摘要 膽汁酸是參與脂質(zhì)消化吸收的重要分子,在肝臟合成后被輸送至腸道中發(fā)揮作用,主要分布于膽囊、肝臟、胃腸道和外周血中。眾多研究表明膽汁酸參與了腸易激綜合征、炎癥性腸病、消化道腫瘤等多種胃腸道疾病的發(fā)生、發(fā)展,血清膽汁酸被廣泛應(yīng)用于肝功能監(jiān)測、肝病診斷、預(yù)后評估等方面。本文就膽汁酸的生理功能和代謝異常的病理生理,以及血清膽汁酸與胃腸道疾病的研究進(jìn)展進(jìn)行總結(jié)分析,為進(jìn)一步探索其應(yīng)用于胃腸道疾病的臨床診斷和評估提供參考。
關(guān)鍵詞 膽汁酸; 腸易激綜合征; 炎癥性腸??; 消化系統(tǒng)腫瘤; 生物學(xué)標(biāo)志物
Research Progress of Serum Bile Acids in Gastrointestinal Diseases YAO Nuo, SHI Yongquan. Department of Gastroenterology, the First Affiliated Hospital of Air Force Medical University, Xi′an (710032)
Correspondence to: SHI Yongquan, Email: shiyquan@fmmu.edu.cn
Abstract Bile acids are synthesized in the liver and then transported to the intestine, playing important roles in the digestion and absorption of lipids. They are mainly distributed in the gallbladder, liver, gastrointestinal tract and peripheral blood. Many studies have shown that bile acids are involved in the development of various gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel disease, and gastrointestinal tumors. Serum bile acids have been widely used in the liver function monitoring, liver diseases diagnosis, and prognosis assessment. This article summarized and analyzed the physiological functions and pathophysiology of abnormal metabolism of bile acids, and the research progress of serum bile acids and gastrointestinal diseases, in order to provide a reference for further exploration of their application in clinical diagnosis and evaluation of gastrointestinal diseases.
Key words Bile Acids; Irritable Bowel Syndrome; Inflammatory Bowel Disease; Digestive System Neoplasms;Biomarkers
膽汁酸是膽固醇的核心代謝產(chǎn)物。在肝臟中合成的初級膽汁酸隨膽汁通過膽管系統(tǒng)輸送到腸道,隨后在腸道微生物的作用下轉(zhuǎn)化為次級膽汁酸。膽汁酸在消化系統(tǒng)中可發(fā)揮乳化劑作用,促進(jìn)脂溶性營養(yǎng)物質(zhì)的消化吸收,并作為重要信號分子參與調(diào)節(jié)脂類和葡萄糖代謝途徑,有助于維持機體穩(wěn)態(tài)[1]。肝臟是膽汁酸合成的唯一器官,其生理功能的變化會影響外周血膽汁酸水平,因此血清膽汁酸水平已被廣泛應(yīng)用于各類肝病患者的疾病診斷、肝功能監(jiān)測、預(yù)后評估等多方面。膽汁酸的作用機制復(fù)雜,可能參與多種消化道疾病的發(fā)生、發(fā)展。本文總結(jié)分析膽汁酸的生理合成和代謝、膽汁酸代謝異常的病理生理等研究進(jìn)展,探討其與腸易激綜合征(irritable bowel syndrome, IBS)、炎癥性腸?。╥nflammatory bowel disease, IBD)、腫瘤等消化道疾病的關(guān)系和臨床應(yīng)用,以期幫助臨床醫(yī)師更好地理解膽汁酸在疾病進(jìn)程中的作用,并推動血清膽汁酸指標(biāo)的臨床應(yīng)用。
