亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        TIM?3在結(jié)直腸癌中作用和機(jī)制的研究進(jìn)展

        2024-01-22 00:00:00代夢(mèng)男朱穎煒陸健張麗莉湯鴻
        胃腸病學(xué) 2024年5期

        摘要 T細(xì)胞免疫球蛋白黏蛋白3(TIM?3)是一種新發(fā)現(xiàn)的抑制性免疫檢查點(diǎn)受體分子,廣泛表達(dá)于免疫細(xì)胞表面,在機(jī)體先天性和適應(yīng)性抗腫瘤免疫中發(fā)揮關(guān)鍵的抑制作用。TIM?3能夠表達(dá)于腫瘤細(xì)胞表面,直接促進(jìn)腫瘤發(fā)生和進(jìn)展。TIM?3通過(guò)作用于腫瘤微環(huán)境中的多種細(xì)胞、促進(jìn)腫瘤抑制性微環(huán)境形成,與結(jié)直腸癌的發(fā)生、轉(zhuǎn)移、預(yù)后和治療密切相關(guān)。TIM?3能夠作為結(jié)直腸癌預(yù)后判斷和免疫治療的分子靶點(diǎn),提升免疫治療在結(jié)直腸癌中的應(yīng)用價(jià)值。本文就TIM?3在結(jié)直腸癌微環(huán)境中的表達(dá)和可能作用機(jī)制及其與結(jié)直腸癌預(yù)后和治療的關(guān)系作一綜述。

        關(guān)鍵詞 T細(xì)胞免疫球蛋白黏蛋白3; 結(jié)直腸腫瘤; 配體; T淋巴細(xì)胞; 巨噬細(xì)胞; 樹(shù)突細(xì)胞; 免疫療法

        Research Progress of Role and Mechanism of TIM?3 in Colorectal Cancer DAI Mengnan1," ZHU Yingwei2, LU Jian2, ZHANG Lili2, TANG Hong3." 1Nanjing Medical University, Nanjing (211166); 2Department of Gastroenterology, 3Department of Pathology, Affiliated Wuxi No. 2 People′s Hospital of Nanjing Medical University, Wuxi, Jiangsu Province

        Correspondence to: ZHU Yingwei, Email: zhuyingw2020@163.com

        Abstract T cell immunoglobulin and mucin domain?containing protein 3 (TIM?3) is a newly discovered inhibitory immune checkpoint receptor molecule that is widely expressed on the surface of immune cells and plays a vital inhibitory role in both innate and adaptive anti?tumor immunity. TIM?3 can be expressed on the surface of tumor cells, directly facilitating the occurrence and progression of tumor. TIM?3 is closely related to the occurrence, metastasis, prognosis and treatment of colorectal cancer by acting on various cells in the tumor microenvironment and promoting the formation of tumor?suppressive microenvironment. TIM?3 can serve as a molecular target for prognosis and immunotherapy of colorectal cancer, enhancing the application value of immunotherapy in colorectal cancer. This article reviewed the expression and potential mechanism of TIM?3 in the tumor microenvironment of colorectal cancer and its correlation with the prognosis and treatment of colorectal cancer.

        Key words T Cell Immunoglobulin and Mucin Domain?Containing Protein 3; Colorectal Neoplasms; Ligands;

        T?Lymphocytes; Macrophages; Dendritic Cells; Immunotherapy

        結(jié)直腸癌是全球惡性腫瘤發(fā)病率和死亡率分別位居第三和第二位的疾病[1],近一半的患者會(huì)發(fā)生肝轉(zhuǎn)移,已成為其死亡的主要原因[2]。與直接殺傷腫瘤細(xì)胞的傳統(tǒng)治療方法相比,免疫治療通過(guò)提升機(jī)體自身的抗腫瘤免疫力,成為了腫瘤治療最有希望的方法之一。2017年,美國(guó)食品和藥品管理局批準(zhǔn)程序性死亡受體?1(PD?1)抑制劑納武利尤單抗和派姆單抗用于轉(zhuǎn)移性微衛(wèi)星不穩(wěn)定性結(jié)直腸癌的治療,這開(kāi)啟了結(jié)直腸癌免疫治療的新時(shí)代。然而由于腫瘤與機(jī)體的復(fù)雜作用所導(dǎo)致的先天性免疫耐受和獲得性免疫耐受的存在,現(xiàn)有的免疫檢查點(diǎn)抑制劑在結(jié)直腸癌中僅取得了有限的治療成果[3]。約85%的結(jié)直腸癌分子亞型為微衛(wèi)星穩(wěn)定性,由于其腫瘤突變負(fù)荷低、缺少免疫原性等特征導(dǎo)致對(duì)PD?1抑制劑治療無(wú)反應(yīng),且在治療有效的患者中近一半又會(huì)產(chǎn)生耐藥[4]。因此臨床上繼續(xù)尋找有用的結(jié)直腸癌免疫分子靶點(diǎn)始終是研究熱點(diǎn)之一。T細(xì)胞免疫球蛋白黏蛋白3(T cell immunoglobulin and mucin domain?containing protein 3, TIM?3)是繼PD?1之后新發(fā)現(xiàn)的二代抑制性免疫檢查點(diǎn)受體分子[5]。TIM?3表達(dá)廣泛,在結(jié)直腸癌中可抑制多種免疫細(xì)胞的腫瘤殺傷力,進(jìn)而促進(jìn)腫瘤抑制性微環(huán)境形成,發(fā)揮重要的促癌作用。本文就TIM?3在結(jié)直腸癌中作用和機(jī)制的研究進(jìn)展作一綜述。

