)胞凋亡率明顯上升(P<0.05),見(jiàn)表2、圖1。根據(jù)以上實(shí)驗(yàn)結(jié)果,使用1.0、2.0 g/L的CaCl2進(jìn)行后續(xù)實(shí)驗(yàn)。
2.2 高鈣對(duì)HK-2細(xì)胞微結(jié)構(gòu)的影響 透射電鏡下可見(jiàn)對(duì)照組細(xì)胞形態(tài)正常、胞膜完整、線粒體形態(tài)正常,而高鈣組細(xì)胞出現(xiàn)細(xì)胞膜完整性缺失、內(nèi)容物釋放、線粒體明顯腫脹以及胞內(nèi)大量空泡產(chǎn)生等細(xì)胞焦亡相關(guān)的微結(jié)構(gòu)變化,見(jiàn)圖2。
2.3 高鈣對(duì)HK-2細(xì)胞氧化應(yīng)激水平的影響 激光共聚焦顯微鏡觀察結(jié)果以及流式細(xì)胞儀檢測(cè)結(jié)果顯示,對(duì)照組、1.0 g/L CaCl2組及2.0 g/L CaCl2組ROS水平均依次升高(P<0.05),見(jiàn)圖3。
2.4 各組焦亡和黏附相關(guān)基因mRNA表達(dá)水平比較 對(duì)照組、1.0 g/L CaCl2組及2.0 g/L CaCl2組細(xì)胞內(nèi)焦亡相關(guān)基因NLRP3、Caspase-1、GSDMD、IL-1β、IL-18和黏附相關(guān)基因OPN、CD44、MCP-1的mRNA表達(dá)水平依次升高(P<0.05),見(jiàn)表3。
2.5 各組焦亡相關(guān)蛋白和黏附相關(guān)蛋白表達(dá)水平比較 見(jiàn)表4、圖4。對(duì)照組、1.0 g/L CaCl2組及2.0 g/L CaCl2組細(xì)胞內(nèi)焦亡相關(guān)蛋白NLRP3、Caspase-1、GSDMD和黏附相關(guān)蛋白OPN、CD44的表達(dá)水平依次升高(P<0.05)。
2.6 各組IL-18、IL-1β、MCP-1表達(dá)水平比較 對(duì)照組、1.0 g/L CaCl2組及2.0 g/L CaCl2組細(xì)胞培養(yǎng)上清液中焦亡相關(guān)炎性因子IL-1β、IL-18和黏附因子MCP-1的表達(dá)水平依次升高(P<0.05),見(jiàn)表5。
3 討論
高鈣尿癥是含鈣腎結(jié)石發(fā)生、發(fā)展的重要危險(xiǎn)因素之一[9]。Ca2+不僅是晶體的陽(yáng)離子成分,暴露在高水平的Ca2+中還會(huì)導(dǎo)致腎小管上皮細(xì)胞損傷,其損傷程度取決于持續(xù)時(shí)間和濃度,并且因損傷產(chǎn)生的炎性細(xì)胞因子可能在含鈣腎結(jié)石的形成中起重要作用[14]。研究表明,CaOx晶體能夠通過(guò)腎素血管緊張素系統(tǒng)激活還原型輔酶Ⅱ(NADPH)氧化酶復(fù)合體,從而產(chǎn)生ROS,導(dǎo)致硫氧還蛋白-1(thioredoxin-1,Trx1)與硫氧還蛋白結(jié)合蛋白(thioredoxin interacting protein,TXNIP)分離,進(jìn)而使細(xì)胞中與NLRP3結(jié)合的TXNIP水平上升,這增加了NLRP3-TXNIP的關(guān)聯(lián),最終導(dǎo)致NLRP3炎癥小體的激活[15],對(duì)腎小管上皮細(xì)胞造成炎癥性損傷,進(jìn)而促進(jìn)CaOx結(jié)石的形成[16-17]。此外,暴露于高濃度草酸的腎小管上皮細(xì)胞也會(huì)啟動(dòng)氧化應(yīng)激反應(yīng)產(chǎn)生ROS,ROS會(huì)通過(guò)激活P38絲裂原活化蛋白酶通路增加細(xì)胞對(duì)晶體的黏附性,并且促進(jìn)晶體的連接和聚集[18],而晶體的過(guò)度飽和與持續(xù)累積最終導(dǎo)致腎臟中結(jié)石的形成[19]。然而,暴露于高水平的Ca2+、草酸和CaOx晶體都會(huì)對(duì)腎小管上皮細(xì)胞造成損害,其中Ca2+和CaOx晶體均是通過(guò)ROS影響,但兩者之間沒(méi)有協(xié)同作用[14]。本研究結(jié)果顯示,不同濃度Ca2+對(duì)腎小管上皮細(xì)胞均有細(xì)胞毒性作用,并且會(huì)促進(jìn)細(xì)胞凋亡;Ca2+濃度越高,對(duì)細(xì)胞的毒性越大,細(xì)胞凋亡程度也越高。