亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        寬葉金粟蘭的化學成分及其抗腫瘤活性研究

        2024-01-01 00:00:00張衛(wèi)青朱成光梁偉晏晨
        廣西植物 2024年6期
        關鍵詞:化學成分

        DOI: 10.11931/guihaia.gxzw202303035

        張衛(wèi)青, 朱成光, 梁偉, 等, 2024.

        寬葉金粟蘭的化學成分及其抗腫瘤活性研究 [J].

        廣西植物, 44(6): 1159-1169.

        ZHANG WQ, ZHU CG, LIANG W, et al., 2024.

        Chemical constituents from Chloranthus henryi and their antitumor activities in vitro" [J].

        Guihaia, 44(6): 1159-1169.

        摘" 要:" 為探尋寬葉金粟蘭(Chloranthus henryi)的化學成分及抗腫瘤活性,該研究采用硅膠柱層析、反相柱色譜、Sephadex LH-20凝膠和半制備高效液相等色譜技術對寬葉金粟蘭95%乙醇提取物的乙酸乙酯部位進行分離純化,根據理化性質與波譜數據并結合參考文獻鑒定所得化合物的結構,并采用MTT法評價化合物細胞毒活性。結果表明:(1)從該植物的95%乙醇提取物的乙酸乙酯部位分離并鑒定了12個化合物,分別為pipercyclobutanamide C(1)、chololactone A(2)、sarcanolide B(3)、環(huán)銀線草醇A(4)、chloramultiol D(5)、chlorasessilifol B(6)、chlorajaponol(7)、tianmushanol(8)、spicachlorantins B(9)、spicachlorantins A(10)、及已靈素A(11)、chloramultiols A(12)?;衔?為新化合物,除化合物8外,其余化合物均為首次從寬葉金粟蘭中分離得到。(2)細胞毒活性測試結果顯示,僅化合物2和化合物7對人宮頸癌細胞HeLa有抑制作用,IC50值分別為(4.50±0.27) μmol·L-1和(4.25±0.08) μmol·L-1,其他化合物對其均無抑制作用。該研究結果為進一步深度研究與開發(fā)利用金粟蘭屬草本植物提供了一定的科學依據。

        關鍵詞: 寬葉金粟蘭, 化學成分, 分離純化, 結構鑒定, 細胞毒活性, 抑制作用

        中圖分類號:" Q946

        文獻標識碼:" A

        文章編號:" 1000-3142(2024)06-1159-11

        收稿日期: 2023-07-06

        接受日期: 2023-08-07

        基金項目:" 貴州省科技計劃項目(黔科合支撐 [2022]一般189)。

        第一作者: 張衛(wèi)青(1992—),主管藥師,主要從事藥物化學研究,(E-mail)740103846@qq.com。

        *通信作者:" 晏晨,博士,主任藥師,主要從事天然藥物化學研究,(E-mail)nazi3647@sina.com。

        Chemical constituents from Chloranthus henryi

        and their antitumor activities in vitro

        ZHANG Weiqing1, ZHU Chengguang1, 2, LIANG Wei1, YAN Chen1*

        ( 1. Anshun Peoples Hospital, Anshun 561000, Guizhou, China; 2." Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China )

        Abstract:" In order to study the chemical constituents from Chloranthus henryi and their antitumor activities in vitro. The chemical constituents of ethyl acetate fraction, extracted with 95% ethanol from C. henryi were isolated and purified by silica gel column chromatography, reversed phase column chromatography, Sephadex LH-20 column chromatography and preparation liquid chromatography, and their structures were identified by the physicochemical properties, spectral data combined with relevant literatures. The cytotoxic activities of these compounds were evaluated by MTT method. The results were as follows: (1) Twelve compounds were isolated and identified as pipercyclobutanamide C (1), chololactone A (2), sarcanolide B (3), oxacol A (4), chloramultiol D (5), chlorasessilifol B (6), chlorajaponol (7), tianmushanol (8), spicachlorantins B (9), spicachlorantins A (10), serrachlorin A (11), chloramultiols A (12). Among them, Compound 1 was identified as a new compound, and except for Compound 8, all the other compounds were isolated from the C. henryi for the first time. (2) The cytotoxic activity test results showed that only compounds 2 and 7 had good inhibitory effects on HeLa cells in vitro, while the other compounds showed no inhibition effects. The IC50 of the two compounds were (4.50±0.27) μmol·L-1 and (4.25±0.08) μmol·L-1 respectively. In conclusion, the study enriches the chemical constituents of C. henryi, and provides a reference for the further exploration and utilization of this Chloranthus herb plants.

        Key words: Chloranthus henryi, chemical constituents, isolation and purification, structural identification, cytotoxic activity, inhibitory effects

        寬葉金粟蘭(Chloranthus henryi)是金粟蘭科(Chloranthaceae)金粟蘭屬(Chloranthus)多年生草本植物,又名大葉及已、紅四塊瓦、四葉對、四大天王和四大金剛等,主要分布于我國貴州、四川、廣西、安徽等地。寬葉金粟蘭的根、根狀莖和全草均可做藥用,在《全國中草藥匯編》《中藥大辭典》《中華本草》中均有收載,其性辛、苦、溫、有毒,具有散寒止咳,活血止痛,散瘀解毒等功效。民間多用于風寒咳嗽、風濕骨痛、四肢麻木、月經不調、閉經和小兒驚風等。外用治跌打損傷,淤血腫痛,毒蛇咬傷(曹聰梅等,2008)?,F代藥理研究表明,金粟蘭屬植物含有倍半萜類、倍半萜二聚體類、苯丙素類和酰胺類等化學成分,具有抗菌、抗炎、抗腫瘤、抗HIV-1、增強免疫、神經保護、利膽和收縮子宮等生物活性(羅杠等,2014;楊秀偉,2017)。

        目前,關于寬葉金粟蘭倍半萜二聚體類單體化合物的研究報道較少,僅張珊珊等(2017)從寬葉金粟蘭中分離得到5個倍半萜二聚體類化合物。本文進一步對寬葉金粟蘭的化學成分及細胞毒活性進行研究,以期發(fā)現結構新穎的倍半萜二聚體類化合物,有助于該植物的開發(fā)及利用。

        本研究以寬葉金粟蘭為研究對象,依托現代先進的儀器設備,采用硅膠柱層析、反相柱色譜、Sephadex LH-20凝膠和半制備高效液相等色譜技術對寬葉金粟蘭95%乙醇提取物的乙酸乙酯部位進行分離純化,并采用MTT法評價所得化合物的細胞毒活性,通過理化性質與波譜數據并結合參考文獻鑒定所得化合物的結構及細胞毒活性測試結果,擬探討以下問題:(1)寬葉金粟蘭95%乙醇提取物的乙酸乙酯部位的化學成分;(2)所分離得到的化合物的細胞毒活性。

        1" 實驗材料

        1.1 藥材來源

        實驗所用寬葉金粟蘭藥材(100.0 kg)采集于貴州安龍,經中國科學院昆明植物研究所劉海洋研究員鑒定為寬葉金粟蘭(Chloranthus henryi)藥材全草,標本(Assrmyy20180819-2)存放于安順市人民醫(yī)院藥劑科藥學實驗室。