        一、TIM?3概述

        TIM?3是T細(xì)胞表面的抑制性受體,通過(guò)與其配體結(jié)合,能夠?qū)細(xì)胞活化信號(hào)進(jìn)行負(fù)向調(diào)節(jié),從而避免T細(xì)胞過(guò)度活化發(fā)揮自身免疫攻擊[6]。TIM蛋白家族于2001年被發(fā)現(xiàn),在人類中由TIM?1、TIM?3、TIM?4三個(gè)成員組成,其編碼基因位于人染色體5q33.2,與免疫調(diào)節(jié)有著密切聯(lián)系[7]。2002年,Monney等[8]在研究Th1與Th2表面蛋白種類表達(dá)差異時(shí)發(fā)現(xiàn)了TIM?3,并首次完整描述了TIM?3的結(jié)構(gòu)。TIM?3是表達(dá)在T細(xì)胞表面的一種Ⅰ型跨膜蛋白,由胞外免疫球蛋白IgV區(qū)、黏蛋白樣區(qū)和疏水的跨膜區(qū)以及胞內(nèi)基質(zhì)區(qū)四個(gè)部分組成。TIM?3僅表達(dá)于分泌干擾素(interferon, IFN)?γ的CD4+ Th1和CD8+ Tc1細(xì)胞表面,能夠促進(jìn)T細(xì)胞發(fā)生衰竭和功能失調(diào),即導(dǎo)致T細(xì)胞分泌細(xì)胞因子和增殖能力下降。因此,TIM?3表達(dá)缺失被認(rèn)為是許多Th1細(xì)胞介導(dǎo)的自身免疫病發(fā)生、進(jìn)展的機(jī)制[9]。TIM?3對(duì)T細(xì)胞的免疫抑制作用成為了癌細(xì)胞逃避免疫監(jiān)視和免疫防御的分子武器。對(duì)TIM?3基因?qū)用娴难芯縖10]發(fā)現(xiàn),TIM?3位點(diǎn)基因突變不僅能夠引起T細(xì)胞功能紊亂,還能夠引起髓樣細(xì)胞功能失調(diào),導(dǎo)致皮下脂膜炎樣T細(xì)胞淋巴瘤和噬血細(xì)胞綜合征的發(fā)生。因此TIM?3不僅能夠表達(dá)在T細(xì)胞中,對(duì)適應(yīng)性免疫發(fā)揮抑制作用,還能夠表達(dá)于先天性免疫細(xì)胞表面,如巨噬細(xì)胞[11]、樹(shù)突細(xì)胞(dendritic cells, DCs)[12]、自然殺傷細(xì)胞(natural killer cells, NK細(xì)胞)等[13],對(duì)先天性免疫發(fā)揮作用。

        二、TIM?3信號(hào)途徑

        1. 配體:作為T細(xì)胞表面受體,目前已發(fā)現(xiàn)了4種能夠與TIM?3結(jié)合的配體,兩者相互結(jié)合的部位位于TIM?3免疫球蛋白區(qū)。其中高遷移率族蛋白B1(high?mobility group protein B1, HMGB1)、磷脂酰絲氨酸(PS)、癌胚抗原相關(guān)細(xì)胞黏附分子1(CEACAM1)三種配體能夠連接TIM?3免疫球蛋白區(qū)中由CC'環(huán)和FG環(huán)組成的“口袋”結(jié)構(gòu),另一種半乳凝素9(galectin?9, Gal?9)連接在免疫球蛋白區(qū)N?連接糖基化位點(diǎn)[14]。TIM?3與其配體結(jié)合后能夠向下游傳遞抑制性信號(hào)。但由于這4種配體并不是TIM?3的專一性配體,且相互之間可能同時(shí)發(fā)揮作用等因素,使目前對(duì)TIM?3與其配體之間相互作用的研究并不多見(jiàn)。

        2. 銜接蛋白(圖1):HLA?B關(guān)聯(lián)轉(zhuǎn)錄因子3(HLA?B?associated transcript 3, BAT3)是TIM?3活化下游信號(hào)通路的銜接蛋白,對(duì)TIM?3抑制T細(xì)胞功能發(fā)揮了分子開(kāi)關(guān)的作用。BAT3分子連接于TIM?3胞內(nèi)段酪氨酸殘基Tyr256、Tyr263,協(xié)助淋巴細(xì)胞特異性蛋白酪氨酸激酶(LCK)磷酸化激活zeta鏈相關(guān)蛋白激酶70(ZAP70),啟動(dòng)下游T細(xì)胞激活連接蛋白(LAT)/活化T細(xì)胞的核因子(NFAT)/Ca2+信號(hào)途徑促進(jìn)T細(xì)胞活化,防止T細(xì)胞衰竭的過(guò)早發(fā)生[15];但在結(jié)直腸癌等持續(xù)性腫瘤抗原刺激的環(huán)境中,TIM?3與其配體結(jié)合后會(huì)導(dǎo)致Tyr256、Tyr263發(fā)生磷酸化,使BAT3從胞內(nèi)結(jié)合段脫離。一方面BAT3從胞內(nèi)結(jié)合段脫離后,TIM?3緊接著與含有SH2結(jié)構(gòu)的Fyn蛋白結(jié)合,激活下游磷脂酰肌醇3(PI3K)/蛋白激酶B(AKT)/磷酸化FOXO1(pFOXO1)/B淋巴細(xì)胞誘導(dǎo)成熟蛋白1(BLIMP?1)通路促進(jìn)T細(xì)胞發(fā)生衰竭[16]。另一方面,研究發(fā)現(xiàn)TIM?3與其配體之一Gal?9結(jié)合后通過(guò)激活下游PI3K/AKT途徑導(dǎo)致T細(xì)胞膜外Ca2+發(fā)生內(nèi)流,從而促進(jìn)T細(xì)胞死亡[17]。

        除能夠抑制T細(xì)胞活化外,TIM?3還能夠拮抗T細(xì)胞干性基因表達(dá)。轉(zhuǎn)錄因子T細(xì)胞因子1(TCF1)是T細(xì)胞干性的標(biāo)志基因,TIM?3下游信號(hào)途徑的pFOXO1能夠減少TCF1基因表達(dá),減弱T細(xì)胞的干細(xì)胞樣特征。TIM?3對(duì)TCF1基因表達(dá)的拮抗作用,使T細(xì)胞無(wú)法保持持續(xù)的效應(yīng)功能,導(dǎo)致T細(xì)胞發(fā)生衰竭[18]。