一、 膽汁酸的生物合成和代謝
肝臟通過經(jīng)典途徑和替代途徑將膽固醇轉(zhuǎn)化為初級膽汁酸,這一過程至少涉及17種不同的酶。經(jīng)典途徑由肝細(xì)胞內(nèi)質(zhì)網(wǎng)上的膽固醇7α?羥化酶(cholesterol 7α?hydroxylase, CYP7A1)啟動,經(jīng)過14個步驟生成絕大部分的膽酸和鵝脫氧膽酸(chenodeoxycholic acid, CDCA)。CYP7A1為經(jīng)典途徑的限速酶,其基因表達(dá)在轉(zhuǎn)錄水平上受到高度調(diào)控,進(jìn)而反饋調(diào)節(jié)膽汁酸的合成。替代途徑則由線粒體上的甾醇27?羥化酶介導(dǎo),膽固醇在其催化下轉(zhuǎn)化為27?羥基膽固醇,之后在關(guān)鍵酶氧甾醇7α?羥基化酶的羥化作用下生成CDCA。膽酸和CDCA均為游離膽汁酸,與牛磺酸或甘氨酸結(jié)合后形成水溶性更強的結(jié)合型膽汁酸。隨著進(jìn)食后膽囊收縮素的刺激,膽汁酸以結(jié)合形式從膽囊進(jìn)入腸道并發(fā)揮其生理作用。
回腸末端和結(jié)腸上段的腸腔中存在著種類豐富的菌群。結(jié)合型初級膽汁酸在此處經(jīng)多步反應(yīng)被代謝為次級膽汁酸,主要包括脫氧膽酸(deoxycholic acid, DCA)和石膽酸,及其與甘氨酸或?;撬峤Y(jié)合的產(chǎn)物,進(jìn)一步增加了膽汁酸池的多樣性。在頂端鈉依賴性膽鹽轉(zhuǎn)運體的作用下,約95%的膽汁酸于回腸末端被腸黏膜上皮細(xì)胞重吸收,經(jīng)門靜脈系統(tǒng)回流入肝臟,形成膽汁酸的腸?肝循環(huán)。一天內(nèi)可進(jìn)行5~15次腸?肝循環(huán),以使有限的膽汁酸最大化地實現(xiàn)價值[2]。剩余約5%未被吸收的膽汁酸則隨著腸道蠕動進(jìn)入結(jié)直腸并隨糞便排出體外,從而完成代謝過程。腸道微生物通過參與次級膽汁酸的生成而影響膽汁酸池的組成,同時膽汁酸自身的抗菌作用亦能反過來調(diào)節(jié)腸道微生物的組成和豐度,兩者相輔相成,形成了腸道菌群?膽汁酸軸,共同維護機體穩(wěn)態(tài)。隨著腸?肝循環(huán)的運行,少量膽汁酸通過門靜脈系統(tǒng)進(jìn)入外周血,并與肝臟膽汁酸一起隨著人體飲食節(jié)律而具有日波動性[3]。因此,外周血膽汁酸可以反映機體的整體膽汁酸水平。
二、膽汁酸代謝異常的病理生理
膽汁酸的代謝途徑繁雜,涉及肝、膽和腸道三個重要的消化器官,并有多種酶和轉(zhuǎn)運蛋白參與其中,任一部分出現(xiàn)異常,都會對整體代謝的穩(wěn)定和膽汁酸池的組成產(chǎn)生影響,進(jìn)而干擾膽汁酸發(fā)揮生理效應(yīng)。
膽汁酸最基本、最重要的生理功能是促進(jìn)膽固醇代謝。腸?肝循環(huán)中復(fù)雜的負(fù)反饋環(huán)路使膽汁酸能夠減少機體自身膽固醇的生物合成,從而維持膽固醇穩(wěn)態(tài)。當(dāng)膽汁酸代謝出現(xiàn)異常時,膽固醇的轉(zhuǎn)化減少,肝臟中膽固醇含量增加,多余的膽固醇通過低密度脂蛋白轉(zhuǎn)運到其他組織,成為導(dǎo)致動脈粥樣硬化形成的重要因素,甚至引發(fā)心血管疾病。此外,膽固醇水溶性差,須與膽汁酸形成膠束后才能通過膽汁排瀉而不致析出。研究[4]發(fā)現(xiàn)膽汁酸的缺乏是導(dǎo)致膽汁內(nèi)膽固醇過飽和而形成結(jié)石的主要原因。
早在100余年前,膽汁酸作為“清潔劑”促進(jìn)脂質(zhì)消化吸收的生理作用就得到了公認(rèn)。膽汁酸特殊的化學(xué)結(jié)構(gòu)賦予其兩親特點,能通過參與小腸中混合膠束的產(chǎn)生,促進(jìn)脂類乳化,并增加小腸上皮細(xì)胞刷狀緣膜對脂質(zhì)的吸收,來幫助機體攝取膳食中脂質(zhì)以及脂溶性維生素A、D、E和K。當(dāng)膽管梗阻等疾病引起膽汁淤積時,腸道膽汁酸含量下降,機體對食物中脂質(zhì)的吸收能力減弱,常引起脂肪瀉的發(fā)生。
