張 宇,陳正想,覃 濤
(1.中國(guó)船舶集團(tuán)有限公司第七一〇研究所,湖北 宜昌 443003;2.國(guó)防科技工業(yè)弱磁一級(jí)計(jì)量站,湖北 宜昌 443003)
第一次世界大戰(zhàn)以來(lái),因人為傾倒、戰(zhàn)爭(zhēng)遺留等原因遺留了很多水下未爆彈,水下未爆彈危害極大[1],威脅著人民的生命安全以及漁業(yè)發(fā)展、港口建設(shè)等軍事和民用領(lǐng)域,因此對(duì)水下未爆彈的探測(cè)十分必要[2]。
針對(duì)水下未爆彈的探測(cè),通常使用磁探測(cè)、聲探測(cè)等方式,其中磁探測(cè)相比其它探測(cè)方式具有不受空氣、水、泥沙等介質(zhì)影響的優(yōu)勢(shì)。相比水下探測(cè),空中探測(cè)具有探測(cè)效率高的優(yōu)勢(shì),相比有人機(jī)平臺(tái),無(wú)人機(jī)平臺(tái)具有安全性高、成本低、可以低空仿地飛行等優(yōu)點(diǎn),因此對(duì)于水下未爆彈的探測(cè),基于無(wú)人機(jī)平臺(tái)的航磁探測(cè)具有重要的意義。
航磁探測(cè)通過(guò)將磁傳感器搭載在無(wú)人機(jī)上在指定區(qū)域飛行來(lái)完成,綜合精度、體積、重量和穩(wěn)定性,通常選用光泵和磁通門(mén)作為搭載的傳感器。目前磁傳感器已發(fā)展的十分成熟,擁有極高的靈敏度,但是無(wú)人機(jī)平臺(tái)本身具有的磁性會(huì)干擾傳感器的測(cè)量,無(wú)人機(jī)自身的干擾磁場(chǎng)遠(yuǎn)大于磁傳感器的靈敏度,這導(dǎo)致傳感器優(yōu)秀的性能無(wú)法發(fā)揮出它的作用,因此對(duì)無(wú)人機(jī)平臺(tái)進(jìn)行磁干擾補(bǔ)償十分必要。
根據(jù)補(bǔ)償方式的不同,磁補(bǔ)償分為硬補(bǔ)償和軟補(bǔ)償2 種。硬補(bǔ)償是通過(guò)在飛機(jī)起飛前進(jìn)行干擾測(cè)量,然后添加等量反向的磁體在飛機(jī)上來(lái)進(jìn)行補(bǔ)償,這種方式耗時(shí)長(zhǎng)、成本大,因此逐漸被淘汰。軟磁補(bǔ)償通過(guò)對(duì)飛機(jī)干擾磁場(chǎng)進(jìn)行建模,計(jì)算出相對(duì)應(yīng)的補(bǔ)償系數(shù)來(lái)計(jì)算干擾磁場(chǎng),是現(xiàn)在常用的補(bǔ)償方法[3]。
對(duì)于航磁補(bǔ)償?shù)难芯繌亩?zhàn)時(shí)就開(kāi)始了,當(dāng)時(shí)美軍為了滿足探潛的需要,將磁通門(mén)搭在海軍航空兵的飛機(jī)上,并進(jìn)行了一定的補(bǔ)償。1950 年TOLLES分析了飛機(jī)干擾磁場(chǎng)產(chǎn)生的物理原理,將干擾磁場(chǎng)分為固定磁場(chǎng)、感應(yīng)磁場(chǎng)、渦流磁場(chǎng)3 個(gè)部分,并給出了相應(yīng)的表達(dá)式,得到一個(gè)具有21 個(gè)未知數(shù)的線性方程,被稱(chēng)為T(mén)-L 方程,為之后的補(bǔ)償研究奠定了基礎(chǔ)。1961 年,Leliak 設(shè)計(jì)了一套飛行標(biāo)準(zhǔn)來(lái)對(duì)T-L 方程進(jìn)行求解;在此基礎(chǔ)上,Bickle 設(shè)計(jì)了一種小信號(hào)補(bǔ)償方法提升了求解的精度;1993年,Williams 提出利用神經(jīng)網(wǎng)絡(luò)進(jìn)行航磁補(bǔ)償,并建立了以飛機(jī)姿態(tài)、位置、時(shí)間等作為輸入的神經(jīng)網(wǎng)絡(luò)模型;2014 年,LI 使用信賴(lài)域法完成了補(bǔ)償參數(shù)的求解。此外,嶺估計(jì)法、主成分分析法[4]、改進(jìn)c-k估計(jì)法、截?cái)嗥娈愔捣纸夥╗5]、遺傳算法[6]、神經(jīng)網(wǎng)絡(luò)[7-11]等都被用于補(bǔ)償參數(shù)求解,這些算法的實(shí)現(xiàn),都在不同程度上提高了航磁補(bǔ)償?shù)木萚12-18]。