        由此可見(jiàn),TIM?3表達(dá)于T細(xì)胞,通過(guò)多種途徑抑制T細(xì)胞功能。此外,TIM?3在其他免疫細(xì)胞中同樣發(fā)揮免疫抑制作用,故TIM?3被認(rèn)為是包括結(jié)直腸癌在內(nèi)的泛癌中具有促癌作用的分子標(biāo)志物之一。

        三、TIM?3與結(jié)直腸癌

        1. TIM?3與腫瘤浸潤(rùn)T細(xì)胞(圖1):在結(jié)直腸癌中,腫瘤浸潤(rùn)T細(xì)胞數(shù)量增多往往預(yù)示著患者的臨床預(yù)后較好[19]。TIM?3在結(jié)直腸癌中通過(guò)促進(jìn)T細(xì)胞發(fā)生衰竭與患者較差的臨床預(yù)后相關(guān)。TIM?3在結(jié)直腸癌組織中的表達(dá)較正常組織升高,且隨著疾病進(jìn)展呈持續(xù)性升高[20]。TIM?3表達(dá)還與結(jié)腸癌患者的其他一些臨床病理特征如淋巴結(jié)轉(zhuǎn)移、腫瘤大小以及是否發(fā)生遠(yuǎn)處轉(zhuǎn)移相關(guān)。生存分析結(jié)果顯示TIM?3在結(jié)腸癌組織中的表達(dá)與患者總體生存期呈負(fù)相關(guān)[21]。TIM?3常與其他免疫檢查點(diǎn)受體共同表達(dá),如PD?1,且同時(shí)表達(dá)TIM?3與PD?1的CD8+ T細(xì)胞的增殖和細(xì)胞因子分泌能力最差[22]。這與TIM?3對(duì)T細(xì)胞介導(dǎo)的適應(yīng)性免疫功能的抑制作用相符。

        Vγ9Vδ2 T細(xì)胞是γδ T細(xì)胞中最常見(jiàn)的一種類型,近年來(lái)因其在包括結(jié)直腸癌在內(nèi)的多種腫瘤中的作用而成為腫瘤免疫治療的熱點(diǎn)。Vγ9Vδ2 T細(xì)胞可識(shí)別磷酸化非肽抗原,其對(duì)腫瘤抗原的識(shí)別不依賴于主要組織相容性復(fù)合體(major histocompatibility complex, MHC),因而克服了腫瘤細(xì)胞下調(diào)MHC分子來(lái)逃避免疫監(jiān)視這一作用途徑的問(wèn)題[23]。TIM?3在結(jié)直腸癌組織和外周血中Vγ9Vδ2 T細(xì)胞表面明顯高表達(dá),通過(guò)抑制細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular signal?regulated kinase, ERK)1/2途徑,減少Vγ9Vδ2 T細(xì)胞穿孔素和顆粒酶B的產(chǎn)生,抑制其腫瘤殺傷的作用。

        TIM?3在Vγ9Vδ2 T細(xì)胞表面的表達(dá)與結(jié)直腸癌分期和腫瘤體積呈強(qiáng)正相關(guān)性,且預(yù)示著疾病較差的臨床預(yù)后。在結(jié)腸癌Vγ9Vδ2 T細(xì)胞中抑制TIM?3表達(dá)能夠提高Vγ9Vδ2 T細(xì)胞過(guò)繼免疫治療的效果[24]。對(duì)TIM?3與結(jié)直腸癌預(yù)后關(guān)系進(jìn)一步的研究[25]發(fā)現(xiàn),TIM?3在結(jié)直腸癌組織或腫瘤細(xì)胞表面的表達(dá)與其在腫瘤浸潤(rùn)效應(yīng)T細(xì)胞中具有相反的預(yù)示預(yù)后效果,即結(jié)直腸癌中TIM?3在T細(xì)胞中的表達(dá)(如TIM?3+ CD8+ T)可作為判斷疾病預(yù)后的正向因素之一,相反在結(jié)直腸癌組織或細(xì)胞中的表達(dá)預(yù)示著較差的預(yù)后。TIM?3在結(jié)直腸癌腫瘤細(xì)胞表達(dá)與在效應(yīng)T細(xì)胞表達(dá)的生存曲線差異有統(tǒng)計(jì)學(xué)意義[26]。

        CD4+調(diào)節(jié)性T細(xì)胞(Treg細(xì)胞)在維持機(jī)體免疫穩(wěn)態(tài)方面發(fā)揮重要作用,但在腫瘤環(huán)境中其免疫抑制功能可抑制機(jī)體的抗腫瘤效應(yīng)。腫瘤微環(huán)境中CD4+ Treg細(xì)胞的存在與腫瘤細(xì)胞對(duì)免疫檢查點(diǎn)抑制劑產(chǎn)生耐藥也具有相關(guān)性[27]。在結(jié)直腸癌微環(huán)境中,絕大部分TIM?3+CD4+ T細(xì)胞為Treg細(xì)胞,TIM?3分子通過(guò)改變Treg細(xì)胞表型和功能使其獲得更強(qiáng)的免疫抑制作用。TIM?3+ Treg細(xì)胞表現(xiàn)出效應(yīng)Treg細(xì)胞表型,即能夠表達(dá)更多的可誘導(dǎo)共刺激分子(inducible co?stimulator, ICOS),分泌更多的白細(xì)胞介素(IL)?10抑制因子,使Treg細(xì)胞代謝由氧化磷酸化向糖酵解轉(zhuǎn)化[28]。TIM?3+ Treg細(xì)胞不但能夠發(fā)揮更強(qiáng)的抑制作用,還能抑制CD8+ T細(xì)胞增殖。一項(xiàng)組學(xué)研究[29]數(shù)據(jù)顯示TIM?3+CD4+ T細(xì)胞能上調(diào)與T細(xì)胞衰竭、腫瘤侵襲和腫瘤轉(zhuǎn)移相關(guān)的路徑,較TIM?3? CD4+ T細(xì)胞表達(dá)出更強(qiáng)的抑制作用。