        1.2 實驗儀器及試劑

        INOVA-600 MHz超導核磁共振波譜儀(美國瓦里安公司),TMS為內標;Waters 1525 EF高效液相色譜儀(美國 Waters 公司),Waters 2998檢測器,Waters sunfire色譜柱為 C18(10 mm × 250 mm,4.6 mm × 150 mm);JASCO P-1020旋光儀(日本 JASCO 公司);Shimadzu UV-2401A紫外光譜儀(日本 Shimadzu 公司);Bruker Tensor-27紅外光譜儀(德國 Bruker 公司);Bruker HCT/Esquire和Waters Autospec Premier P776質譜儀(德國 Bruker 公司,美國 Waters 公司);Sephadex LH-20(美國 GE Healthcare Bio-sicence AB 公司);MCI GEL CHP20(日本三菱化學公司);柱層析硅膠(40~80目和300~400目,青島海洋化工廠);硅膠GF254薄層板(50 mm × 100 mm,0.20 ~0.25 mm,青島海洋化工廠);分析純三氯甲烷、丙酮(重慶川東化工集團有限公司);其余試劑均從工業(yè)級蒸餾中獲得;10%硫酸乙醇顯色劑。

        2" 實驗方法

        2.1 提取與分離

        將干燥的寬葉金粟蘭全草(100.0 kg)粉碎后,用95%乙醇在90 ℃下加熱回流提取3次,每次3.5 h,將提取液合并,減壓濃縮回收乙醇,得到寬葉金粟蘭濃縮液。取少量浸膏留樣,其余濃縮液經乙酸乙酯萃取,得到乙酸乙酯萃取物7.4 kg。將萃取物用溶劑溶解,利用粗硅膠(40~80目)拌樣,待樣品干燥后,采用經硅膠(300~400目)柱色譜(石油醚-丙酮50∶1→1∶1, V/V)進行梯度洗脫,洗脫部分用TLC薄層板展開,在紫外分析儀下觀察TLC薄層板熒光顯色情況,并用10%硫酸乙醇溶液顯色,合并相似部分,最后用甲醇處理硅膠柱,得到18個餾分(Fr.1-Fr.18)。

        Fr.13經D-101大孔樹脂柱層析(EtOH∶H2O 20∶80 → 95∶5, V/V)進行梯度洗脫,得到5個組分(Fr.13.1-Fr.13.5)。Fr.13.2經硅膠柱色譜(石油醚-丙酮 10∶1→1∶1, V/V)進行梯度洗脫,并用葡聚糖凝膠Sephadex LH-20柱色譜(MeOH)和半制備液相色譜(CH3CN∶H2O 45∶55, V/V)進一步純化,分離得到化合物4(tR= 12.0 min, 13.2 mg)。Fr.13.3經硅膠柱色譜(石油醚-丙酮10∶1→1∶1, V/V)進行梯度洗脫,得到4個組分(Fr.13.3.1-Fr.13.3.4)。Fr.13.3.2經葡聚糖凝膠Sephadex LH-20柱色譜(CHCl3∶MeOH 1∶1, V/V)洗脫,分離得到化合物1 (22.2 mg)。Fr.13.3.4經葡聚糖凝膠Sephadex LH-20柱色譜(MeOH)洗脫,得到3個組分(Fr.13.3.4.1-Fr.13.3.4.3)。Fr.13.3.4.3經硅膠柱色譜(石油醚-丙酮10∶1→1∶1, V/V)進行梯度洗脫,分離得到化合物5(10.2 mg)。

        Fr.14經硅膠柱色譜(石油醚-乙酸乙酯2∶1→1∶1, V/V)進行梯度洗脫,分離得到5個組分(Fr.14.1-Fr.14.5)。Fr.14.5經葡聚糖凝膠Sephadex LH-20柱色譜(CHCl3∶MeOH 1∶1, V/V)洗脫,得到3個組分(Fr.14.5.1-Fr.14.5.3)。Fr.14.5.3經硅膠柱色譜(石油醚-丙酮5∶1→1∶1, V/V)進行梯度洗脫,分離得到5個組分(Fr.14.5.3.1-Fr.14.5.3.5)。Fr.14.5.3.4經硅膠柱色譜(石油醚-丙酮5∶1→1∶1, V/V)進行梯度洗脫,分離得到11個組分(Fr.14.5.3.4.1-Fr.14.5.3.4.11)。Fr.14.5.3.4.10經硅膠柱色譜(石油醚-丙酮4∶1→1∶1, V/V)進行梯度洗脫,分離得到化合物12(31.7 mg)。Fr.14.5.3.4.5經葡聚糖凝膠Sephadex LH-20柱色譜(MeOH)洗脫,得到4個組分(Fr.14.5.3.4.5.1-Fr.14.5.3.4.5.4)。Fr.14.5.3.4.5.2經反相硅膠(MeOH∶H2O 40∶60 → 90∶10, V/V)進行梯度洗脫,得到5個組分(Fr.14.5.3.4.5.2.1-Fr.14.5.3.4.5.2.5)。Fr.14.5.3.4.5.2.1經硅膠柱色譜(氯仿-甲醇150∶1→50∶1, V/V)進行梯度洗脫并重結晶得到化合物11(41.9 mg)。Fr.14.5.3.4.5.2.5經硅膠柱色譜(氯仿-甲醇 100∶1→50∶1, V/V)進行梯度洗脫和半制備液相色譜(CH3CN∶H2O 35∶65, V/V)進一步純化,分離得到化合物6(tR= 18.5 min, 18.2 mg)。

        Fr.15經葡聚糖凝膠Sephadex LH-20柱色譜(CHCl3∶MeOH 1∶1, V/V)洗脫,得到4個組分(Fr.15.1-Fr.15.4)。Fr.15.3經硅膠柱色譜(石油醚-丙酮5∶1→1∶1, V/V)進行梯度洗脫,得到5個組分(Fr.15.3.1-Fr.15.3.5)。Fr.15.3.1經MCI(MeOH∶H2O 40∶60 → 90∶10, V/V)進行梯度洗脫,得到7個組分(Fr.15.3.1.1-Fr.15.3.1.7)。Fr.15.3.1.6經D-101大孔樹脂柱層析(EtOH∶H2O 20∶80 → 95∶5, V/V)進行梯度洗脫,分離得到化合物7(1.70 g)并得到9個組分(Fr.15.3.1.6.1-Fr.15.3.1.6.9)。Fr.15.3.1.6.7經硅膠柱色譜(石油醚-乙酸乙酯5∶1→1∶1, V/V)進行梯度洗脫,得到5個組分(Fr.15.3.1.6.7.1-Fr.15.3.1.6.7.5)。Fr.15.3.1.6.7.4經硅膠柱色譜(二氯甲烷-甲醇100∶1→1∶1, V/V)進行梯度洗脫,并用半制備液相色譜(CH3CN∶H2O 45∶55, V/V)進一步純化,分離得到化合物2(tR= 31.0 min, 12.3 mg)和化合物3(tR= 14.0 min, 9.6 mg)。Fr.15.3.5經葡聚糖凝膠Sephadex LH-20柱色譜(MeOH)洗脫,得到6個組分(Fr.15.3.5.1-Fr.15.3.5.6)。Fr.15.3.5.2經反相硅膠(MeOH∶H2O 40∶60 → 90∶10, V/V)進行梯度洗脫,得到8個組分(Fr.15.3.5.2.1-Fr.15.3.5.2.8)。Fr.15.3.5.2.3經硅膠柱色譜(石油醚-丙酮10∶1→1∶1 , V/V)進行梯度洗脫并重結晶得到化合物9。Fr.15.3.5.3經硅膠柱色譜(石油醚-丙酮10∶1→1∶1, V/V)進行梯度洗脫,得到5個組分(Fr.15.3.5.3.1-Fr.15.3.5.3.5)。Fr.15.3.5.3.2經硅膠柱色譜(二氯甲烷-甲醇100∶1→1∶1, V/V)進行梯度洗脫,并用半制備液相色譜(CH3CN∶H2O 60∶40, V/V)進一步純化,分離得到化合物10(tR= 9.0 min, 8.3 mg)和化合物8(tR= 16.0 min, 13.1 mg)。