隨著研究的不斷深入,膽汁酸作為調(diào)控代謝的關(guān)鍵信號分子的另一重要功能也逐漸被認(rèn)知。膽汁酸能夠與法尼酯X受體(farnesoid X receptor, FXR)、孕烷X受體、維生素D受體、G蛋白偶聯(lián)膽汁酸受體5(G protein?coupled bile acid receptor 5, TGR5)等多種細(xì)胞受體結(jié)合,激活復(fù)雜的信號通路。通過與這些在肝臟和腸道中廣泛表達(dá)的不同受體結(jié)合,膽汁酸與葡萄糖和脂質(zhì)的代謝、腸道功能、機體免疫等生理活動息息相關(guān)。其中,F(xiàn)XR作為膽汁酸激活的核受體以及作為膽汁酸激活膜受體的TGR5被認(rèn)為是膽汁酸調(diào)節(jié)作用最具標(biāo)志性的靶點。
FXR是維持膽汁酸穩(wěn)態(tài)的重要調(diào)節(jié)因子,肝內(nèi)高流量膽汁酸是FXR的啟動器。FXR被激活后,能夠通過上調(diào)小異二聚體和成纖維細(xì)胞生長因子19的表達(dá),實現(xiàn)對膽汁酸合成的反饋調(diào)控[5]。此外,膽汁酸還可通過FXR調(diào)控糖脂代謝。Watanabe等[6]經(jīng)動物實驗發(fā)現(xiàn),膽汁酸能顯著改善高甘油三酯血癥。糖尿病小鼠模型中存在膽汁酸代謝紊亂,可能與FXR有關(guān)[7]。盡管對于其中機制存在爭議,但這些研究結(jié)果無疑證實了FXR與糖脂代謝的密切關(guān)系。TGR5作為哺乳動物中高度保守的基因,廣泛表達(dá)于膽囊、棕色脂肪組織、肝臟、腸道等多個器官和組織,其功能表現(xiàn)多樣,影響糖脂代謝、能量消耗、免疫等多個方面,而其中對糖脂代謝的調(diào)控是其最關(guān)鍵的功能[8]。TGR5的激活能夠通過促進(jìn)腸道L細(xì)胞分泌胰高血糖素樣肽,進(jìn)而改善胰島素抵抗[9]。膽汁酸能夠通過激活棕色脂肪組織中的TGR5來增加能量消耗,并改善肥胖[10]。
三、膽汁酸與消化道疾病
1. 膽汁酸與IBS:IBS是常見的消化系統(tǒng)疾病,通常以腹痛為主要癥狀,伴或不伴排便習(xí)慣改變,但不存在器質(zhì)性疾病的證據(jù),根據(jù)糞便性狀可將IBS分為腹瀉型和便秘型。目前對IBS復(fù)雜的發(fā)病機制了解有限,一致認(rèn)同主要因消化道動力異常、腸道菌群紊亂、腸?腦軸功能失調(diào)等引發(fā)[11]。此外,膽汁酸在IBS,尤其腹瀉型IBS發(fā)病中起一定作用。除脂質(zhì)吸收障礙原因外,30%~50%原因不明的慢性腹瀉患者都有膽汁酸重吸收異常,其原因通常多種多樣。繼發(fā)性膽汁酸性腹瀉可發(fā)生于膽囊切除術(shù)或回腸末端切除術(shù)后,而原發(fā)性膽汁酸性腹瀉的病因尚不明確,通常認(rèn)為與膽汁酸代謝中的負(fù)反饋通路被破壞有關(guān)。膽汁酸合成的經(jīng)典途徑經(jīng)歷由CYP7A1介導(dǎo)的限速步驟,當(dāng)其中負(fù)反饋機制發(fā)生中斷時,CYP7A1的活性增加,導(dǎo)致膽汁酸合成增加6~7倍[12]。隨著醫(yī)學(xué)技術(shù)的發(fā)展,對膽汁酸性腹瀉的認(rèn)識也逐漸清晰,高達(dá)30%的腹瀉型IBS患者被發(fā)現(xiàn)有膽汁酸吸收不良的證據(jù)[13]。Bajor等[14]發(fā)現(xiàn),IBS患者結(jié)腸膽汁酸暴露增加,導(dǎo)致結(jié)腸的運動和分泌活動改變,進(jìn)而影響患者排便習(xí)慣,而膽汁酸螯合劑考來烯胺可以改善這一癥狀。
目前絕大多數(shù)臨床研究通過檢測患者糞便膽汁酸譜判斷膽汁酸水平,事實上血清膽汁酸同樣具有輔助判斷價值。Dior等[15]的研究發(fā)現(xiàn),與健康對照者相比,IBS患者血清初級膽汁酸和結(jié)合膽汁酸水平升高,并且腹痛程度與血清初級膽汁酸水平呈正相關(guān)。7α?羥基?4?膽固醇?3?酮(7α?hydroxy?4?cholesten?3?one, 7αC4)是初級膽汁酸合成過程中的重要前體,Sauter等[16]研究發(fā)現(xiàn)空腹血清7αC4水平診斷膽汁酸性腹瀉的敏感性為90%,特異性為79%。而Vijayvargiya等[17]觀察到女性便秘型IBS患者的血清7αC4與結(jié)腸轉(zhuǎn)運呈顯著正相關(guān)。以上研究結(jié)果對臨床區(qū)分不同類型的IBS患者并給予針對性治療具有指導(dǎo)意義。