針對(duì)T-L 模型存在多種假設(shè)和近似且補(bǔ)償參數(shù)間存在極大的復(fù)共線性的問(wèn)題,本文采用神經(jīng)網(wǎng)絡(luò)建立非線性的干擾補(bǔ)償模型來(lái)進(jìn)行求解,完成對(duì)干擾磁場(chǎng)的補(bǔ)償,通過(guò)仿真和試驗(yàn)對(duì)補(bǔ)償算法進(jìn)行驗(yàn)證。
在假設(shè)傳感器測(cè)得的磁場(chǎng)為理想值的情況下,傳感器測(cè)得的磁場(chǎng)包含期望的磁場(chǎng),飛機(jī)機(jī)動(dòng)性動(dòng)作產(chǎn)生的磁場(chǎng)、飛機(jī)供電設(shè)備等產(chǎn)生的電磁干擾。其中,電磁干擾頻率較高可以通過(guò)低通濾波器濾除,因此研究的重點(diǎn)在如何補(bǔ)償飛機(jī)機(jī)動(dòng)性動(dòng)作產(chǎn)生的干擾磁場(chǎng)。
Tolles 將飛機(jī)機(jī)動(dòng)性動(dòng)作產(chǎn)生的磁場(chǎng)概括為固定磁場(chǎng)、感應(yīng)磁場(chǎng)、渦流磁場(chǎng)3 部分。固定磁場(chǎng)來(lái)源于飛機(jī)平臺(tái)自身的硬磁材料產(chǎn)生的剩磁,這部分材料磁導(dǎo)率比較低,矯頑力高,它不隨時(shí)間變化,固定磁場(chǎng)本身是個(gè)定值,但它隨著飛機(jī)姿態(tài)的改變,在總場(chǎng)方向的投影也會(huì)改變。感應(yīng)磁場(chǎng)來(lái)源于飛機(jī)平臺(tái)的軟磁性材料,這部分材料磁導(dǎo)率比較高,矯頑力低,它隨著外界磁場(chǎng)的變化改變比較大。渦流磁場(chǎng)由飛機(jī)機(jī)體對(duì)磁感線切割產(chǎn)生,這部分磁場(chǎng)由外界磁場(chǎng)變化的速度決定。
建立飛機(jī)坐標(biāo)系如圖1 所示,以飛機(jī)的正前方作為T(mén)軸,飛機(jī)左側(cè)作為L(zhǎng)軸,飛機(jī)正下方作為V軸建立空間直角坐標(biāo)系。
圖2 磁場(chǎng)關(guān)系圖Fig. 2 Magnetic field relationship chart
圖1 中:Bt表示磁傳感器測(cè)得的總場(chǎng);Be表示地磁場(chǎng);Bi表示飛機(jī)產(chǎn)生的干擾磁場(chǎng);α為總場(chǎng)與T軸的夾角;β為總場(chǎng)與L軸的夾角;γ為總場(chǎng)與V軸的夾角。
設(shè)飛機(jī)3 個(gè)軸向的固定磁場(chǎng)分別為T(mén)、L、V,3 個(gè)軸之間的軟磁系數(shù)為T(mén)T、TL、TV、VT、VL、VV、LT、LL、LV,3 個(gè)軸之間的渦流系數(shù)為tt、tl、tv、lt、ll、lv、vt、vl、vv,從而有:
式中:Bperm為固定磁場(chǎng);Bind為感應(yīng)磁場(chǎng);Beddy為渦流磁場(chǎng);Bt是表示傳感器測(cè)得的總場(chǎng);為總場(chǎng)的方向余弦,如式(5)所示;為方向余弦對(duì)時(shí)間的導(dǎo)數(shù)。
由此得到21 項(xiàng)系數(shù)的T-L 方程如下:
為了便于計(jì)算,將方程投影到總場(chǎng)方向,因?yàn)榈卮艌?chǎng)量級(jí)遠(yuǎn)大于干擾磁場(chǎng)如圖 2 所示,因此地磁場(chǎng)方向可以視為與總場(chǎng)方向相同,即其投影值為地磁場(chǎng)自身的標(biāo)量值,由此轉(zhuǎn)換為標(biāo)量方程如式(8)所示。
再根據(jù)感應(yīng)磁場(chǎng)的對(duì)稱(chēng)性簡(jiǎn)化得到18 項(xiàng)系數(shù)的T-L 方程:
進(jìn)行簡(jiǎn)化后得到:
式中:δ為18 個(gè)待求解的未知參數(shù);為總場(chǎng)的標(biāo)量值通過(guò)光泵獲得;通過(guò)磁通門(mén)進(jìn)行計(jì)算獲得;Be在磁場(chǎng)較為均勻的環(huán)境下可以看作是總場(chǎng)的均值。因此方程中未知項(xiàng)為18 個(gè)補(bǔ)償參數(shù),通過(guò)求解補(bǔ)償參數(shù)就可以求得飛機(jī)的干擾磁場(chǎng)。
人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks)也簡(jiǎn)稱(chēng)為神經(jīng)網(wǎng)絡(luò)(NN),是根據(jù)生物學(xué)中神經(jīng)網(wǎng)絡(luò)以及網(wǎng)絡(luò)拓?fù)渲R(shí)為理論基礎(chǔ),將人腦結(jié)構(gòu)和外界刺激響應(yīng)機(jī)制進(jìn)行抽象,模擬人腦的神經(jīng)系統(tǒng)對(duì)復(fù)雜信息的處理機(jī)制的一種數(shù)學(xué)模型。
神經(jīng)網(wǎng)絡(luò)模型具有并行分布、容錯(cuò)率高、自學(xué)習(xí)、自適應(yīng)的優(yōu)勢(shì),在輸入充足的節(jié)點(diǎn)和合適的模型參數(shù)的條件下,就可以對(duì)任意非線性函數(shù)進(jìn)行擬合。根據(jù)它的這些特點(diǎn),嘗試用它來(lái)建立磁干擾補(bǔ)償模型。經(jīng)典的神經(jīng)網(wǎng)絡(luò)由以下3 個(gè)層次組成:輸入層(input layer)、隱藏層(hidden layer)、輸出層(output layer),如圖3 所示,N為輸入特征的數(shù)量,M為輸出特征的數(shù)量。
圖3 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)Fig. 3 Neural network structure
神經(jīng)元是神經(jīng)網(wǎng)絡(luò)的基本組成單元,也稱(chēng)為節(jié)點(diǎn)或單元,它通過(guò)將權(quán)重與上一層神經(jīng)網(wǎng)絡(luò)的輸入的乘積相加并輸入激活函數(shù)并將結(jié)果輸出到下一層,單個(gè)神經(jīng)元的結(jié)構(gòu)如圖4 所示。圖4 中:ijω表示第j個(gè)神經(jīng)元的第i個(gè)輸入的權(quán)重;xi為上一層的輸入;yj為下一層的輸出;f為激活函數(shù)。
圖4 單個(gè)神經(jīng)元結(jié)構(gòu)Fig. 4 Individual neuron structure
常用的激活函數(shù)如下,它們的函數(shù)圖像如圖5所示。
圖5 常用的激活函數(shù)Fig. 5 Common activation functions
BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)是一種誤差反向傳播的多層神經(jīng)網(wǎng)絡(luò),BP 神經(jīng)網(wǎng)絡(luò)可以無(wú)需明確輸入輸出之間的物理聯(lián)系,通過(guò)學(xué)習(xí)大量的輸入和輸出的映射關(guān)系,求解出其內(nèi)在數(shù)學(xué)關(guān)系,算法流程如圖6 所示。