        2. TIM?3與巨噬細(xì)胞(圖2):CD163+腫瘤相關(guān)巨噬細(xì)胞(CD163+ TAM)在促進(jìn)結(jié)直腸癌發(fā)生、進(jìn)展過(guò)程中發(fā)揮重要作用。CD163+ TAM能夠通過(guò)分泌IL?6啟動(dòng)下游Janus激酶2(Janus kinase 2, JAK2)/信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄活化因子3(signal transducer and activator of transcription 3, STAT3)通路、抑制下游miR?506?3p、促進(jìn)上皮間質(zhì)轉(zhuǎn)化調(diào)控因子FoxQ1表達(dá),促進(jìn)結(jié)直腸癌發(fā)生轉(zhuǎn)移[30]。M2型巨噬細(xì)胞還能夠通過(guò)分泌CC趨化因子配體22(CCL22),激活PI3K/AKT通路以及減少凋亡相關(guān)蛋白表達(dá),抑制結(jié)直腸癌細(xì)胞發(fā)生凋亡,從而使結(jié)直腸癌對(duì)化療藥物5?氟尿嘧啶發(fā)生耐藥[31]。在結(jié)直腸癌中,TIM?3與巨噬細(xì)胞發(fā)生M2型極化密切相關(guān)。結(jié)直腸癌細(xì)胞分泌的轉(zhuǎn)化生長(zhǎng)因子(transforming growth factor, TGF)?β能夠通過(guò)TGF?β/Smad通路促進(jìn)TIM?3在M2型巨噬細(xì)胞表面表達(dá)[32]。JAK1/STAT1通路是巨噬細(xì)胞向M1型極化的重要通路,TIM?3能夠與JAK1競(jìng)爭(zhēng)結(jié)合STAT1,抑制STAT1磷酸化激活和核轉(zhuǎn)移,使下游miR?155表達(dá)減少、對(duì)細(xì)胞因子信號(hào)抑制蛋白1(suppressor of cytokine signaling 1, SOCS1)表達(dá)的抑制作用減弱,最終增加IL?10和精氨酸酶?1(Arg?1)表達(dá),促進(jìn)巨噬細(xì)胞向M2型極化[33]。另一項(xiàng)炎癥性腸病的研究還發(fā)現(xiàn)巨噬細(xì)胞表面過(guò)表達(dá)TIM?3,能夠通過(guò)抑制Toll樣受體4(TLR4)/干擾素調(diào)節(jié)因子3(IRF3)途徑抑制巨噬細(xì)胞向M1型極化[34]。在結(jié)直腸癌中,抑制TGF?β/Smad或抑制TIM?3及其下游信號(hào)途徑均能抑制巨噬細(xì)胞向抑炎型M2表型極化,起到抗腫瘤的作用。

        在巨噬細(xì)胞中,TIM?3還能夠通過(guò)STAT1/MHCⅡ類反式激活蛋白(CIITA)[35]和STAT1/NOD樣受體家族成員C5(NLRC5)[36]途徑分別抑制MHCⅡ和MHCⅠ類分子表達(dá),從而減弱巨噬細(xì)胞的抗原呈遞作用,介導(dǎo)免疫耐受發(fā)生。

        3. TIM?3與DCs(圖2):DCs是機(jī)體重要的先天性免疫細(xì)胞。在結(jié)直腸癌中,TIM?3能夠抑制DCs的成熟和活化,這一作用可通過(guò)結(jié)合酪氨酸激酶Src家族成員c?Src來(lái)實(shí)現(xiàn)。TIM?3與c?Src結(jié)合能夠抑制下游核轉(zhuǎn)錄因子核因子?κB(nuclear factor?κB, NF?κB)信號(hào)途徑,促進(jìn)非IL?10抑制性因子分泌來(lái)抑制DCs功能[37]。TIM?3與c?Src的相互作用依賴上游布魯頓酪氨酸激酶(Bruton′s tyrosine kinase, BTK)。因此干預(yù)TIM?3/BTK/c?Src途徑中任意一環(huán)節(jié)均有希望恢復(fù)DCs的先天性免疫功能。

        TIM?3在DCs中能夠抑制活性氧(ROS)產(chǎn)生,從而抑制NOD樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3(NOD?like receptor pyrin domain?containing protein 3, NLRP3)炎癥小體活化,抑制IL?1β和IL?18產(chǎn)生,使DCs喪失先天性免疫功能。抑制TIM?3表達(dá)能夠阻斷這一過(guò)程,促進(jìn)IL?1β和IL?18產(chǎn)生[38]。研究[38]發(fā)現(xiàn)在結(jié)直腸癌中抑制DCs表達(dá)TIM?3能夠抑制小鼠癌癥的生長(zhǎng),且這一作用僅發(fā)生在干預(yù)DCs中TIM?3表達(dá)時(shí),在其他細(xì)胞如T細(xì)胞、巨噬細(xì)胞中抑制TIM?3表達(dá)對(duì)腫瘤生長(zhǎng)無(wú)明顯抑制作用。因此在DCs中阻斷TIM?3表達(dá)能夠通過(guò)恢復(fù)炎癥小體途徑發(fā)揮強(qiáng)大的抗腫瘤作用。在DCs中抑制TIM?3表達(dá)還能夠維持CD8+ T細(xì)胞的干細(xì)胞特性和持續(xù)免疫效應(yīng)功能。