2. 膽汁酸與IBD:IBD主要包括潰瘍性結(jié)腸炎(ulcerative colitis, UC)和克羅恩病(Crohn′s disease, CD),近年來在青壯年中的發(fā)病率不斷攀升,但目前臨床治療手段有限。隨著疾病進(jìn)展,IBD通常伴發(fā)多種并發(fā)癥,甚至誘發(fā)癌癥,嚴(yán)重影響患者的生活質(zhì)量。腸道菌群失衡被認(rèn)為與IBD的發(fā)生密切相關(guān),而膽汁酸與腸道微生物之間存在復(fù)雜的相互作用,對單核細(xì)胞、巨噬細(xì)胞等免疫細(xì)胞亦產(chǎn)生影響。大量基礎(chǔ)研究和臨床研究均已證實,IBD患者存在膽汁酸代謝的紊亂[18]。Duboc等[19]觀察到,IBD患者血清次級膽汁酸水平較健康對照者降低,活動期患者低于緩解期患者,這可能與腸道菌群對初級膽汁酸的代謝有關(guān)。
回腸末端是腸道膽汁酸重吸收的重要部位,累及回腸或接受回腸切除術(shù)的CD患者可能因腸?肝循環(huán)受到阻礙進(jìn)而影響血清膽汁酸水平。Feng等[20]發(fā)現(xiàn)CD患者血清石膽酸和DCA水平顯著降低,與CD相關(guān)心理障礙患者的血清7?脫氫膽酸明顯升高,且該水平與抑郁自評量表評分存在正相關(guān)。生理情況下,進(jìn)食后血清膽汁酸通常升高,相較于空腹時血清中微量的膽汁酸,不失為更好的觀察指標(biāo)。Suchy等[21]連續(xù)監(jiān)測20例CD患者餐后血清膽汁酸水平,發(fā)現(xiàn)炎癥累及回腸的患者與接受回腸切除術(shù)患者的餐后血清總膽汁酸和甘氨膽酸變化呈現(xiàn)一致性降低,而不累及回腸的CD患者和UC患者進(jìn)食刺激血清膽汁酸變化與健康對照者一致。由此推斷,血清膽汁酸可能成為臨床判斷CD患者回腸炎癥有價值的指標(biāo)。針對UC患兒的類似研究[22]顯示,活動期UC患兒餐后4 h的血清膽汁酸和CDCA均較健康對照者顯著升高,說明血清膽汁酸在UC患兒中同樣存在一定價值。
作為一種長期、慢性疾病,IBD的治療目標(biāo)為誘導(dǎo)并維持疾病緩解,改善患者生活質(zhì)量。臨床廣泛應(yīng)用的治療藥物包括氨基水楊酸制劑、糖皮質(zhì)激素和免疫抑制劑。除此之外,生物制劑近年來發(fā)展迅速,在IBD患者中的療效可觀。臨床中常用的生物制劑主要為抗腫瘤壞死因子(tumor necrosis factor, TNF)?α單抗,即英夫利西單抗。隨后,阿達(dá)木單抗、維多利珠單抗、烏司奴單抗等也逐漸獲批上市。但由于患者間個體差異,生物制劑的療效也參差不齊。同時,生物制劑高昂的價格也給患者造成了巨大的經(jīng)濟負(fù)擔(dān)。因此,通過預(yù)測療效為患者提供更加個性化的治療,是當(dāng)前臨床工作和研究努力的方向。血清膽汁酸水平除可輔助診斷和評估嚴(yán)重程度,也是判斷IBD療效的良好標(biāo)志物。Ding等[23]研究表明,對抗TNF治療有反應(yīng)的CD患者血清DCA和三級膽汁酸水平較高,而無反應(yīng)的患者血清膽酸和CDCA水平較高。類似的,Roda等[24]研究證實,接受抗TNF治療的CD患者血清總膽汁酸和次級膽汁酸水平較接受常規(guī)治療的患者升高,而接受抗TNF治療的UC患者血清膽汁酸譜未見明顯影響。另有研究[25]發(fā)現(xiàn)美沙拉嗪治療可以改善UC患者血清次級膽汁酸水平下降,并將12?酮石膽酸確定為診斷UC和判斷美沙拉嗪反應(yīng)特異性標(biāo)志物,為臨床評估提供了新的方法。
3. 膽汁酸與消化道腫瘤:膽汁酸長久以來被認(rèn)為是腫瘤發(fā)生的促癌劑。一方面,膽汁酸隨分子結(jié)構(gòu)的不同而分為親水性膽汁酸和疏水性膽汁酸。疏水性膽汁酸與脂質(zhì)親和度高,具有細(xì)胞毒性,能夠通過洗滌作用破壞細(xì)胞膜促進(jìn)活性氧的產(chǎn)生。此外,膽汁酸還能夠損傷線粒體,導(dǎo)致線粒體功能障礙進(jìn)而加重氧化應(yīng)激?;钚匝踉诩?xì)胞內(nèi)可誘導(dǎo)DNA損傷并干擾細(xì)胞凋亡。活性氧導(dǎo)致的DNA損傷如8?羥基脫氧鳥苷已被證實具有致突變性和致癌性[26]。氧化損傷的DNA如未被修復(fù)或修復(fù)不完全,在DNA復(fù)制時會出現(xiàn)復(fù)制錯誤進(jìn)而導(dǎo)致突變,可能影響抑癌基因的表達(dá),促進(jìn)腫瘤的發(fā)生[27]。而親水性膽汁酸則可拮抗這種毒性,具有細(xì)胞保護的作用。另一方面,膽汁酸,尤其是次級膽汁酸,能夠通過激活一系列信號通路,參與調(diào)控細(xì)胞周期進(jìn)程的細(xì)胞周期蛋白D1表達(dá),增強腫瘤細(xì)胞的有絲分裂活性[28]。此外,膽汁酸FXR等受體的激活能夠在多種細(xì)胞中進(jìn)行增殖調(diào)節(jié),并且隨解剖部位的不同而產(chǎn)生不同的促癌或抑癌效應(yīng)[29]。