相關(guān)研究表明,0.5 g/L的Ca2+水平高于腎小管上皮細(xì)胞可能接觸到的正常生理水平,然而在高鈣尿(男女性的尿鈣平均排泄量分別達(dá)到300mg/24 h和250 mg/24 h)條件下,腎結(jié)石和高鈣尿癥患者體內(nèi)腎小管上皮細(xì)胞所暴露的Ca2+水平能達(dá)到1.0 g/L[14]。本研究結(jié)果亦顯示,高鈣(1.0、2.0 g/L CaCl2)會(huì)使腎小管上皮細(xì)胞發(fā)生氧化應(yīng)激損傷產(chǎn)生ROS,而ROS能激活NLRP3炎癥小體;透射電鏡可見(jiàn)高鈣刺激腎小管上皮細(xì)胞后會(huì)出現(xiàn)細(xì)胞膜破裂、空泡產(chǎn)生及內(nèi)容物釋放等焦亡形態(tài)樣改變;qRT-PCR和Western blot結(jié)果同樣證實(shí),高鈣會(huì)激活HK-2細(xì)胞NLRP/Caspase-1/GSDMD焦亡經(jīng)典通路,并上調(diào)焦亡相關(guān)炎性因子IL-1β、IL-18的表達(dá)來(lái)促進(jìn)腎小管上皮細(xì)胞發(fā)生焦亡及炎癥反應(yīng),表明高鈣能通過(guò)細(xì)胞焦亡誘發(fā)的炎癥反應(yīng)促進(jìn)腎結(jié)石的形成。相關(guān)研究顯示,腎小管上皮細(xì)胞焦亡和炎癥程度與Ca2+濃度呈正相關(guān),而炎癥反應(yīng)在腎結(jié)石的形成過(guò)程中起至關(guān)重要的作用[11-12]。此外,腎小管上皮細(xì)胞黏附性的增加能促進(jìn)CaOx晶體黏附于細(xì)胞表面,在CaOx腎結(jié)石的形成中發(fā)揮著重要作用[20];而OPN、CD44、MCP-1的表達(dá)與腎小管上皮細(xì)胞的黏附性變化密切相關(guān),是CaOx晶體附著所依賴的最廣泛的蛋白[21-22]。本研究結(jié)果顯示,高鈣作用于腎小管上皮細(xì)胞后黏附相關(guān)因子OPN、CD44及MCP-1的mRNA與蛋白表達(dá)水平均明顯上調(diào),表明高鈣亦能通過(guò)促進(jìn)腎小管上皮細(xì)胞的黏附性發(fā)生變化,從而間接促進(jìn)腎結(jié)石的發(fā)生發(fā)展。
綜上所述,高鈣能通過(guò)促進(jìn)HK-2細(xì)胞內(nèi)ROS的產(chǎn)生來(lái)誘導(dǎo)NLRP3炎癥小體的激活,進(jìn)而激活NLRP3/Caspase-1/GSDMD經(jīng)典細(xì)胞焦亡途徑,誘發(fā)炎癥反應(yīng),同時(shí)高鈣能使腎小管上皮細(xì)胞的黏附性發(fā)生變化,最終在含鈣腎結(jié)石的形成過(guò)程中發(fā)揮重要作用。
參考文獻(xiàn)
[1] FRANK D,VINCE J E. Pyroptosis versus necroptosis: similarities,differences,and crosstalk [J]. Cell Death Differ,2019,26(1):99-114. doi:10.1038/s41418-018-0212-6.
[2] JACKSON D N,THEISS A L. Gut bacteria signaling to mitochondria in intestinal inflammation and cancer [J]. Gut Microbes,2020,11(3):285-304. doi:10.1080/19490976.2019.1592421.
[3] HUTTON H L,OOI J D,HOLDSWORTH S R,et al. The NLRP3 inflammasome in kidney disease and autoimmunity[J]. Nephrology (Carlton),2016,21(9):736-744. doi:10.1111/nep.12785.
[4] LI X,ZENG L,CAO C,et al. Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy[J]. Exp Cell Res,2017,350(2):327-335. doi:10.1016/j.yexcr.2016.12.006.