        HMGB1是一種DNA結(jié)合蛋白,可在DCs表面介導(dǎo)腫瘤DNA分子的內(nèi)吞和胞質(zhì)內(nèi)定位,參與完成DCs對(duì)腫瘤抗原的加工和呈遞。作為受體,TIM?3能夠與腫瘤DNA分子競(jìng)爭(zhēng)結(jié)合配體HMGB1,從而將腫瘤DNA隔離在DCs外,并通過(guò)抑制環(huán)鳥苷酸?腺苷酸合酶(cGAS)/干擾素基因刺激因子(STING)通路激活,限制下游IFN?1表達(dá),抑制CXC趨化因子配體9(CXCL9)分泌,最終抑制DCs的先天性免疫功能[39]。TIM?3的這一作用機(jī)制使干預(yù)TIM?3成為提升結(jié)直腸癌腫瘤疫苗效果的關(guān)鍵分子。在結(jié)直腸癌中抑制TIM?3在DCs的表達(dá)能夠提升抗腫瘤效果。

        表達(dá)在DCs表面的TIM?3還能夠介導(dǎo)腫瘤浸潤(rùn)C(jī)D8+ T細(xì)胞發(fā)生胞啃作用。CD8+ T細(xì)胞僅在表達(dá)于DCs表面TIM?3分子作用下通過(guò)“啃食”DCs細(xì)胞膜成分獲得肽?MHC,從而成為殺傷性T細(xì)胞的攻擊對(duì)象[40]。

        4. TIM?3與結(jié)直腸癌細(xì)胞:TIM?3不僅能夠表達(dá)在免疫細(xì)胞表面,還能夠表達(dá)于腫瘤細(xì)胞。TIM?3在癌細(xì)胞表面表達(dá)能夠促進(jìn)結(jié)直腸癌細(xì)胞發(fā)生遷移和侵襲[20]。TIM?3在腫瘤細(xì)胞中的表達(dá)與患者較短的總體生存期相關(guān)[26]。TIM?3在結(jié)直腸癌細(xì)胞中的表達(dá)還與其能夠獲得間充質(zhì)表型相關(guān)[41]。TIM?3能夠通過(guò)作用于腫瘤細(xì)胞本身促進(jìn)結(jié)直腸癌發(fā)生轉(zhuǎn)移。TIM?3還可以表達(dá)于腫瘤起源的外泌體,通過(guò)促進(jìn)巨噬細(xì)胞向M2型極化,促進(jìn)腫瘤轉(zhuǎn)移[42]。目前大多研究關(guān)注TIM?3對(duì)免疫細(xì)胞的作用機(jī)制,而其在腫瘤細(xì)胞作用機(jī)制方面的研究較少。

        四、TIM?3在結(jié)直腸癌中的治療作用

        抑制TIM?3聯(lián)合外科手術(shù)和化療對(duì)結(jié)直腸癌能夠起到較好的臨床治療效果。結(jié)直腸癌患者術(shù)后T細(xì)胞表面TIM?3表達(dá)升高與發(fā)生感染和腫瘤復(fù)發(fā)相關(guān)[43]。干預(yù)TIM?3表達(dá)能減少術(shù)后感染和復(fù)發(fā)的風(fēng)險(xiǎn)。新輔助化療是結(jié)直腸癌常使用的治療方案,研究發(fā)現(xiàn)新輔助化療能夠短暫增加(lt;9.5周)腫瘤浸潤(rùn)T細(xì)胞密度,在這一時(shí)期應(yīng)用TIM?3抑制劑能夠提升腫瘤免疫治療的效果[2]。另外一項(xiàng)結(jié)直腸癌肝轉(zhuǎn)移3D類器官模型研究[44]發(fā)現(xiàn),F(xiàn)OLFOX化療方案能夠增加肝轉(zhuǎn)移灶中腸上皮細(xì)胞樣結(jié)直腸癌細(xì)胞表面TIM?3配體Gal?9的表達(dá),證實(shí)化療能夠調(diào)節(jié)TIM?3免疫檢查點(diǎn)的表達(dá)。聯(lián)合FOLFOX化療方案與抗TIM?3免疫治療在結(jié)直腸癌肝轉(zhuǎn)移中能夠發(fā)揮協(xié)同腫瘤殺傷作用,提高患者的臨床治療效果。有研究[45]發(fā)現(xiàn),利用藥物誘導(dǎo)線粒體功能障礙能夠減少Gal?9在結(jié)直腸癌細(xì)胞的表達(dá),從而減少TIM?3/Gal?9相互結(jié)合后下游信號(hào)途徑對(duì)腫瘤細(xì)胞的促進(jìn)作用。