        2.2 細胞毒活性實驗

        采用MTT法檢測寬葉金粟蘭的化學成分對人宮頸癌細胞HeLa、人乳腺癌細胞MCF-7、人前列腺癌細胞DU-145、人肺癌細胞A549和人腦膠質瘤細胞T98G細胞毒性作用。稱取一定量的化合物分別用DMSO溶解后配成30 mmol·L-1的儲備液,使用之前稀釋至20 μmol·L-1,在5% CO2、37 ℃孵育72 h后進行初篩活性,得到效果顯著的化合物。將腫瘤細胞分別配制成細胞懸液接種于96孔板上(每孔100 μL),設置陽性對照組(紫杉醇)和濃度梯度給藥組,將接種好的細胞培養(yǎng)板放入培養(yǎng)箱中培養(yǎng)24 h后分別加入0.625、1.25、2.5、5、10 μmol·L-1的含藥樣品溶液各100 μL,在5% CO2、37 ℃孵育72 h后,每孔加入10 μL配制好的 MTT溶液(5 mg·mL-1,即0.5% MTT)繼續(xù)培養(yǎng)4 h,孵育后使用酶標儀測量OD值,并計算IC50。

        3" 結構鑒定

        化合物1" 白色粉末; [α]25D-5.22(c 0.1, MeOH),UV光譜(MeOH)顯示在235 nm處有最大吸收;IR譜圖顯示存在羰基(1 736和1 645 cm-1)、氨基(3 256和2 925 cm-1)和苯環(huán)(700 cm-1)等特征吸收峰信號。高分辨分子離子峰HR-ESI-MS為m/z 591.248 9" [M + H] +(計算值:C36H34N2O6H, 591.248 9),確定分子式為C36H34N2O6,結合該化合物的13C NMR和DEPT的數據進一步確定不飽和度為21(表1)。然而,從1H NMR譜和13C NMR譜只觀察到17個氫和18個碳的信號,這暗示了化合物1的結構具有對稱性。結合上述分析,根據1H NMR譜和13C NMR譜中所有信號可歸屬給2個非共軛羰基、2個亞甲二氧苯基單元、2個苯環(huán)單元、4個亞甲基和4個次甲基(表1)。

        通過1H-1H COSY譜中的信號表明,-NH/H-10/H-11存在相關,H-13/H-14/H-15存在相關。同時,在HMBC譜中可以觀察到以下關系:H-10與C-9、C-11和C-12存在相關;H-2與C-3、C-6和C-7存在相關;H-6與C-1、C-2、C-4、C-5和C-7存在相關;H-18與C-3和C-4存在相關;H-7與C-1、C-2、C-6、C-8和C-9存在相關;H-11與C-10、C-12和C-13存在相關。以上1H-1H COSY和HMBC數據并結合文獻推測(Wei et al., 2005),分子結構中存在1個亞甲二氧苯基和1個9-氧-10,11-亞甲基苯結構片段,它們之間通過一個由2個次甲基組成的二碳單位連接在一起,這些信息給出了化合物分子一半的結構單元。質譜片段在m/z 296.128 1" [C18H17N1O3+H]+處顯示出特征信號,也證實了上述結論。通過質子H-6與H-7和H-8的NOESY相關性以及NH與H-7和H-8的NOESY相關性并結合文獻(Zhou et al., 2017)表明H-7和H-8與H-7′和H-8′之間的關系為順式構型,而H-7和H-7′與H-8和H-8′之間的關系為反式構型,這表明化合物1具有頭到頭構型的環(huán)丁烷環(huán)(—H-7—H-8—H-8′—H-7′—),并且1個亞甲二氧苯基和1個9-氧-10,11-亞甲基苯結構片段是同向的。因此,可以確定化合物1的結構(圖1)。經Scifinder數據庫檢索,化合物1為一個未見文獻報道的新化合物,其氫譜和碳譜數據見表1。因此,清楚地確定了化合物1的結構,并將化合物1命名為pipercyclobutanamide C。

        其他化合物結構式見圖2。

        化合物2" 白色粉末,分子式為C36H40O9;1H NMR (600 MHz, CD3OD) δ: 0.67 (1H, m, H-2′α), 0.70 (1H, m, H-2β), 0.97 (3H, s, H-14′), 1.21 (3H, s, H-14), 1.26 (1H, m, H-2α), 1.28 (1H, m, H-2′β), 1.39 (3H, s, H-13), 1.75 (1H, m, H-1′), 1.78 (1H, m, H-3′), 1.78 (1H, m, H-5′), 1.79 (1H, m, H-6′β), 1.87 (1H, m, H-4″), 1.88 (1H, m, H-5″), 1.90 (1H, m, H-3), 2.10 (1H, m, H-1), 2.20 (1H, m, H-15α), 2.50 (1H, m, H-6′α), 2.63 (3H, dd, J = 9.0, 7.2 Hz, H-9′), 3.12 (1H, dd, J = 18.6, 7.2 Hz, H-15β), 3.47 (3H, s, MeO-12), 3.95 (1H, s, H-9), 4.16 (1H, d, J = 10.8 Hz, H-15′α), 4.25 (1H, d, J = 10.8 Hz, H-15′β), 5.64 (1H, s, H-13′α), 6.21 (1H, s, H-13′β), 6.94 (1H, m, H-3″); 13C NMR (150 MHz, CD3OD) δ: 28.6 (C-1), 15.2 (C-2), 27.6 (C-3), 151.4 (C-4), 136.4 (C-5), 152.9 (C-6), 129.6 (C-7), 198.6 (C-8), 84.6 (C-9), 58.4 (C-10), 66.6 (C-11), 173.7 (C-12), 19.0 (C-13), 15.2 (C-14), 30.1 (C-15), 27.3 (C-1′), 10.6 (C-2′), 30.4 (C-3′), 79.3 (C-4′), 55.1 (C-5′), 29.1 (C-6′), 60.5 (C-7′), 97.6 (C-8′), 53.8 (C-9′), 43.9 (C-10′), 148.1 (C-11′), 168.8 (C-12′), 123.4 (C-13′), 24.3 (C-14′), 68.5 (C-15′), 170.3 (C-1″), 131.8 (C-2″), 139.2 (C-3″), 14.6 (C-4″), 12.4 (C-5″), 52.3 (MeO-12)。以上理化性質和波譜數據與文獻(Shen et al., 2017)報道的chololactone A基本一致,最終判斷化合物2為chololactone A。