圖6 神經(jīng)網(wǎng)絡(luò)算法流程Fig. 6 Neural network algorithm flow
整個(gè)算法實(shí)現(xiàn)的關(guān)鍵步驟包括:
1)正向傳播:
式中:yj為第j個(gè)神經(jīng)元的輸出;bj為第j個(gè)神經(jīng)元的偏置。
2)誤差計(jì)算:
式中:y為實(shí)際的輸出;d為期望的輸出;e為誤差。
3)反向傳播調(diào)整權(quán)重:
式中:ρ為學(xué)習(xí)率,表示權(quán)重更新的速度;Δijω為權(quán)重的增量。
根據(jù)式(10),將A中的18 項(xiàng)參數(shù)作為神經(jīng)網(wǎng)絡(luò)的輸入特征,I作為神經(jīng)網(wǎng)絡(luò)的輸出,設(shè)定單隱層神經(jīng)網(wǎng)絡(luò),神經(jīng)元個(gè)數(shù)為3,學(xué)習(xí)率ρ=0.01,期望誤差e=0.01,選取激活函數(shù)為tansig (x),建立基于BP 神經(jīng)網(wǎng)絡(luò)的航磁補(bǔ)償模型如圖7 所示。
圖7 航磁補(bǔ)償網(wǎng)絡(luò)Fig. 7 Aeromagnetic compensation network
設(shè):正北方向與機(jī)頭順時(shí)針?lè)较虻膴A角為飛機(jī)的航向角,記為φ;磁傾角為I;飛機(jī)機(jī)軸與水平面夾角為俯仰角記為κ;飛機(jī)橫軸與水平面夾角為橫滾角ω;飛機(jī)與航跡的夾角為偏航角,記為θ。
根據(jù)以上假設(shè),飛機(jī)在不做姿態(tài)變換時(shí),與飛機(jī)坐標(biāo)系三軸夾角的方向余弦值可以通過(guò)航向角和地磁傾角表示為
飛機(jī)只繞T軸做橫滾動(dòng)作的旋轉(zhuǎn)矩陣為
飛機(jī)只繞L軸做俯仰動(dòng)作的旋轉(zhuǎn)矩陣為
飛機(jī)只繞V軸做偏航動(dòng)作的旋轉(zhuǎn)矩陣為
因此可以表示飛機(jī)做任意機(jī)動(dòng)性動(dòng)作時(shí)的方向余弦值:
在此基礎(chǔ)上,假設(shè)補(bǔ)償系數(shù)δ為[–9.9,–2.9,6.5,–7.9 e-5,–2.5 e-5,–9.8 e-5,6.8 e-5,–2.1 e-5,–1.2 e-5,1.7 e-5,–2.3 e-5,–2.9 e-5,–5.8 e-5,–4.4 e-5,–4.7 e-5,1.4 e-5,3.1 e-5,6.2 e-5]。
假設(shè)飛機(jī)進(jìn)行四航向飛行,由南向北順時(shí)針進(jìn)行,在每個(gè)航向上進(jìn)行俯仰、橫滾、偏航3 組機(jī)動(dòng)性動(dòng)作,每個(gè)動(dòng)作做3 次,持續(xù)8 s,其中俯仰±5°,橫滾±5°,偏航±10°,航跡示意圖如圖8 所示。
圖8 補(bǔ)償飛行軌跡Fig. 8 Compensated flight path
根據(jù)IGRF 模型選取宜昌地區(qū),經(jīng)度為30°37 ′,緯度為111°18 ′,地磁場(chǎng)強(qiáng)度為50 348 nT,磁傾角I=47°52′,磁偏角D=-4°1 6′,假設(shè)區(qū)域內(nèi)地磁場(chǎng)均勻。
設(shè)置采樣頻率為160 Hz,根據(jù)式(10)計(jì)算得到飛機(jī)進(jìn)行四航向飛行過(guò)程中的干擾磁場(chǎng)數(shù)據(jù)如圖9 所示。
圖9 干擾磁場(chǎng)仿真信號(hào)Fig. 9 Simulation signals of interfering magnetic field