①膽汁酸與食管癌:胃食管反流已在大規(guī)模的人群研究中被證實是食管腺癌的強相關(guān)危險因子[30]。事實上,除胃酸和蛋白酶外,膽汁酸也是胃食管反流的主要內(nèi)容物之一,且膽汁酸暴露在Barrett食管(Barrett's esophagus, BE)患者中顯著高于健康人或輕度食管炎患者[31]。動物實驗發(fā)現(xiàn),在BE小鼠模型中,膽汁酸核受體FXR基因敲除會加速BE表型進(jìn)展,血清DCA等疏水性膽汁酸水平升高[32]。近期臨床研究同樣證實,食管高級別上皮內(nèi)瘤變和(或)食管腺癌患者血清膽酸和CDCA水平相對升高,而熊脫氧膽酸(ursodeoxycholic acid, UDCA)水平相對降低,提示膽酸和CDCA可能存在促癌作用,而UDCA存在保護作用[33]。類似的,人血清代謝組學(xué)研究[34]結(jié)果顯示,甘氨鵝脫氧膽酸水平與食管鱗癌患病風(fēng)險增加有關(guān)。
②膽汁酸與胃癌:除幽門螺桿菌感染外,膽汁反流也是慢性胃炎相對常見的病因。膽汁反流性胃炎患者由于十二指腸功能紊亂等原發(fā)性或手術(shù)等繼發(fā)性原因,膽汁逆行進(jìn)入胃內(nèi)。一方面,以膽汁為主的堿性液體可破壞胃黏膜表面屏障,另一方面,膽汁可與胃內(nèi)微生物相互作用,胃內(nèi)豐富的菌群將膽汁酸代謝為次級膽汁酸和結(jié)合膽汁酸,膽汁酸則能夠改變胃內(nèi)菌群豐度,使產(chǎn)脂多糖的細(xì)菌顯著增加,進(jìn)一步刺激炎癥反應(yīng)的發(fā)生,從而誘發(fā)腹痛、消化不良等一系列臨床癥狀[35]。
基礎(chǔ)研究[36]表明,膽汁酸能夠誘導(dǎo)胃黏膜細(xì)胞的壞死和凋亡并調(diào)控氧化還原反應(yīng),并且這些作用通常呈現(xiàn)濃度和時間依賴性。Matsuhisa等[37]進(jìn)行的病例對照研究發(fā)現(xiàn),膽汁反流引起的胃內(nèi)高濃度膽汁酸暴露與胃黏膜腸化生風(fēng)險增加顯著相關(guān)。根據(jù)Correa模型,腸化生被認(rèn)為是胃癌的癌前病變。因此可以推測,膽汁酸暴露與胃癌發(fā)生有重要關(guān)系。除了是胃癌發(fā)生的獨立危險因素外,血清膽汁酸還可能成為胃癌潛在的生物學(xué)標(biāo)志物。Li等[38]進(jìn)行的回顧性研究發(fā)現(xiàn),血清總膽汁酸水平升高與胃癌發(fā)生風(fēng)險增加有關(guān),但明確特定膽汁酸的變化情況仍待進(jìn)一步探索。最近一項針對胃食管癌患者進(jìn)行血清非靶向代謝組學(xué)分析的研究[39]表明,胃食管癌患者的血清初級膽汁酸組成發(fā)生改變。Pan等[40]對胃癌患者的血清進(jìn)行深度靶向分析發(fā)現(xiàn),包括豬膽酸、?;鞘懰帷⒄懰?、脫氧膽酸3?葡萄糖醛酸、?;鞘懰崃蛩猁}和豬脫氧膽酸/石膽酸在內(nèi)的6種膽汁酸或其比值對胃癌具有良好的診斷價值。
③膽汁酸與結(jié)直腸癌:腸道是膽汁酸發(fā)揮生理作用和代謝的主要部位,因此結(jié)直腸癌與膽汁酸之間的關(guān)系歷來是研究熱點。早在20世紀(jì),膽汁酸對結(jié)直腸癌的促進(jìn)作用就得到了大量研究的認(rèn)證,其中對腸道代謝產(chǎn)生的次級膽汁酸研究尤為廣泛。超生理濃度的DCA和石膽酸能夠激活Wnt/β?catenin信號通路,導(dǎo)致細(xì)胞DNA氧化損傷和線粒體氧化應(yīng)激,增強細(xì)胞有絲分裂活性和對凋亡的抗性[41]。膽汁酸受體FXR和TGR5也參與結(jié)直腸癌的發(fā)生、發(fā)展,并且隨結(jié)合的膽汁酸種類不同而產(chǎn)生不同的效應(yīng)。此外,結(jié)直腸中定植的菌群種類繁多,膽汁酸與這些微生物群之間復(fù)雜的相互作用被認(rèn)為是結(jié)直腸癌發(fā)生的重要原因[42]。
結(jié)腸黏膜過度增殖通常被認(rèn)為是結(jié)直腸腫瘤發(fā)生的第一步。Ochsenkühn等[43]發(fā)現(xiàn)結(jié)腸腺瘤患者空腹血清DCA水平與結(jié)腸黏膜增生呈顯著相關(guān)。一項在英國女性群體中進(jìn)行的前瞻性研究[44]使用診斷前的血清進(jìn)行檢測,結(jié)果顯示DCA/膽酸升高與結(jié)直腸癌患病風(fēng)險增加有關(guān)。歐洲癌癥和營養(yǎng)前瞻性調(diào)查隊列研究[45]則發(fā)現(xiàn),除次級膽汁酸外,結(jié)合型初級膽汁酸甘氨膽酸、?;悄懰帷⒏拾冰Z脫氧膽酸和?;蛆Z脫氧膽酸同樣與結(jié)直腸癌風(fēng)險呈正相關(guān),值得注意的是,這種相關(guān)性在女性中強于男性。