        化合物3" 白色粉末,分子式為C36H40O10;1H NMR (600 MHz, CDCl3) δ: 0.67 (1H, m, H-2′α), 0.92 (3H, s, H-14′), 0.96 (1H, m, H-2α), 1.10 (3H, s, H-14), 1.20 (1H, m, H-2′β), 1.22 (1H, m, H-2β), 1.32 (3H, s, H-13), 1.64 (1H, m, H-15′), 1.77 (1H, m, H-3′), 1.79 (1H, m, H-6′β), 1.81 (3H, m, H-4″), 1.82 (1H, m, H-1′), 1.84 (3H, m, H-5″), 1.87 (1H, m, H-6′α), 2.12 (1H, dd, J = 8.4, 3.6 Hz, H-3), 2.44 (1H, s, OH-5), 3.13 (1H, s, H-9′), 3.41 (1H, s, OH-9), 3.66 (3H, s, J = 12.0 Hz, MeO-12), 3.89 (1H, d, J = 11.4 Hz, H-15′β), 4.03 (1H, m, H-15′α), 4.05 (1H, m, H-9), 5.74 (1H, s, H-13′α), 6.14 (1H, s, H-15α), 6.55 (1H, s, H-13′β), 6.86 (1H, d, J = 7.2 Hz, H-3″); 13C NMR (150 MHz, CDCl3) δ: 28.4 (C-1), 12.3 (C-2), 22.1 (C-3), 148.9 (C-4), 72.1 (C-5), 150.7 (C-6), 137.2 (C-7), 198.3 (C-8), 80.9 (C-9), 56.6 (C-10), 63.8 (C-11), 172.6 (C-12), 25.5 (C-13), 11.8 (C-14), 118.3 (C-15), 28.2 (C-1′), 10.5 (C-2′), 29.3 (C-3′), 78.6 (C-4′), 53.4 (C-5′), 32.5 (C-6′), 57.9 (C-7′), 95.1 (C-8′), 54.4 (C-9′), 42.8 (C-10′), 143.7 (C-11′), 167.7 (C-12′), 125.9 (C-13′), 23.1 (C-14′), 68.7 (C-15′), 167.8 (C-1″), 128.2 (C-2″), 138.2 (C-3″), 14.5 (C-4″), 12.1 (C-5″), 52.8 (MeO-12)。以上理化性質和波譜數據與文獻(He et al., 2011)報道的sarcanolide B基本一致,最終判斷化合物3為sarcanolide B。

        化合物4" 無定形粉末,分子式為C32H36O8;1H NMR (600 MHz, CDCl3) δ: 0.22 (2H, m, H-2β, H-2′β), 0.87 (2H, m, H-2α, H-2′α), 1.00 (6H, s, H-14, H-14′), 1.51 (6H, s, H-13, H-13′), 1.84 (2H, m, H-1, H-1′), 1.98 (2H, s, H-3, H-3′), 2.60 (2H, d, J = 13.2 Hz, H-15β, H-15′β), 2.96 (2H, d, J=13.2 Hz, H-15α, H-15′α), 3.65 (6H, s, MeO-12), 4.01 (2H, s, H-9, H-9′), 7.16 (2H, s, H-6, H-6′); 13C NMR (150 MHz, CDCl3) δ: 24.7 (C-1, C-1′), 14.0 (C-2, C-2′), 27.9 (C-3, C-3′), 147.4 (C-4, C-4′), 135.8 (C-5, C-5′), 138.4 (C-6, C-6′), 137.3 (C-7, C-7′), 199.0 (C-8, C-8′), 81.0 (C-9, C-9′), 58.5 (C-10, C-10′), 47.8 (C-11, C-11′), 175.5 (C-12, C-12′), 28.5 (C-13, C-13′), 15.9 (C-14, C-14′), 38.3 (C-15, C-15′), 52.1 (MeO-12, 12′)。以上理化性質和波譜數據與文獻(Kwon et al., 2006)報道的環(huán)銀線草醇A基本一致,最終判斷化合物4為環(huán)銀線草醇A。

        化合物5" 無色無定形粉末,分子式為C35H38O11;1H NMR (600 MHz, CDCl3) δ: 0.63 (1H, m, H-2′α), 0.95 (1H, m, H-2α), 1.03 (3H, s, H-14′), 1.13 (1H, m, H-2β), 1.16 (3H, s, H-14), 1.21 (1H, m, H-2′β), 1.54 (1H, m, H-1′), 1.63 (3H, m, H-13), 1.81 (3H, m, H-5″), 1.82 (1H, m, H-3), 1.86 (1H, s, H-15α), 2.19 (1H, m, H-1), 2.35 (1H, m, H-5′), 2.45 (1H, m, H-6′α), 2.63 (1H, m, H-9′), 2.71 (1H, m, H-1′), 2.92 (1H, dd, J = 17.4, 12.6 Hz, H-6′β), 4.05 (1H, d, J = 11.4 Hz, H-15′β), 4.08 (1H, d, J = 11.4 Hz, H-15′α), 4.42 (1H, dd, J = 13.2, 10.8 Hz, H-13′β), 4.48 (1H, dd, J = 13.2, 5.4 Hz, H-13′α), 6.86 (1H, m, H-3″); 13C NMR (150 MHz, CDCl3) δ: 24.2 (C-1), 9.1 (C-2), 30.4 (C-3), 77.1 (C-4), 160.4 (C-5), 123.2 (C-6), 150.4 (C-7), 95.1 (C-8), 199.9 (C-9), 56.8 (C-10), 127.3 (C-11), 171.4 (C-12), 10.9 (C-13), 21.1 (C-14), 40.1 (C-15), 26.5 (C-1′), 10.3 (C-2′), 29.6 (C-3′), 77.1 (C-4′), 52.9 (C-5′), 21.6 (C-6′), 168.1 (C-7′), 85.6 (C-8′), 50.9 (C-9′), 44.5 (C-10′), 127.3 (C-11′), 172.5 (C-12′), 54.3 (C-13′), 24.0 (C-14′), 71.1 (C-15′), 169.0 (C-1″), 128.0 (C-2″), 139.0 (C-3″), 14.3 (C-4″), 11.8 (C-5″)。以上理化性質和波譜數據與文獻(Xu et al., 2007)報道的chloramultiol D基本一致,最終判斷化合物5為chloramultiol D。