        傳統(tǒng)PD?1、細(xì)胞毒性T淋巴細(xì)胞相關(guān)抗原4(cytotoxic T lymphocyte?associated antigen?4, CTLA?4)抑制劑在結(jié)直腸癌的治療中已經(jīng)取得了初步的成果,但由于先天性免疫耐受或獲得性免疫耐受的發(fā)生,免疫檢查點(diǎn)抑制劑治療往往不能取得從一而終的治療效果,或因?yàn)橹委煄?lái)的自身免疫系統(tǒng)紊亂不良反應(yīng)而使現(xiàn)有的免疫檢查點(diǎn)抑制劑在結(jié)直腸癌中的應(yīng)用仍舉步維艱[3]。Koyama等[46]發(fā)現(xiàn)在小鼠肺癌治療中發(fā)生PD?1抑制劑耐受是由于T細(xì)胞表面其他抑制性受體的表達(dá)升高,其中以TIM?3的升高最為顯著。當(dāng)在應(yīng)用PD?1抑制劑后加入TIM?3抑制劑,實(shí)驗(yàn)小鼠的中位生存期提升近一倍。這說(shuō)明TIM?3抑制劑在克服傳統(tǒng)免疫檢查點(diǎn)抑制劑發(fā)生免疫耐受中具有巨大價(jià)值。同樣在結(jié)直腸癌中,TIM?3與PD?1雙陽(yáng)性表達(dá)的CD8+ T細(xì)胞功能受到明顯抑制,同時(shí)干預(yù)TIM?3與PD?1可明顯恢復(fù)機(jī)體的抗腫瘤免疫功能[47]。目前已發(fā)表多項(xiàng)評(píng)估TIM?3單抗或TIM?3單抗與PD?1單抗聯(lián)合使用或TIM?3/PD?1雙靶點(diǎn)抗體藥物在實(shí)體瘤中治療效果的臨床試驗(yàn),但并未見(jiàn)TIM?3抗體僅在結(jié)直腸癌治療中的試驗(yàn)報(bào)道。早期臨床試驗(yàn)數(shù)據(jù)顯示3種TIM?3單抗TSR?022(NCT02817633)、LY3321367(NCT03099109)、MBG453/sabatolimab(NCT02608268)在實(shí)體瘤患者中與PD?1抗體聯(lián)合使用時(shí)較其單獨(dú)使用有更高的疾病緩解率[48]。研究還發(fā)現(xiàn)TIM?3單抗治療實(shí)體瘤時(shí)發(fā)生3或4級(jí)免疫相關(guān)不良反應(yīng)的概率極低,低于TIM?3與PD?1單抗聯(lián)合使用。這是由于相比于PD?1表達(dá)在全部類型的T細(xì)胞表面,TIM?3僅表達(dá)在終末分化T細(xì)胞[8],故干預(yù)TIM?3表達(dá)導(dǎo)致機(jī)體產(chǎn)生過(guò)度免疫反應(yīng)的可能性較小,TIM?3抗體治療的安全性更高。

        五、總結(jié)與展望

        作為新發(fā)現(xiàn)的免疫檢查點(diǎn)抑制受體,TIM?3的功能和潛在的作用機(jī)制在包括結(jié)直腸癌在內(nèi)的多種腫瘤中展開(kāi)了研究。TIM?3天然地僅表達(dá)在白血病干細(xì)胞表面,而不表達(dá)于正常造血干細(xì)胞中[49],這為干預(yù)TIM?3治療白血病提供了巨大的理論依據(jù)。相比TIM?3在血液系統(tǒng)腫瘤中的研究,目前尚未見(jiàn)TIM?3與結(jié)直腸癌等實(shí)體瘤干細(xì)胞的研究。臨床研究觀察到TIM?3通過(guò)對(duì)多種免疫細(xì)胞或腫瘤細(xì)胞產(chǎn)生作用進(jìn)而影響結(jié)直腸癌患者的預(yù)后和治療,但對(duì)于其確切作用機(jī)制的研究仍較少。這可能是由于TIM?3的表達(dá)范圍廣、配體多、受體與配體的結(jié)合位點(diǎn)不完全相同且不具有專一性等,使對(duì)TIM?3如何通過(guò)表達(dá)在某一種細(xì)胞、通過(guò)與某一種配體結(jié)合而發(fā)揮作用的研究十分具有難度。且從已有的臨床試驗(yàn)數(shù)據(jù)來(lái)看,TIM?3抑制劑單獨(dú)治療結(jié)直腸癌時(shí)并未起到很好的抗腫瘤作用,僅當(dāng)與PD?1抑制劑聯(lián)合使用時(shí)有顯著提升的治療效果。

        盡管如此,作為新型抑制性受體分子,TIM?3的發(fā)現(xiàn)仍為包括結(jié)直腸癌在內(nèi)的腫瘤治療提供了新的方向和治療手段。TIM?3抑制劑治療時(shí)免疫不良反應(yīng)的發(fā)生率較低,說(shuō)明TIM?3抑制劑的生物安全性高,這為其日后普遍和長(zhǎng)久用于腫瘤免疫治療提供了可能性。作為免疫相關(guān)分子,TIM?3的作用機(jī)制大多與免疫和炎癥途徑相關(guān),日后仍需要更多的實(shí)驗(yàn)來(lái)探索TIM?3的作用機(jī)制,尤其是TIM?3與腫瘤細(xì)胞本身的作用機(jī)制研究。

        參考文獻(xiàn)

        [ 1 ] SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72 (1): 7?33.

        [ 2 ] DAGENBORG V J, MARSHALL S E, YAQUB S, et al. Neoadjuvant chemotherapy is associated with a transient increase of intratumoral T?cell density in microsatellite stable colorectal liver metastases[J]. Cancer Biol Ther, 2020, 21 (5): 432?440.

        [ 3 ] WANG Q, SHEN X, CHEN G, et al. How to overcome resistance to immune checkpoint inhibitors in colorectal cancer: from mechanisms to translation[J]. Int J Cancer, 2023, 153 (4): 709?722.

        [ 4 ] GIACOMELLI M, MONTI M, PEZZOLA D C, et al. Immuno?contexture and immune checkpoint molecule expression in mismatch repair proficient colorectal carcinoma[J]. Cancers (Basel), 2023, 15 (12): 3097.

        [ 5 ] CAI L, LI Y, TAN J, et al. Targeting LAG?3, TIM?3, and TIGIT for cancer immunotherapy[J]. J Hematol Oncol, 2023, 16 (1): 101.

        [ 6 ] ZHAO L, CHENG S, FAN L, et al. TIM?3: an update on immunotherapy[J]. Int Immunopharmacol, 2021, 99: 107933.

        [ 7 ] MCINTIRE J J, UMETSU S E, AKBARI O, et al. Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family[J]. Nat Immunol, 2001, 2 (12): 1109?1116.

        [ 8 ] MONNEY L, SABATOS C A, GAGLIA J L, et al. Th1?specific cell surface protein Tim?3 regulates macrophage activation and severity of an autoimmune disease[J]. Nature, 2002, 415 (6871): 536?541.