圖10 補(bǔ)償前后對(duì)比Fig. 10 Comparison before and after compensation
圖11 補(bǔ)償后剩余的干擾磁場(chǎng)Fig. 11 Residual interference magnetic field after compensation
根據(jù)假設(shè)的地磁場(chǎng)均勻的條件,仿真生成的信號(hào)即為式(10)的I,A通過(guò)設(shè)定的姿態(tài)通過(guò)計(jì)算得到,將A和I輸入神經(jīng)網(wǎng)絡(luò)模型,并進(jìn)行補(bǔ)償?shù)玫揭韵陆Y(jié)果。
對(duì)于補(bǔ)償效果的通常采用改善比來(lái)評(píng)價(jià):
式中:uσ是未補(bǔ)償信號(hào)的標(biāo)準(zhǔn)差;cσ是補(bǔ)償后信號(hào)的標(biāo)準(zhǔn)差。計(jì)算出神經(jīng)網(wǎng)絡(luò)補(bǔ)償效果,補(bǔ)償改善比38.29。
在對(duì)干擾磁場(chǎng)仿真的基礎(chǔ)上,添加未爆彈目標(biāo)信號(hào)來(lái)仿真探測(cè)飛行的過(guò)程,從而進(jìn)一步驗(yàn)證補(bǔ)償算法。
設(shè)置未爆彈口徑152 mm,長(zhǎng)度1 100 mm,材料30 鉻錳硅,假設(shè)其位于飛行區(qū)域的中心,使用maxwell 仿真未爆彈并添加地磁場(chǎng)得到地磁背景下的未爆彈周?chē)拇艌?chǎng)如圖12 所示。
圖12 地磁背景下的未爆彈周?chē)艌?chǎng)Fig. 12 Unexploded ordnance magnetic field in geomagnetic background
設(shè)定飛機(jī)進(jìn)行探測(cè)飛行時(shí),方向由西向東,與未爆彈目標(biāo)正橫距離為4 m,在圖12 中截取出未爆彈磁場(chǎng)正上方4 m 處的磁場(chǎng),整個(gè)平面的磁感應(yīng)強(qiáng)度如圖13 所示。此外假定飛行速度為2 m/s,飛行時(shí)間為50 s,采樣率為160 Hz,得到探測(cè)飛行的期望信號(hào)如圖14 所示,仿真得到在地磁背景下目標(biāo)的磁場(chǎng)峰峰值為3.57 nT。
圖13 目標(biāo)上方4 m 處磁感應(yīng)強(qiáng)度Fig. 13 Magnetic induction strength at 4 m above the target
圖14 飛機(jī)期望的探測(cè)信號(hào)Fig. 14 Desired detection signals for an aircraft
隨機(jī)生成15 個(gè)姿態(tài)并根據(jù)采樣點(diǎn)數(shù)進(jìn)行3 次樣條插值,作為飛機(jī)探測(cè)飛行過(guò)程中的姿態(tài)變化,變化范圍限制在1°以內(nèi),如圖15 所示。然后將姿態(tài)角代入式(24)計(jì)算出探測(cè)飛行過(guò)程中的干擾磁場(chǎng),如圖 16 所示。
圖15 探測(cè)飛行中三種姿態(tài)角變化Fig. 15 Detection of 3 types of attitude angle changes during flight
圖16 探測(cè)飛行時(shí)的干擾磁場(chǎng)Fig. 16 Interference magnetic field during detection flight