        化合物6" 無色無定形粉末,分子式為C32H33O5;1H NMR (600 MHz, CDCl3) δ: 0.66 (1H, m, H-2′), 0.75 (1H, m, H-2′), 0.88 (3H, s, H-14′), 1.02 (1H, m, H-2), 1.14 (3H, s, H-14), 1.22 (1H, m, H-3′), 1.23 (1H, m, H-2), 1.41 (1H, m, H-1′), 1.62 (1H, m, H-4′), 1.71 (3H, s, H-13), 1.81 (1H, m, H-3), 1.83 (1H, m, H-15), 1.83 (1H, m, H-3), 2.07 (3H, s, H-2″), 2.17 (1H, m, H-5′), 2.25 (1H, m, H-1α), 2.29 (1H, m, H-1β), 2.56 (1H, m, H-6′), 2.63 (1H, m, H-6′), 2.70 (1H, m, H-15), 2.71 (1H, dd, J=15.6, 6.6 Hz, H-9′), 3.90 (1H, m, H-15′β), 4.04 (1H, dd, J = 10.8, 4.8 Hz, H-15′α), 4.41 (1H, d, J = 14.4 Hz, H-13′β), 4.48 (1H, d, J = 14.4 Hz, H-13′α); 13C NMR (150 MHz, CDCl3) δ: 24.2 (C-1), 9.3 (C-2), 30.1 (C-3), 77.3 (C-4), 160.4 (C-5), 123.2 (C-6), 149.8 (C-7), 95.0 (C-8), 199.4 (C-9), 57.0 (C-10), 127.0 (C-11), 171.2 (C-12), 11.2 (C-13), 21.1 (C-14), 39.7 (C-15), 25.8 (C-1′), 16.2 (C-2′), 23.4 (C-3′), 44.7 (C-4′), 51.6 (C-5′), 25.1 (C-6′), 166.7 (C-7′), 85.4 (C-8′), 50.4 (C-9′), 43.9 (C-10′), 127.0 (C-11′), 171.5 (C-12′), 55.7 (C-13′), 22.4 (C-14′), 67.7 (C-15′), 172.8 (C-1″), 21.2 (C-2″)。以上理化性質和波譜數據與文獻(Wang et al., 2015)報道的chlorasessilifol B基本一致,最終判斷化合物6為chlorasessilifol B。

        化合物7" 白色粉末,分子式C41H48O13;1H NMR (600 MHz, CD3OD) δ: 0.34 (1H, dd, J=7.8, 4.2 Hz, H-2β), 0.75 (1H, m, H-2′β), 0.91 (3H, s, H-14′), 0.99 (1H, m, H-2α), 1.06 (3H, s, H-14), 1.31 (1H, dd, J=9.6, 4.2 Hz, H-2′α), 1.47 (1H, m, H-3′), 1.69 (1H, m, H-1′), 1.77 (1H, m, H-1), 1.80 (1H, dd, J=6.0 Hz, H-9′), 1.83 (3H, s, H-13), 1.85 (1H, m, H-5″), 1.88 (1H, m, H-4″), 1.95 (1H, m, H-3), 2.45 (1H, dd, J=18.6, 6.0 Hz, H-6β), 2.55 (1H, ddd, J=10.2, 6.0, 4.8 Hz, H-15β), 2.82 (1H, m, H-6α), 2.86 (1H, m, H-15α), 3.32 (3H, s, MeO-1), 3.70 (3H, s, MeO-12), 3.79 (1H, d, J=11.4 Hz, H-15′β), 4.76 (1H, d, J=13.2 Hz, H-13′β), 4.87 (1H, d, J=9.0 Hz, H-13′α), 3.90 (1H, s, H-9), 3.98 (1H, d, J=3.0 Hz, H-6), 4.23 (1H, d, J=11.4 Hz, H-15′α), 6.96 (1H, m, H-3″); 13C NMR (150 MHz, CD3OD) δ: 26.7 (C-1), 16.1 (C-2), 25.4 (C-3), 143.1 (C-4), 133.7 (C-5), 41.9 (C-6), 134.7 (C-7), 202.1 (C-8), 80.9 (C-9), 52.4 (C-10), 146.6 (C-11), 172.1 (C-12), 20.1 (C-13), 15.8 (C-14), 26.0 (C-15), 26.4 (C-1′), 12.5 (C-2′), 29.1 (C-3′), 77.7 (C-4′), 62.4 (C-5′), 24.2 (C-6′), 17.5 (C-7′), 94.8 (C-8′), 57.3 (C-9′), 46.1 (C-10′), 124.6 (C-11′), 173.4 (C-12′), 55.9 (C-13′), 26.8 (C-14′), 72.8 (C-15′), 170.1 (C-1″), 129.5 (C-2″), 139.5 (C-3″), 14.6 (C-4″), 12.4 (C-5″), 173.7 (C-1), 29.1 (C-2), 29.1 (C-3), 174.5 (C-4), 52.9 (MeO-12), 52.3 (MeO-1)。以上理化性質和波譜數據與文獻(Wang et al., 2011)報道的chlorajaponal基本一致,最終判斷化合物7為chlorajaponal。

        化合物8" 白色粉末,分子式為C39H42O14;1H NMR (600 MHz, CDCl3) δ: 0.60 (1H, dt, J = 12.0 Hz, H-2′β), 0.80 (1H, m, H-2α), 0.83 (3H, s, H-14), 0.93 (3H, s, H-14′), 1.04 (1H, dd, J = 12.0, 6.0 Hz, H-2β), 1.22 (1H, d, J = 6.0 Hz, H-2′α), 1.46 (1H, m, H-3′), 1.62 (3H, s, H-13), 1.65 (1H, m, H-1′), 1.80 (1H, m, H-3), 1.80 (1H, m, H-15β), 1.83 (1H, m, H-1), 1.85 (1H, dd, H-5″), 2.36 (1H, dd, J = 12.0 Hz, H-5′), 2.53 (1H, m, H-2β), 2.60 (1H, m, H-3β), 2.64 (1H, m, H-9′), 2.66 (1H, m, H-2α), 2.66 (1H, m, H-3α), 2.70 (1H, m, H-6′β), 2.72 (1H, m, H-15α), 2.97 (1H, dd, J = 18.0, 12.0 Hz, H-6′α), 3.75 (1H, s, H-9), 3.87 (1H, d, J = 12.0 Hz, H-15′β), 4.51 (1H, d, J = 12.0 Hz, H-13′β), 4.59 (1H, d, J = 12.0 Hz, H-15′α), 4.64 (1H, dd, J = 12.0, 6.0 Hz, H-4″β), 4.84 (1H, dd, J = 12.0, 6.0 Hz, H-4″α), 5.17 (1H, d, J = 12.0 Hz, H-13′α), 6.72 (1H, m, H-3″); 13C NMR (150 MHz, CDCl3) δ: 29.9 (C-1), 9.7 (C-2), 31.5 (C-3), 78.2 (C-4), 164.6 (C-5), 124.3 (C-6), 154.5 (C-7), 105.0 (C-8), 80.0 (C-9), 51.1 (C-10), 125.4 (C-11), 174.6 (C-12), 10.8 (C-13), 14.4 (C-14), 41.5 (C-15), 27.8 (C-1′), 10.8 (C-2′), 30.3 (C-3′), 78.2 (C-4′), 56.2 (C-5′), 25.0 (C-6′), 177.4 (C-7′), 87.4 (C-8′), 52.0 (C-9′), 46.6 (C-10′), 124.0 (C-11′), 173.4 (C-12′), 51.0 (C-13′), 24.4 (C-14′), 74.8 (C-15′), 168.9 (C-1″), 130.3 (C-2″), 137.7 (C-3″), 62.8 (C-4″), 12.8 (C-5″), 174.2 (C-1), 29.8 (C-2), 29.8 (C-3), 173.9 (C-4)。以上理化性質和波譜數據與文獻(Kim et al., 2009)報道的tianmushanol基本一致,最終判斷化合物8為tianmushanol。