[5] XU G,YUE F,HUANG H,et al. Defects in MAP1S-mediated autophagy turnover of fibronectin cause renal fibrosis[J]. Aging(Albany NY),2016,8(5):977-985. doi:10.18632/aging.100957.
[6] HOU J,ZHAO R,XIA W,et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis[J]. Nat Cell Biol,2020,22(10):1264-1275. doi:10.1038/s41556-020-0575-z.
[7] THONGPRAYOON C,KRAMBECK A E,RULE A D. Determining the true burden of kidney stone disease[J]. Nat Rev Nephrol,2020,16(12):736-746. doi:10.1038/s41581-020-0320-7.
[8] THONGBOONKERD V. Proteomics of crystal-cell interactions:a model for kidney stone research[J]. Cells,2019,8(9):1076. doi:10.3390/cells8091076.
[9] COE F L,WORCESTER E M,EVAN A P. Idiopathic hypercalciuria and formation of calcium renal stones[J]. Nat Rev Nephrol,2016,12(9):519-533. doi:10.1038/nrneph.2016.101.
[10] DAUDON M,HENNEQUIN C,BOUJELBEN G,et al. Serial crystalluria determination and the risk of recurrence in calcium stone formers[J]. Kidney Int,2005,67(5):1934-1943. doi:10.1111/j.1523-1755.2005.00292.x.
[11] ANDERS H J,SUAREZ-ALVAREZ B,GRIGORESCU M,et al. The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1-mediated tissue injury[J]. Kidney Int,2018,93(3):656-669. doi:10.1016/j.kint.2017.09.022.
[12] KHAN S R,CANALES B K,DOMINGUEZ-GUTIERREZ P R. Randall's plaque and calcium oxalate stone formation:role for immunity and inflammation[J]. Nat Rev Nephrol,2021,17(6):417-433. doi:10.1038/s41581-020-00392-1.
[13] RIZVI S H M,PARVEEN A,AHMAD I,et al. Aluminum activates PERK-EIF2α signaling and inflammatory proteins in human neuroblastoma SH-SY5Y cells[J]. Biol Trace Elem Res,2016,172(1):108-119. doi:10.1007/s12011-015-0553-7.
[14] KHASKHALI M H,BYER K J,KHAN S R. The effect of calcium on calcium oxalate monohydrate crystal-induced renal epithelial injury[J]. Urol Res,2009,37(1):1-6. doi:10.1007/s00240-008-0160-6.
[15] JOSHI S,WANG W,PECK A B,et al. Activation of the NLRP3 inflammasome in association with calcium oxalate crystal induced reactive oxygen species in kidneys[J]. J Urol,2015,193(5):1684-1691. doi:10.1016/j.juro.2014.11.093.
[16] LIN Q,LI S,JIANG N,et al. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation[J]. Redox Biol,2019,26:101254. doi:10.1016/j.redox.2019.101254.
[17] LIU Q,LIU Y,GUAN X,et al. Effect of M2 macrophages on injury and apoptosis of renal tubular epithelial cells induced by calcium oxalate crystals[J]. Kidney Blood Press Res,2019,44(4):777-791. doi:10.1159/000501558.
[18] QI S,WANG Q,XIE B,et al. P38 MAPK signaling pathway mediates COM crystal-induced crystal adhesion change in rat renal tubular epithelial cells[J]. Urolithiasis,2020,48(1):9-18. doi:10.1007/s00240-019-01143-z.
[19] KHAN S R. Reactive oxygen species,inflammation and calcium oxalate nephrolithiasis[J]. Transl Androl Urol,2014,3(3):256-276. doi:10.3978/j.issn.2223-4683.2014.06.04.
[20] QIN B,WANG Q,LU Y,et al. Losartan ameliorates calcium oxalate-induced elevation of stone-related proteins in renal tubular cells by inhibiting NADPH oxidase and oxidative stress[J]. Oxid Med Cell Longev,2018,2018:1271864. doi:10.1155/2018/1271864.
[21] ASSELMAN M,VERHULST A,DE BROE M E,et al. Calcium oxalate crystal adherence to hyaluronan-,osteopontin-,and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys[J]. J Am Soc Nephrol,2003,14(12):3155-3166. doi:10.1097/01.asn.0000099380.18995.f7.
[22] WANG Z,LI M X,XU C Z,et al. Comprehensive study of altered proteomic landscape in proximal renal tubular epithelial cells in response to calcium oxalate monohydrate crystals[J]. BMC Urol,2020,20(1):136. doi:10.1186/s12894-020-00709-z.
(2023-07-12收稿 2023-09-26修回)
(本文編輯 陸榮展)