將干擾磁場(chǎng)與未爆彈信號(hào)疊加,如圖17 所示,可見(jiàn)信號(hào)完全淹沒(méi)在干擾中,將疊加后的信號(hào)作為神經(jīng)網(wǎng)絡(luò)的輸出,姿態(tài)角計(jì)算出神經(jīng)網(wǎng)絡(luò)的輸入。補(bǔ)償后的結(jié)果如圖18 所示,補(bǔ)償后信號(hào)峰峰值3.46 nT,基本沒(méi)有衰減,補(bǔ)償改善比32.08,可以明顯發(fā)現(xiàn)目標(biāo)。
圖17 疊加干擾后的信號(hào)Fig. 17 Signals after overlaying interference
圖18 補(bǔ)償前后對(duì)比圖Fig. 18 Comparison before and after compensation
圖19 實(shí)際信號(hào)與期望信號(hào)對(duì)比圖Fig. 19 Actual signals and expected signals
選擇四旋翼無(wú)人機(jī)平臺(tái)來(lái)進(jìn)行飛行試驗(yàn),搭載2 個(gè)光泵和1 個(gè)磁通門(mén),整個(gè)系統(tǒng)如圖20。
圖20 四旋翼無(wú)人機(jī)磁探系統(tǒng)Fig. 20 Quadcopter UAV magnetic detection system
由于試驗(yàn)條件限制,且磁場(chǎng)在空氣和水中衰減速度近似,試驗(yàn)在陸地進(jìn)行,選取在宜昌(經(jīng)度30°37 ′,緯度111°18 ′)附近,分為補(bǔ)償飛行和探測(cè)飛行2 個(gè)階段,與仿真飛行的步驟一致,補(bǔ)償飛行階段進(jìn)行由南向北順時(shí)針?biāo)暮较蝻w行,實(shí)際目標(biāo)與仿真目標(biāo)尺寸相同,探測(cè)飛行階段由西向東離目標(biāo)正橫距離4 m 飛過(guò),目標(biāo)垂直于地面置于探測(cè)航跡正中。
傳感器采集到的信號(hào)通過(guò)濾波消除高頻噪聲后如圖21–22。
圖21 濾波后的補(bǔ)償學(xué)習(xí)數(shù)據(jù)Fig. 21 Compensated learning data after filtering
圖22 濾波后的探測(cè)飛行的數(shù)據(jù)Fig. 22 Filtered detection flight data
將單個(gè)光泵的信號(hào)作為神經(jīng)網(wǎng)絡(luò)的輸出進(jìn)行計(jì)算,結(jié)果如圖23–24。
圖23 光泵1 補(bǔ)償效果Fig. 23 Compensation effect of Optical Pump 1
圖24 光泵2 補(bǔ)償效果Fig. 24 Compensation effect of Optical Pump 2
補(bǔ)償后計(jì)算出單光泵改善比為20.57,干擾得到明顯抑制。
使用2 個(gè)光泵求得的磁場(chǎng)梯度作為神經(jīng)網(wǎng)絡(luò)的輸出進(jìn)行計(jì)算,補(bǔ)償結(jié)果如圖25。
雙光泵補(bǔ)償后,改善比為25.73,信號(hào)峰峰值3.2 nT,可以有效分辨目標(biāo)。
本文利用BP 神經(jīng)網(wǎng)絡(luò)搭建了航磁補(bǔ)償模型實(shí)現(xiàn)了對(duì)無(wú)人機(jī)干擾磁場(chǎng)的高精度磁補(bǔ)償,通過(guò)仿真補(bǔ)償飛行階段的干擾磁場(chǎng)和探測(cè)飛行階段的干擾磁場(chǎng)以及目標(biāo)磁場(chǎng)這2 種方式對(duì)算法進(jìn)行了初步驗(yàn)證,在此基礎(chǔ)上進(jìn)行了目標(biāo)探測(cè)飛行試驗(yàn)進(jìn)一步完成了算法的驗(yàn)證,補(bǔ)償改善比超過(guò)20,試驗(yàn)表明四旋翼無(wú)人機(jī)平臺(tái)的航磁補(bǔ)償方法可以用于提高對(duì)水下目標(biāo)探測(cè)的精度。