        化合物9" 白色粉末,分子式為C40H44O14;1H NMR (600 MHz, CDCl3) δ: 0.65 (1H, m, H-2′), 0.82 (3H, s, H-14), 0.92 (3H, s, H-14′), 0.95 (1H, m, H-2), 1.16 (1H, m, H-2), 1.29 (1H, m, H-2′), 1.46 (1H, m, H-3′), 1.59 (1H, m, H-1′), 1.69 (1H, m, H-15), 1.71 (3H, s, H-13), 1.82 (1H, m, H-3), 1.93 (3H, s, H-e), 1.94 (1H, m, H-1), 2.14 (1H, dd, J = 12.0, 7.1 Hz, H-5′), 2.47 (1H, m, H-g), 2.49 (1H, m, H-15), 2.54 (1H, m, H-h), 2.54 (1H, m, H-6′), 2.62 (1H, s, H-9′), 2.66 (1H, m, H-h), 2.68 (1H, m, H-g), 2.92 (1H, m, H-6′), 3.44 (3H, s, -OCH3), 3.73 (1H, d, J = 12.0 Hz, H-15′), 3.83 (3H, s, H-9), 4.52 (1H, d, J = 12.0 Hz, H-13′), 4.66 (1H, dd, J = 12.0 Hz, H-d), 4.73 (1H, dd, J = 12.0 Hz, H-d), 4.92 (1H, d, J = 12.0 Hz, H-15′), 5.23 (1H, d, J = 12.0 Hz, H-13′), 6.60 (1H, m, H-c); 13C NMR (150 MHz, CDCl3) δ: 29.2 (C-1), 9.6 (C-2), 29.7 (C-3), 77.5 (C-4), 164.3 (C-5), 122.4 (C-6), 150.8 (C-7), 105.0 (C-8), 75.5 (C-9), 49.7 (C-10), 125.7 (C-11), 170.8 (C-12), 10.7 (C-13), 14.0 (C-14), 40.2 (C-15), 26.4 (C-1′), 10.3 (C-2′), 29.0 (C-3′), 77.5 (C-4′), 55.8 (C-5′), 23.5 (C-6′), 174.0 (C-7′), 85.3 (C-8′), 51.1 (C-9′), 45.0 (C-10′), 123.3 (C-11′), 171.3 (C-12′), 53.7 (C-13′), 24.1 (C-14′), 72.8 (C-15′), 167.6 (C-a), 130.6 (C-b), 135.6 (C-c), 60.8 (C-d), 12.8 (C-e), 171.8 (C-f), 28.8 (C-g), 29.0 (C-h), 171.8 (C-i), 52.2 (MeO-8)。以上理化性質和波譜數據與文獻(Ran et al., 2010)報道的spicachlorantins B基本一致,最終判斷化合物9為spicachlorantins B。

        化合物10" 白色粉末,分子式為C39H40O14;1H NMR (600 MHz, CDCl3) δ: 0.64 (1H, dt, J = 12.0, 6.0 Hz, H-2′β), 0.96 (3H, s, H-14′), 1.03 (1H, m, H-2β), 1.16 (3H, s, H-14), 1.23 (1H, m, H-2α), 1.28 (1H, m, H-2′α), 1.46 (1H, m, H-3′), 1.56 (1H, m, H-1′), 1.74 (1H, m, H-15β), 1.80 (1H, m, H-3), 1.82 (3H, s, H-13), 1.86 (3H, m, H-5″), 2.22 (1H, dd, J = 12.0, 6.0 Hz, H-5′), 2.29 (1H, m, H-1), 2.40 (1H, dd, J = 18.0, 6.0 Hz, H-6′β), 2.50 (1H, m, H-3β), 2.53 (1H, m, H-2β), 2.59 (1H, dd, J = 12.0, 6.0 Hz, H-9′), 2.67 (1H, m, H-15α), 2.73 (1H, m, H-3α), 2.77 (1H, m, H-2α), 3.04 (1H, dd, J = 18.0 Hz, H-6′α), 4.03 (1H, d, J = 12.0 Hz, H-15′β), 4.33 (1H, d, J = 12.0 Hz, H-15′α), 4.51 (1H, d, J = 12.0 Hz, H-13′β), 4.63 (1H, dd, J = 12.0, 6.0 Hz, H-4″β), 4.75 (1H, dd, J = 12.0 Hz, H-4″α), 5.40 (1H, d, J = 12.0 Hz, H-13′α), 6.57 (1H, dd, J = 6.0 Hz, H-3″); 13C NMR (150 MHz, CDCl3) δ: 24.2 (C-1), 9.3 (C-2), 30.1 (C-3), 77.5 (C-4), 160.7 (C-5), 123.7 (C-6), 136.4 (C-7), 94.0 (C-8), 200.1 (C-9), 56.9 (C-10), 129.4 (C-11), 170.2 (C-12), 11.3 (C-13), 20.8 (C-14), 40.0 (C-15), 26.7 (C-1′), 9.9 (C-2′), 29.7 (C-3′), 77.5 (C-4′), 54.9 (C-5′), 24.0 (C-6′), 173.5 (C-7′), 85.5 (C-8′), 51.9 (C-9′), 45.1 (C-10′), 123.7 (C-11′), 170.7 (C-12′), 53.3 (C-13′), 24.2 (C-14′), 74.1 (C-15′), 167.8 (C-1″), 129.4 (C-2″), 136.4 (C-3″), 61.7 (C-4″), 12.8 (C-5″), 172.1 (C-1), 28.8 (C-2), 28.8 (C-3), 172.1 (C-4)。以上理化性質和波譜數據與文獻(Wu et al., 2008)報道的spicachlorantins A基本一致,最終判斷化合物10為spicachlorantins A。

        化合物11" 白色粉末,分子式為C41H44O14;1H NMR (600 MHz, CDCl3) δ: 0.67 (1H, ddd, J = 9.2, 8.5, 5.2 Hz, H-2′α), 0.98 (1H, m, H-2), 1.00 (3H, s, H-14′), 1.12 (3H, t, J = 7.2 Hz, -CH3), 1.20 (3H, s, H-14), 1.29 (1H, m, H-2), 1.30 (1H, m, H-2′β), 1.53 (1H, ddd, J = 9.2, 7.5, 3.5 Hz, H-3′), 1.74 (1H, ddd, J = 9.2, 8.5, 4.6 Hz, H-1′), 1.79 (3H, s, H-13), 1.88 (3H, s, H-e), 1.90 (1H, m, H-15), 1.93 (1H, m, H-3), 2.07 (1H, ddd, J = 7.9, 6.5, 4.0 Hz, H-1), 2.08 (1H, m, H-6′), 2.53 (1H, dd, J = 17.8, 7.5 Hz, H-5′), 2.57 (1H, m, H-h), 2.58 (1H, m, H-g), 2.62 (1H, m, H-h), 2.64 (1H, m, H-g), 2.73 (1H, m, H-15), 2.75 (1H, s, H-9′), 3.10 (1H, m, H-6′), 3.74 (1H, m, -OCH2-), 3.97 (1H, t, J = 6.0 Hz, H-c), 4.02 (1H, m, -OCH2-), 4.58 (1H, d, J = 12.0 Hz, H-15′), 4.60 (1H, d, J = 12.3 Hz, H-13′), 4.69 (1H, m, H-d), 4.90 (3H, s, H-e), 5.30 (1H, d, J = 12.3 Hz, H-13′), 6.68 (1H, t, J = 6.0 Hz, H-c); 13C NMR (150 MHz, CDCl3) δ: 26.3 (C-1), 10.9 (C-2), 32.1 (C-3), 77.8 (C-4), 162.5 (C-5), 118.5 (C-6), 151.9 (C-7), 101.5 (C-8), 205.1 (C-9), 56.6 (C-10), 129.4 (C-11), 172.1 (C-12), 12.2 (C-13), 24.0 (C-14), 41.1 (C-15), 27.9 (C-1′), 11.4 (C-2′), 30.1 (C-3′), 77.6 (C-4′), 56.1 (C-5′), 25.7 (C-6′), 176.8 (C-7′), 87.8 (C-8′), 52.8 (C-9′), 48.7 (C-10′), 125.4 (C-11′), 173.5 (C-12′), 55.8 (C-13′), 24.6 (C-14′), 75.2 (C-15′), 168.3 (C-a), 130.7 (C-b), 137.9 (C-c), 62.6 (C-d), 12.8 (C-e), 173.5 (C-f), 30.0 (C-g), 30.0 (C-h), 173.4 (C-i), 64.0 (-OCH2-), 16.6 (MeO-12)。以上理化性質和波譜數據與文獻(Zhang et al., 2012)報道的及已靈素A基本一致,最終判斷化合物11為及已靈素A。