        [ 9 ] CHEN H, ZHA J, TANG R, et al. T?cell immunoglobulin and mucin?domain containing?3 (TIM?3): solving a key puzzle in autoimmune diseases[J]. Int Immunopharmacol, 2023, 121: 110418.

        [10] GAYDEN T, SEPULVEDA F E, KHUONG?QUANG D A, et al. Germline HAVCR2 mutations altering TIM?3 characterize subcutaneous panniculitis?like T cell lymphomas with hemophagocytic lymphohistiocytic syn?drome[J]. Nat Genet, 2018, 50 (12): 1650?1657.

        [11] OCA?A?GUZMAN R, TORRE?BOUSCOULET L, SADA?OVALLE I. TIM?3 regulates distinct functions in macrophages[J]. Front Immunol, 2016, 7: 229.

        [12] ANDERSON A C, ANDERSON D E, BREGOLI L, et al. Promotion of tissue inflammation by the immune receptor Tim?3 expressed on innate immune cells[J]. Science, 2007, 318 (5853): 1141?1143.

        [13] NDHLOVU L C, LOPEZ?VERGèS S, BARBOUR J D, et al. Tim?3 marks human natural killer cell maturation and suppresses cell?mediated cytotoxicity[J]. Blood, 2012, 119 (16): 3734?3743.

        [14] GOMES DE MORAIS A L, CERDá S, DE MIGUEL M. New checkpoint inhibitors on the road: targeting TIM?3 in solid tumors[J]. Curr Oncol Rep, 2022, 24 (5): 651?658.

        [15] ZHU C, DIXON K O, NEWCOMER K, et al. Tim?3 adaptor protein Bat3 is a molecular checkpoint of T cell terminal differentiation and exhaustion[J]. Sci Adv, 2021, 7 (18): eabd2710.

        [16] DIXON K O, LAHORE G F, KUCHROO V K. Beyond T cell exhaustion: TIM?3 regulation of myeloid cells[J]. Sci Immunol, 2024, 9 (93): eadf2223.

        [17] GHIGO A, LAFFARGUE M, LI M, et al. PI3K and calcium signaling in cardiovascular disease[J]. Circ Res, 2017, 121 (3): 282?292.

        [18] SIDDIQUI I, SCHAEUBLE K, CHENNUPATI V, et al. Intratumoral Tcf1+PD?1+CD8+ T cells with stem?like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy[J]. Immunity, 2019, 50 (1): 195?211. e10.

        [19] GALON J, COSTES A, SANCHEZ?CABO F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome[J]. Science, 2006, 313 (5795): 1960?1964.

        [20] YU M, LU B, LIU Y, et al. Tim?3 is upregulated in human colorectal carcinoma and associated with tumor pro?gression[J]. Mol Med Rep, 2017, 15 (2): 689?695.

        [21] ZHOU E, HUANG Q, WANG J, et al. Up?regulation of Tim?3 is associated with poor prognosis of patients with colon cancer[J]. Int J Clin Exp Pathol, 2015, 8 (7): 8018?8027.

        [22] KUAI W, XU X, YAN J, et al. Prognostic impact of PD?1 and Tim?3 expression in tumor tissue in stage Ⅰ?Ⅲ colorectal cancer[J]. Biomed Res Int, 2020, 2020: 5294043.

        [23] MA R, YUAN D, GUO Y, et al. Immune effects of γδ T cells in colorectal cancer: a review[J]. Front Immunol, 2020, 11: 1600.

        [24] LI X, LU H, GU Y, et al. Tim?3 suppresses the killing effect of Vγ9Vδ2 T cells on colon cancer cells by reducing perforin and granzyme B expression[J]. Exp Cell Res, 2020, 386 (1): 111719.

        [25] MEYIAH A, MAHMOODI CHALBATANI G, AL?MTERIN M A, et al. Co?expression of PD?1 with TIGIT or PD?1 with TIM?3 on tumor?infiltrating CD8+ T cells showed synergistic effects on improved disease?free survival in treatment?na?ve CRC patients[J]. Int Immuno?pharmacol, 2023, 119: 110207.

        [26] AL?BADRAN S S, GRANT L, CAMPO M V, et al. Relationship between immune checkpoint proteins, tumour microenvironment characteristics, and prognosis in primary operable colorectal cancer[J]. J Pathol Clin Res, 2021, 7 (2): 121?134.

        [27] TANAKA A, SAKAGUCHI S. Regulatory T cells in cancer immunotherapy[J]. Cell Res, 2017, 27 (1): 109?118.

        [28] BANERJEE H, NIEVES?ROSADO H, KULKARNI A, et al. Expression of Tim?3 drives phenotypic and functional changes in Treg cells in secondary lymphoid organs and the tumor microenvironment[J]. Cell Rep, 2021, 36 (11): 109699.

        [29] SASIDHARAN NAIR V, TOOR S M, TAHA R Z, et al. Transcriptomic profiling of tumor?infiltrating CD4+TIM?3+ T cells reveals their suppressive, exhausted, and metastatic characteristics in colorectal cancer patients[J]. Vaccines (Basel), 2020, 8 (1): 71.

        [30] WEI C, YANG C, WANG S, et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell?mediated colorectal cancer metastasis[J]. Mol Cancer, 2019, 18 (1): 64.

        [31] WEI C, YANG C, WANG S, et al. M2 macrophages confer resistance to 5?fluorouracil in colorectal cancer through the activation of CCL22/PI3K/AKT signaling[J]. Onco Targets Ther, 2019, 12: 3051?3063.

        [32] KATAGATA M, OKAYAMA H, NAKAJIMA S, et al. TIM?3 expression and M2 polarization of macrophages in the TGFβ?activated tumor microenvironment in colorectal cancer[J]. Cancers (Basel), 2023, 15 (20): 4943.

        [33] JIANG X, ZHOU T, XIAO Y, et al. Tim?3 promotes tumor?promoting M2 macrophage polarization by binding to STAT1 and suppressing the STAT1?miR?155 signaling axis[J]. Oncoimmunology, 2016, 5 (9): e1211219.