Cross等[46]使用代謝組學(xué)方法對254例結(jié)直腸癌患者及其對照者進(jìn)行前瞻性分析,未發(fā)現(xiàn)血清代謝物與結(jié)直腸癌之間的關(guān)聯(lián),但經(jīng)性別分層分析后發(fā)現(xiàn),女性血清甘氨鵝脫氧膽酸水平與結(jié)直腸癌發(fā)生風(fēng)險呈顯著正相關(guān)性。一項巢式病例對照研究[47]也支持這一結(jié)論,女性血清DCA、甘氨脫氧膽酸、牛磺脫氧膽酸、甘氨石膽酸、?;鞘懰?、?;蛆Z脫氧膽酸、甘氨膽酸水平升高與結(jié)直腸癌風(fēng)險增加有關(guān)。對于這種性別差異,目前研究尚缺乏較好的解釋。此外,除了用于預(yù)測腫瘤發(fā)生的風(fēng)險外,血清膽汁酸也與結(jié)直腸癌患者的預(yù)后相關(guān)。Cao等[48]通過回顧性研究發(fā)現(xiàn),血清總膽汁酸水平是結(jié)直腸癌患者預(yù)后的獨立影響因素,在患者總生存期和無病生存期上表現(xiàn)出良好的預(yù)測效能。
四、總結(jié)與展望
大量研究表明,膽汁酸與多種胃腸道疾病相關(guān)并可用于疾病的輔助診斷和評估。在消化道內(nèi),膽汁酸天然存在于小腸和結(jié)直腸,與腸道內(nèi)的微生物群相互作用,共同維護腸道屏障、影響腸道炎癥、調(diào)控腸道黏膜損傷與修復(fù),從而參與了腸道疾病的發(fā)生、發(fā)展。對于食管和胃疾病,病理反流的膽汁酸可以接觸食管和胃黏膜上皮,并發(fā)揮損傷效應(yīng)或調(diào)控作用,但膽汁酸是否與食管和胃的微生物群發(fā)生相互作用并參與疾病發(fā)生目前尚不可知。然而,更重要的是,外周血膽汁酸可以經(jīng)由血循環(huán)到達(dá)每一個終末組織部位,并可能通過激活其受體而發(fā)揮信號轉(zhuǎn)導(dǎo)作用。臨床研究顯示,外周血膽汁酸水平與IBS、IBD、消化道腫瘤等多種疾病相關(guān),并隨疾病狀態(tài)和治療階段而發(fā)生變化。這些疾病是否具有特征性的外周血膽汁酸譜,某些特定的膽汁酸是否參與了疾病的發(fā)生和轉(zhuǎn)歸,外周血膽汁酸特征能否作為疾病的診斷和預(yù)后標(biāo)志物?上述問題都值得進(jìn)一步研究和探討。深入揭示外周血膽汁酸與胃腸道疾病的關(guān)系,將會為這些疾病的診療開辟新的視角。
參考文獻(xiàn)
[ 1 ] THOMAS C, PELLICCIARI R, PRUZANSKI M, et al. Targeting bile?acid signalling for metabolic diseases[J]. Nat Rev Drug Discov, 2008, 7 (8): 678?693.
[ 2 ] HOFMANN A F. The enterohepatic circulation of bile acids in mammals: form and functions[J]. Front Biosci (Landmark Ed), 2009, 14 (7): 2584?2598.
[ 3 ] ENGELKING L R, DASHER C A, HIRSCHOWITZ B I. Within?day fluctuations in serum bile?acid concentrations among normal control subjects and patients with hepatic disease[J]. Am J Clin Pathol, 1980, 73 (2): 196?201.
[ 4 ] RUDLING M, LASKAR A, STRANIERO S. Gallbladder bile supersaturated with cholesterol in gallstone patients preferentially develops from shortage of bile acids[J]. J Lipid Res, 2019, 60 (3): 498?505.
[ 5 ] SONG K H, LI T, OWSLEY E, et al. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha?hydroxylase gene expression[J]. Hepatology, 2009, 49 (1): 297?305.
[ 6 ] WATANABE M, HOUTEN S M, WANG L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP?1c[J]. J Clin Invest, 2004, 113 (10): 1408?1418.
