doi:10.3969/j.issn.1000-4440.2024.05.013
收稿日期:2023-12-20
基金項(xiàng)目:天津市農(nóng)業(yè)科學(xué)院財(cái)政種業(yè)創(chuàng)新研究項(xiàng)目(2023ZYCX011)
作者簡(jiǎn)介:吳鵬飛(1991-),男,河北衡水人,博士,助理研究員,主要從事家禽育種研究工作。(E-mail)wu_p_fei@163.com
通訊作者:夏樹(shù)立,(E-mail)tjxmsxshl@sina.com
摘要:" 天津猴雞是中國(guó)珍貴的裸頸雞遺傳資源,為在全基因組范圍內(nèi)探究其裸頸發(fā)育相關(guān)基因,本研究采集天津猴雞雜交F1代裸頸雞和常羽雞頸部皮膚組織用于轉(zhuǎn)錄組測(cè)序。加權(quán)基因共表達(dá)網(wǎng)絡(luò)分析(WGCNA)結(jié)果顯示,識(shí)別到的10個(gè)基因模塊中只有藍(lán)綠色(turquoise)和藍(lán)色(blue)基因模塊與裸頸表型顯著相關(guān),共計(jì)583個(gè)基因;GO功能富集分析富集到脂滴組織、甘油三酯儲(chǔ)存負(fù)調(diào)控以及肌肉收縮等脂肪和肌肉相關(guān)生物學(xué)過(guò)程等條目;KEGG通路分析也富集到多條脂肪代謝相關(guān)通路,包括PPAR信號(hào)通路和甘油酯代謝等;蛋白質(zhì)互作網(wǎng)絡(luò)分析結(jié)果顯示ACTN2基因編碼的蛋白質(zhì)的連通性最高,其次是MYL10基因編碼的蛋白質(zhì),另外,還發(fā)現(xiàn)多個(gè)密切參與毛囊發(fā)育的基因,包括SOX9和PPARGC等。本研究結(jié)果將為進(jìn)一步揭示并完善雞裸頸的形成和發(fā)育奠定基礎(chǔ),同時(shí)對(duì)天津猴雞的保護(hù)、開(kāi)發(fā)和利用具有重要意義。
關(guān)鍵詞:" 天津猴雞;裸頸性狀;加權(quán)基因共表達(dá)網(wǎng)絡(luò)分析(WGCNA)
中圖分類(lèi)號(hào):" S831.2""" 文獻(xiàn)標(biāo)識(shí)碼:" A"" "文章編號(hào):" 1000-4440(2024)05-0881-09
Exploration of genes related to the naked neck trait in Tianjin-monkey chickens based on WGCNA
WU Pengfei1,2,3," XIA Shuli1,2,3," YU Haitao1,2,3," ZHAO Xianghua1,2,3," WANG Kang4
(1.Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China;2.Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin 300381, China;3.Tianjin Engineering Research Center of Animal Healthy Farming, Tianjin 300381, China;4.College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China)
Abstract:" Tianjin-monkey chicken is a precious genetic resource of naked neck chicken in China. To identify genes related to the naked neck phenotype at the whole-genome level, we collected neck skin tissue from the hybrid F1 generation of Tianjin-monkey chickens for transcriptome sequencing. The results showed that among the 10 gene modules identified by weighted gene co-expression network analysis (WGCNA), only the turquoise and blue modules were significantly associated with the naked neck phenotype, comprising a total of 583 genes. GO enrichment analysis revealed biological process terms related to fat and muscle, including lipid droplet organization, negative regulation of triglyceride storage and muscle contraction. KEGG pathway analysis also identified multiple pathways related to fat metabolism, such as PPAR signaling pathway and glycerolipid metabolism. Protein-protein interaction network analysis revealed that the protein encoded by ACTN2 had the highest connectivity, followed by the protein encoded by MYL10. Furthermore, several genes closely involved in hair follicle development, such as SOX9 and PPARGC, were also found. The results of this study can lay a foundation for further revealing and improving the formation and development of naked neck in chickens. Moreover, it is of great significance for the protection, development, and utilization of Tianjin-monkey chicken.