        化合物12" 白色粉末,分子式為C40H44O14;1H NMR (600 MHz, CDCl3) δ: 0.41 (1H, m, H-2α), 0.82 (1H, m, H-2′β), 0.84 (3H, s, H-14′), 1.03 (3H, s, H-14), 1.04 (1H, m, H-2β), 1.29 (1H, m, H-2′α), 1.31 (1H, m, H-3′), 1.43 (1H, m, H-1′), 1.71 (1H, m, H-5′), 1.87 (1H, m, H-3), 1.88 (3H, s, H-5″), 1.88 (3H, s, H-13), 1.99 (1H, d, J= 2.2 Hz, H-9′), 2.04 (1H, m, H-1), 2.39 (1H, m, H-6″β), 2.43 (1H, m, H-8″α), 2.71 (1H, m, H-7″α), 2.74 (1H, m, H-7″β), 2.74 (1H, m, H-6′α), 2.85 (1H, m, H-8″β), 3.57 (1H, d, J = 11.8 Hz, H-15′β), 3.64 (3H, s, MeO-12), 3.81 (1H, s, H-9), 4.09 (1H, s, H-6), 4.47 (1H, d, J = 11.8 Hz, H-15′α), 4.49 (1H, dd, J = 14.7, 4.5 Hz, H-4″α), 4.49 (1H, d, J = 11.9 Hz, H-13′β), 4.57 (1H, dd, J = 15.0, 4.6 Hz, H-4″β), 4.85 (3H, br s, H-15), 5.04 (1H, d, J = 11.8 Hz, H-13′α), 6.55 (1H, m, H-3″); 13C NMR (150 MHz, CDCl3) δ: 25.5 (C-1), 16.4 (C-2), 23.5 (C-3), 144.9 (C-4), 136.6 (C-5), 41.0 (C-6),

        132.1 (C-7), 200.3 (C-8), 79.8 (C-9), 51.4 (C-10),

        147.9 (C-11), 169.9 (C-12), 20.1 (C-13), 15.0 (C-14), 65.1 (C-15), 25.1 (C-1′), 11.6 (C-2′), 27.8 (C-3′), 76.6 (C-4′), 59.2 (C-5′), 23.1 (C-6′), 173.4 (C-7′), 91.9 (C-8′), 62.2 (C-9′), 43.9 (C-10′), 123.7 (C-11′), 172.0 (C-12′), 54.2 (C-13′), 26.2 (C-14′), 72.0 (C-15′), 167.0 (C-1″), 129.1 (C-2″), 135.5 (C-3″), 61.6 (C-4″), 13.0 (C-5″), 171.9 (C-6″), 28.6 (C-7″), 29.1 (C-8″), 172.0 (C-9″), 52.4 (MeO-12)。以上理化性質和波譜數據與文獻(Ran et al., 2010)報道的chloramultiols A基本一致,最終判斷化合物12 為chloramultiols A。

        4" 藥理活性研究

        采用MTT法初步研究化合物1-12對人宮頸癌細胞HeLa、人乳腺癌細胞MCF-7、人前列腺癌細胞DU-145、人肺癌細胞A549和人腦膠質瘤細胞T98G的細胞毒活性,以紫杉醇為陽性對照組。細胞毒活性測試結果顯示,僅化合物2和7對人宮頸癌細胞HeLa有抑制作用,其他化合物均無抑制作用(表2)。

        5" 討論與結論

        本研究通過用硅膠柱層析、反相柱色譜、Sephadex LH-20凝膠和半制備高效液相等色譜技術對寬葉金粟蘭95%乙醇提取物的乙酸乙酯部位分離并鑒定,得到12個化合物,包括一個新的環(huán)丁烷酰胺類化合物和11個倍半萜二聚體類化合物。其中,化合物1為新化合物,化合物2-7、9-12首次從寬葉金粟蘭中分離得到。通過MTT法測試化合物細胞毒活性,結果表明僅化合物2和7對人宮頸癌細胞HeLa有抑制作用,IC50分別為(4.50±0.27) μmol·L-1和(4.25±0.08) μmol·L-1,其他化合物均無抑制作用。此外,我們對寬葉金粟蘭中分離的化合物進行了體外抗HIV-1細胞活性篩選,通過對HIV-1的感染性滴定、C8166細胞毒性和HIV-1ⅢB致細胞病變(CPE)的抑制實驗,結果表明化合物7對C8166細胞的毒性極大,CC50低于1 μmol·L-1。所有化合物對HIV-1ⅢB引起的合胞體形成的抑制作用弱,TI值均低于2,均無明顯的抗HIV-1細胞活性。

        有研究發(fā)現,從金粟蘭植物中分離得到倍半萜二聚體化合物,并采用SYBR-Green抗惡性瘧原蟲Dd2(耐氯喹)檢測法檢測所有化合物的抗瘧原蟲活性(Guo et al., 2016;Zhou et al., 2017)。其中,化合物fortunilide A、sarglabolide J和chlorajaponilide C的IC50值分別為(5.2±0.6) nmol·L-1、(7.2±1.3) nmol·L-1 和(1.1±0.2) nmol·L-1,與陽性對照青蒿素[IC50=(4.0±4.2)nmol·L-1]具有相似的效力。從金粟蘭屬植物銀線草(C. japonicus)分離得到的倍半萜二聚體化合物chlojapolide A、shizukaol B、shizukaol G和shizukaol D對RAW 264.7巨噬細胞脂多糖(LPS)誘導的一氧化氮(NO)產生表現出明顯的抑制作用,IC50值在6.91~15.75 μmol·L-1范圍內,比陽性對照槲皮素(IC50=15.90 μmol·L-1)更活躍。因此,在后續(xù)研究中將評價倍半萜二聚體化合物的抗瘧原蟲和抗炎活性,對含量較大的化合物7進行部分結構修飾并進行抗瘧原蟲和抗炎活性檢測,進一步探索倍半萜二聚體成分的構效關系與作用機制,以期尋找到更多具有生物活性的天然產物,同時也將開展更廣泛的其他生物活性評價,為寬葉金粟蘭的開發(fā)利用奠定基礎。

        參考文獻:

        CAO CM, PENG Y, XIAO PG, et al., 2008. Advance in on chemical constituent and bioactivity research of genus Chloranthus" [J]. China J Chin Mat Med, (13):" 1509-1515." [曹聰梅, 彭勇, 肖培根. 金粟蘭屬植物的化學成分和藥理作用研究進展 [J]. 中國中藥雜志, (13):nbsp; 1509-1515.]