[ 7 ] DURAN?SANDOVAL D, MAUTINO G, MARTIN G, et al. Glucose regulates the expression of the farnesoid X receptor in liver[J]. Diabetes, 2004, 53 (4): 890?898.
[ 8 ] KAWAMATA Y, FUJII R, HOSOYA M, et al. A G protein?coupled receptor responsive to bile acids[J]. J Biol Chem, 2003, 278 (11): 9435?9440.
[ 9 ] KATSUMA S, HIRASAWA A, TSUJIMOTO G. Bile acids promote glucagon?like peptide?1 secretion through TGR5 in a murine enteroendocrine cell line STC?1[J]. Biochem Biophys Res Commun, 2005, 329 (1): 386?390.
[10] WATANABE M, HOUTEN S M, MATAKI C, et al. Bile acids induce energy expenditure by promoting intra?cellular thyroid hormone activation[J]. Nature, 2006, 439 (7075): 484?489.
[11] CAMILLERI M, KATZKA D A. Irritable bowel syndrome: methods, mechanisms, and pathophysiology. Genetic epidemiology and pharmacogenetics in irritable bowel syndrome[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 302 (10): G1075?G1084.
[12] TAZUMA S, TAKIKAWA H. Bile acids in gastroenterology: basic and clinical[M]. Tokyo: Springer Japan, 2017.
[13] KURIEN M, EVANS K E, LEEDS J S, et al. Bile acid malabsorption: an under?investigated differential diagnosis in patients presenting with diarrhea predominant irritable bowel syndrome type symptoms[J]. Scand J Gastroenterol, 2011, 46 (7?8): 818?822.
[14] BAJOR A, T?RNBLOM H, RUDLING M, et al. Increased colonic bile acid exposure: a relevant factor for symptoms and treatment in IBS[J]. Gut, 2015, 64 (1): 84?92.
[15] DIOR M, DELAGRèVERIE H, DUBOC H, et al. Interplay between bile acid metabolism and microbiota in irritable bowel syndrome[J]. Neurogastroenterol Motil, 2016, 28 (9): 1330?1340.
[16] SAUTER G H, MüNZING W, VON RITTER C, et al. Bile acid malabsorption as a cause of chronic diarrhea: diagnostic value of 7alpha?hydroxy?4?cholesten?3?one in serum[J]. Dig Dis Sci, 1999, 44 (1): 14?19.
[17] VIJAYVARGIYA P, BUSCIGLIO I, BURTON D, et al. Bile acid deficiency in a subgroup of patients with irritable bowel syndrome with constipation based on biomarkers in serum and fecal samples[J]. Clin Gastro?enterol Hepatol, 2018, 16 (4): 522?527.
[18] GNEWUCH C, LIEBISCH G, LANGMANN T, et al. Serum bile acid profiling reflects enterohepatic detoxification state and intestinal barrier function in inflammatory bowel disease[J]. World J Gastroenterol, 2009, 15 (25): 3134?3141.
[19] DUBOC H, RAJCA S, RAINTEAU D, et al. Connecting dysbiosis, bile?acid dysmetabolism and gut inflammation in inflammatory bowel diseases[J]. Gut, 2013, 62 (4): 531?539.
[20] FENG L, ZHOU N, LI Z, et al. Co?occurrence of gut microbiota dysbiosis and bile acid metabolism alteration is associated with psychological disorders in Crohn's disease[J]. FASEB J, 2022, 36 (1): e22100.
[21] SUCHY F S, BALISTRERI W F. Ileal dysfunction in Crohn's disease assessed by the postprandial serum bile acid response[J]. Gut, 1981, 22 (11): 948?952.
[22] EJDERHAMN J, STRANDVIK B. Serum bile acids in relation to disease activity and intake of dietary fibers in juvenile ulcerative colitis[J]. Digestion, 1991, 50 (3?4): 162?169.
[23] DING N S, MCDONALD J A K, PERDONES?MONTERO A, et al. Metabonomics and the gut microbiome associated with primary response to anti?TNF therapy in Crohn's disease[J]. J Crohns Colitis, 2020, 14 (8): 1090?1102.
[24] RODA G, PORRU E, KATSANOS K, et al. Serum bile acids profiling in inflammatory bowel disease patients treated with anti?TNFs[J]. Cells, 2019, 8 (8): 817.
[25] SUN Q, TANG Y, DAI L, et al. Serum bile acid metabolites predict the therapeutic effect of mesalazine in patients with ulcerative colitis[J]. J Proteome Res, 2023, 22 (4): 1287?1297.
[26] SCOTT T L, RANGASWAMY S, WICKER C A, et al. Repair of oxidative DNA damage and cancer: recent progress in DNA base excision repair[J]. Antioxid Redox Signal, 2014, 20 (4): 708?726.
[27] BERNSTEIN H, BERNSTEIN C, PAYNE C M, et al. Bile acids as carcinogens in human gastrointestinal cancers[J]. Mutat Res, 2005, 589 (1): 47?65.