        [34] JIANG X, YU J, SHI Q, et al. Tim?3 promotes intestinal homeostasis in DSS colitis by inhibiting M1 polarization of macrophages[J]. Clin Immunol, 2015, 160 (2): 328?335.

        [35] TANG L, LI G, ZHENG Y, et al. Tim?3 relieves experimental autoimmune encephalomyelitis by suppressing MHC?Ⅱ[J]. Front Immunol, 2022, 12: 770402.

        [36] WANG Z, LI G, DOU S, et al. Tim?3 promotes Listeria monocytogenes immune evasion by suppressing major histocompatibility complex class Ⅰ[J]. J Infect Dis, 2020, 221 (5): 830?840.

        [37] MAURYA N, GUJAR R, GUPTA M, et al. Immunoregulation of dendritic cells by the receptor T cell Ig and mucin protein?3 via Bruton's tyrosine kinase and c?Src[J]. J Immunol, 2014, 193 (7): 3417?3425.

        [38] DIXON K O, TABAKA M, SCHRAMM M A, et al. TIM?3 restrains anti?tumour immunity by regulating inflammasome activation[J]. Nature, 2021, 595 (7865): 101?106.

        [39] DE MINGO PULIDO á, H?NGGI K, CELIAS D P, et al. The inhibitory receptor TIM?3 limits activation of the cGAS?STING pathway in intra?tumoral dendritic cells by suppressing extracellular DNA uptake[J]. Immunity, 2021, 54 (6): 1154?1167. e7.

        [40] PAGLIANO O, MORRISON R M, CHAUVIN J M, et al. Tim?3 mediates T cell trogocytosis to limit antitumor immunity[J]. J Clin Invest, 2022, 132 (9): e152864.

        [41] NYGAARD V, REE A H, DAGENBORG V J, et al. A PRRX1 signature identifies TIM?3 and VISTA as potential immune checkpoint targets in a subgroup of microsatellite stable colorectal cancer liver metastases[J]. Cancer Res Commun, 2023, 3 (2): 235?244.

        [42] CHENG Z, WANG L, WU C, et al. Tumor?derived exosomes induced M2 macrophage polarization and promoted the metastasis of osteosarcoma cells through Tim?3[J]. Arch Med Res, 2021, 52 (2): 200?210.

        [43] ARAI Y, SAITO H, IKEGUCHI M. Upregulation of TIM?3 and PD?1 on CD4+ and CD8+ T cells associated with dysfunction of cell?mediated immunity after colorectal cancer operation[J]. Yonago Acta Med, 2012, 55 (1): 1?9.

        [44] JABBARI N, KENERSON H L, LAUSTED C, et al. Modulation of immune checkpoints by chemotherapy in human colorectal liver metastases[J]. Cell Rep Med, 2020, 1 (9): 100160.

        [45] SAKHNEVYCH S S, YASINSKA I M, FASLER?KAN E, et al. Mitochondrial defunctionalization supresses Tim?3?Galectin?9 secretory pathway in human colorectal cancer cells and thus can possibly affect tumor immune escape[J]. Front Pharmacol, 2019, 10: 342.

        [46] KOYAMA S, AKBAY E A, LI Y Y, et al. Adaptive resistance to therapeutic PD?1 blockade is associated with upregulation of alternative immune checkpoints[J]. Nat Commun, 2016, 7: 10501.

        [47] SAKUISHI K, APETOH L, SULLIVAN J M, et al. Targeting Tim?3 and PD?1 pathways to reverse T cell exhaustion and restore anti?tumor immunity[J]. J Exp Med, 2010, 207 (10): 2187?2194.

        [48] ZEIDAN A M, KOMROKJI R S, BRUNNER A M. TIM?3 pathway dysregulation and targeting in cancer[J]. Expert Rev Anticancer Ther, 2021, 21 (5): 523?534.

        [49] SAKODA T, KIKUSHIGE Y, MIYAMOTO T, et al. TIM?3 signaling hijacks the canonical Wnt/β?catenin pathway to maintain cancer stemness in acute myeloid leukemia[J]. Blood Adv, 2023, 7 (10): 2053?2065.

        (2024?04?13收稿;2024?05?29修回)

        (本文編輯:袁春英)

        国产性虐视频在线观看| 老熟女熟妇嗷嗷叫91| 一区二区三区视频在线免费观看| 日韩精品一二三区乱码| 无码人妻一区二区三区兔费 | 丰满少妇人妻无码| 中国内射xxxx6981少妇| 国产V日韩V亚洲欧美久久| 国产一级一厂片内射视频播放 | 无码成人一区二区| 亚洲欲色欲香天天综合网| 搡老女人老妇女老熟妇69| 日韩精品视频高清在线| 日日噜噜夜夜狠狠va视频| 亚洲色在线视频| 精品亚亚洲成av人片在线观看| 三级黄色片免费久久久| аⅴ资源天堂资源库在线| 亚洲AV无码秘 蜜桃1区| 在线观看视频国产一区二区三区| 亚洲va中文字幕无码一二三区| 黄色视频免费在线观看| 久久熟女五十路| 91精品国产九色综合久久香蕉| 人妻少妇精品视频三区二区一区| 在线观看免费午夜大片| 人妻av无码系列一区二区三区| 中文字幕亚洲综合久久菠萝蜜| 午夜精品人妻中字字幕| 97丨九色丨国产人妻熟女| 好男人日本社区www| 久久精品国产只有精品96| 国产黄色一区二区在线看| 亚洲乱亚洲乱妇50p| 亚洲v日本v欧美v综合v| 亚洲男人在线天堂av| 亚洲精品乱码久久久久蜜桃| 国产无套护士在线观看| 激情综合网缴情五月天| 国产桃色一区二区三区| 伊人久久精品久久亚洲一区 |