        GUO YQ, ZHAO JJ, LI ZZ, et al., 2016. Natural nitric oxide (NO) inhibitors from Chloranthus japonicus [J]. Bioorg Med Chem Lett, 26(13):" 3163-3166.

        HE XF, ZHANG S, ZHU RX, et al., 2011. Sarcanolides A and B: two sesquiterpenoid dimers with a nonacyclic scaffold from Sarcandra hainanensis [J]. Tetrahedron, 67(18):" 3170-3174.

        KIM SY, KASHIWADA Y, KAWAZOE K, et al., 2009. Spicachlorantins A and B, new dimeric sesquiterpenes from the roots of Chloranthus spicatus [J]. Phytochem Lett, 2(3):" 110-113.

        KWON OE, LEE HS, LEE SW, et al., 2006. Dimeric sesquiterpenoids isolated from Chloranthus japonicus inhibited the expression of cell adhesion molecules [J]. J Ethnopharmacol, 104(1/2):" 270-277.

        LUO G, MA XX, LUO YM, et al., 2014. Studies on the chemical constituents from the roots of Chloranthus henryi" [J]. China J Exp Tradit Med Form, 20(1):" 47-50." [羅杠, 馬興霞, 羅永明, 等, 2014. HPLC同時測定金粟蘭植物中香豆素及倍半萜內酯類有效成分的含量 [J]. 中國實驗方劑學雜志, 20 (1):" 47-50.]

        RAN XH, TENG F, CHEN CX, et al., 2010. Chloramultiols A-F, lindenane-type sesquiterpenoid dimers from Chloranthus multistachys [J]. J Nat Prod, 73(5):" 972-975.

        SHEN CP, LUO JG, YANG MH, et al., 2017. Sesquiterpene dimers from the roots of Chloranthus holostegius with moderate anti-inflammatory activity [J]. Phytochemistry, 137: 117-122.

        WANG LJ, XIONG J, LAU C, et al., 2015. Sesquiterpenoids and further diterpenoids from the rare Chloranthaceae plant Chloranthus sessilifolius [J]. J Asian Nat Prod Res, 17(12):" 1220-1230.

        WANG QH, KUANG HX, YANG BY, et al., 2011. Sesquiterpenes from Chloranthus japonicus [J]. J Nat Prod, 74(1):" 16-20.

        WEI K, LI W, KOIKE K, et al., 2005. Nigramides A-S, dimeric amide alkaloids from the roots of Piper nigrum [J]. J Org Chem, 70(4):" 1164-1176.

        WU B, CHEN J, QU H, et al., 2008. Complex sesquiterpenoids with tyrosinase inhibitory activity from the leaves of Chloranthus tianmushanensis [J]. J Nat Prod, 71(5):" 877-880.

        XU YJ, TANG CP, KE CQ, et al., 2007. Mono- and di-sesquiterpenoids from Chloranthus spicatus [J]. J Nat Prod, 70(12):" 1987-1990.

        YANG XW, 2017. Bioactive material basis of medicinal plants in genus Chloranthus" [J]. Mod Chin Med, 19(4): 459-481." [楊秀偉, 2017. 金粟蘭屬藥用植物的物質基礎 [J]. 中國現代中藥, 19(4):" 459-481.]

        ZHANG M, IINUMA M, WANG JS, et al., 2012. Terpenoids from Chloranthus serratus and their anti-inflammatory activities [J]. J Nat Prod, 75(4):" 694-698.

        ZHANG SS, FU JJ, CHEN HY, et al., 2017. Sesquiterpenes with anti-metastasis breast cancer activity from Chloranthus henryi [J]. China J Chin Mat Med, 42(20):" 3938-3944." [張珊珊, 付劍江, 陳懷遠, 等, 2017. 寬葉金粟蘭中具抗乳腺癌轉移活性的倍半萜類化學成分研究 [J]. 中國中藥雜志, 42(20):" 3938-3944.]

        ZHOU B, WU Y, DALAL S, et al., 2017. Nanomolar antimalarial agents against chloroquine-resistant Plasmodium falciparum from medicinal plants and their structure-activity relationships [J]. J Nat Prod, 80(1):" 96-107.

        (責任編輯" 周翠鳴)

        猜你喜歡
        化學成分
        栽培黃芩與其對照藥材的HPLC指紋圖譜及近紅外圖譜比較研究
        不同外形、年份六堡茶品質變化分析
        羌活的化學成分及藥理作用研究進展
        壯藥積雪草主要化學成分及對神經系統(tǒng)作用的研究進展
        山荊子化學成分與藥理作用研究進展
        金線蓮的研究進展
        九龍?zhí)僖宜嵋阴ゲ课换瘜W成分的分離鑒定
        雪靈芝的研究進展
        科技視界(2016年9期)2016-04-26 12:19:35
        雙齒圍沙蠶化學成分及其浸膏抗腫瘤活性的研究
        真海鞘殼化學成分分離及其浸膏抑制人肝癌細胞HepG2活性的研究
        久久中文字幕无码一区二区| 日本高清视频永久网站www| 亚洲av手机在线观看| 激情综合五月天开心久久| 日韩一级特黄毛片在线看| 国产激情视频一区二区三区| 免费在线观看av不卡网站| 国产黄色看三级三级三级| 无遮挡十八禁在线视频国产制服网站| 久久精品国产69国产精品亚洲| 无码毛片内射白浆视频| 国产丝袜美腿中文字幕| 中国少妇和黑人做爰视频| 巨臀中文字幕一区二区| 蜜桃臀无码内射一区二区三区| 丁字裤少妇露黑毛| 91精彩视频在线观看| 人人爽人人爱| 免费无码a片一区二三区| 中文有码亚洲制服av片| 日本岛国一区二区三区四区| 中文字幕日本熟妇少妇| 国产综合久久久久影院| 国产尤物精品自在拍视频首页| 东京无码熟妇人妻av在线网址| 18禁黄污吃奶免费看网站| 午夜熟女插插xx免费视频| 美利坚日韩av手机在线| 天天色天天操天天日天天射| 国产毛片精品一区二区色| A阿V天堂免费无码专区| 免费黄色电影在线观看| 无码少妇一区二区性色av| 野花香社区在线视频观看播放| 91色老久久偷偷精品蜜臀懂色 | h在线国产| 8888四色奇米在线观看| 五十路丰满中年熟女中出| 丁香美女社区| 国产精品免费无遮挡无码永久视频| 免费人成视网站在线剧情|