[28] PAI R, TARNAWSKI A S, TRAN T. Deoxycholic acid activates beta?catenin signaling pathway and increases colon cell cancer growth and invasiveness[J]. Mol Biol Cell, 2004, 15 (5): 2156?2163.
[29] DI CIAULA A, WANG D Q, MOLINA?MOLINA E, et al. Bile acids and cancer: direct and environmental?dependent effects[J]. Ann Hepatol, 2017, 16 (Suppl. 1: s3?105.): s87?s105.
[30] COOK M B, CORLEY D A, MURRAY L J, et al. Gastroesophageal reflux in relation to adenocarcinomas of the esophagus: a pooled analysis from the Barrett's and Esophageal Adenocarcinoma Consortium (BEACON)[J]. PLoS One, 2014, 9 (7): e103508.
[31] MENGES M, MüLLER M, ZEITZ M. Increased acid and bile reflux in Barrett's esophagus compared to reflux esophagitis, and effect of proton pump inhibitor therapy[J]. Am J Gastroenterol, 2001, 96 (2): 331?337.
[32] BAUMEISTER T, INGERMANN J, FANG H Y, et al. 1149 The dietary?shaped gut microbiome accelerates the progression from Barrett esophagus to adenocarcinoma via systemic bile acid signaling[J]. Gastroenterology, 2020, 158 (6 Suppl 1): S229.
[33] KUMAR A, GWALANI P, IYER P G, et al. Shifts in serum bile acid profiles associated with Barrett′s esophagus and stages of progression to esophageal adenocarcinoma[J]. Clin Transl Gastroenterol, 2024, 15 (10): e1.
[34] LI X, ZHAO L, WEI M, et al. Serum metabolomics analysis for the progression of esophageal squamous cell carcinoma[J]. J Cancer, 2021, 12 (11): 3190?3197.
[35] WANG S, KUANG J, ZHANG H, et al. Bile acid?microbiome interaction promotes gastric carcinogenesis[J]. Adv Sci (Weinh), 2022, 9 (16): e2200263.
[36] SHI Y, WEI Y, ZHANG T, et al. Deoxycholic acid could induce apoptosis and trigger gastric carcinogenesis on gastric epithelial cells by quantitative proteomic analysis[J]. Gastroenterol Res Pract, 2016, 2016: 9638963.
[37] MATSUHISA T, ARAKAWA T, WATANABE T, et al. Relation between bile acid reflux into the stomach and the risk of atrophic gastritis and intestinal metaplasia: a multicenter study of 2283 cases[J]. Dig Endosc, 2013, 25 (5): 519?525.
[38] LI S, QU X, ZHANG L, et al. Serum total bile acids in relation to gastrointestinal cancer risk: a retrospective study[J]. Front Oncol, 2022, 12: 859716.
[39] CHE J, ZHAO Y, GU B, et al. Untargeted serum metabolomics reveals potential biomarkers and metabolic pathways associated with the progression of gastro?esophageal cancer[J]. BMC Cancer, 2023, 23 (1): 1238.
[40] PAN C, DENG D, WEI T, et al. Metabolomics study identified bile acids as potential biomarkers for gastric cancer: a case control study[J]. Front Endocrinol (Lausanne), 2022, 13: 1039786.
[41] NUSSE R, CLEVERS H. Wnt/β?catenin signaling, disease, and emerging therapeutic modalities[J]. Cell, 2017, 169 (6): 985?999.
[42] QU R, ZHANG Y, MA Y, et al. Role of the gut microbiota and its metabolites in tumorigenesis or development of colorectal cancer[J]. Adv Sci (Weinh), 2023, 10 (23): e2205563.
[43] OCHSENKüHN T, BAYERD?RFFER E, MEINING A, et al. Colonic mucosal proliferation is related to serum deoxycholic acid levels[J]. Cancer, 1999, 85 (8): 1664?1669.
[44] COSTARELLI" V," KEY" T" J," APPLEBY" P" N," et al. A prospective study of serum bile acid concentrations and colorectal cancer risk in post?menopausal women on the island of Guernsey[J]. Br J Cancer, 2002, 86 (11): 1741?1744.
[45] KüHN T, STEPIEN M, LóPEZ?NOGUEROLES M, et al. Prediagnostic plasma bile acid levels and colon cancer risk: a prospective study[J]. J Natl Cancer Inst, 2020, 112 (5): 516?524.
[46] CROSS A J, MOORE S C, BOCA S, et al. A prospective study of serum metabolites and colorectal cancer risk[J]. Cancer, 2014, 120 (19): 3049?3057.
[47] LOFTFIELD E, FALK R T, SAMPSON J N, et al. Prospective associations of circulating bile acids and short?chain fatty acids with incident colorectal cancer[J]. JNCI Cancer Spectr, 2022, 6 (3): pkac027.
[48] CAO Y, DENG S, YAN L, et al. A nomogram based on pretreatment levels of serum bilirubin and total bile acid levels predicts survival in colorectal cancer patients[J]. BMC Cancer, 2021, 21 (1): 85.
(2024?04?22收稿;2024?05?20修回)
(本文編輯:馮 纓)