Key words:" Tianjin-monkey chicken;naked neck trait;weighted gene co-expression network analysis (WGCNA)
禽肉和禽蛋在市場(chǎng)上廣受消費(fèi)者歡迎,禽肉富含蛋白質(zhì)、維生素和礦物質(zhì)等,并含有少量飽和脂肪酸;禽蛋是最常見(jiàn)的動(dòng)物蛋白質(zhì)來(lái)源之一,除維生素、礦物質(zhì)和蛋白質(zhì)外還含有豐富的抗氧化劑,如葉黃素和玉米黃質(zhì)對(duì)眼睛健康大有裨益。過(guò)去幾十年家禽產(chǎn)業(yè)在世界范圍內(nèi)獲得快速發(fā)展,然而高密度飼養(yǎng)伴隨著全球氣候變暖以及夏季高溫造成的熱應(yīng)激對(duì)家禽養(yǎng)殖的威脅越來(lái)越嚴(yán)重。雞是恒溫動(dòng)物,成年個(gè)體體溫維持在41~42 ℃,蛋雞最適環(huán)境溫度為19~20 ℃,肉雞最適環(huán)境溫度為18~22 ℃,環(huán)境溫度過(guò)高可能會(huì)打破雞體內(nèi)產(chǎn)熱和散熱的動(dòng)態(tài)平衡,導(dǎo)致熱應(yīng)激從而影響家禽的健康和生產(chǎn)性能。裸頸雞主要分布于熱帶地區(qū),尤其是高溫潮濕氣候地區(qū),由于羽毛覆蓋率比常羽雞低,裸頸雞具有明顯的抗熱應(yīng)激特性。天津猴雞屬于裸頸雞的一種,屬肉蛋兼用型地方品種,是中國(guó)珍貴的裸頸雞遺傳資源。
研究結(jié)果表明,裸頸性狀由裸頸基因Na控制,位于常染色體,不完全顯性遺傳,該基因能減少雞的羽毛覆蓋率(相對(duì)于體重),與常羽雞相比裸頸雜合個(gè)體(Nana)和純合個(gè)體(NaNa)羽毛覆蓋率分別減少20%和40%。Na基因起初被認(rèn)為位于1號(hào)染色體上,之后法國(guó)一個(gè)研究團(tuán)隊(duì)將其定位于3號(hào)染色體長(zhǎng)臂的一段區(qū)域內(nèi),并通過(guò)SNP標(biāo)記縮小該區(qū)域至770 kb,最終,通過(guò)檢測(cè)該區(qū)域內(nèi)基因的表達(dá)量鑒定到BMP12是裸頸發(fā)育的關(guān)鍵基因。骨形態(tài)發(fā)生蛋白(Bone morphogenetic protein,BMP)是一類(lèi)生長(zhǎng)因子,在胚胎發(fā)育、成骨、骨骼重塑和骨骼再生過(guò)程中起著重要的調(diào)節(jié)作用,對(duì)毛囊的發(fā)育也起到重要作用,研究人員在對(duì)雞和小鼠皮膚的顯微結(jié)構(gòu)模型研究中發(fā)現(xiàn),BMP家族成員是羽毛基板形成的抑制因子,而Wnt/β-catenin和FGF是其激活因子。
然而,生物體的發(fā)育是復(fù)雜多樣的,裸頸的發(fā)生必然是多基因共同作用的結(jié)果,本研究以裸頸雞天津猴雞為研究對(duì)象,采集頸部組織用于轉(zhuǎn)錄組測(cè)序,通過(guò)WGCNA分析在全基因組范圍內(nèi)尋找與裸頸相關(guān)的基因,以期為天津猴雞的保種、開(kāi)發(fā)和利用提供理論依據(jù)。
1" 材料與方法
1.1" 試驗(yàn)材料
本研究將48羽天津猴雞公雞與240羽海蘭褐母雞進(jìn)行雜交,在F1代中,裸頸雞和常羽雞的個(gè)體數(shù)均在300羽左右。300日齡時(shí),在F1代裸頸雞和常羽雞中分別選擇10羽(5羽公雞和5羽母雞),共20羽個(gè)體,采集頸部皮膚組織用于轉(zhuǎn)錄組測(cè)序分析,試驗(yàn)具體分4組:組1,雜交F1代常羽公雞(ZYG);組2,雜交F1代常羽母雞(ZYM);組3,雜交F1代裸頸公雞(ZWG);組4:雜交F1代裸頸母雞(ZWM)。
1.2" 試驗(yàn)方法
利用TRIzol(英杰生命技術(shù)有限公司產(chǎn)品)試劑采用常規(guī)方法提取組織總RNA。使用NanoDrop 2000分光光度計(jì)(賽默飛世爾科技公司產(chǎn)品)鑒定RNA純度并定量;利用Agilent 2100 Bioanalyzer(安捷倫科技有限公司產(chǎn)品)評(píng)估RNA完整性;使用VAHTS Universal V5 RNA-seq Library Prep試劑盒(南京諾唯贊生物科技股份有限公司產(chǎn)品)進(jìn)行轉(zhuǎn)錄組文庫(kù)構(gòu)建。最后,委托上海歐易生物技術(shù)有限公司對(duì)文庫(kù)進(jìn)行測(cè)序分析,使用的測(cè)序平臺(tái)為llumina Novaseq 6000,最終生成150 bp的雙端read,用于后續(xù)分析。
1.3" 統(tǒng)計(jì)分析
利用Fastp軟件對(duì)raw read進(jìn)行處理,去除低質(zhì)量read后獲得clean read。使用HISAT 2軟件將clean read與參考基因組比對(duì),通過(guò)HTSeq-count獲得每個(gè)基因的read數(shù),并進(jìn)行基因表達(dá)量(FPKM)計(jì)算。加權(quán)基因共表達(dá)網(wǎng)絡(luò)分析(WGCNA)以測(cè)序獲得的所有基因的FPKM表達(dá)矩陣文件為基礎(chǔ),進(jìn)行表型相關(guān)基因模塊挖掘,采用R軟件中的WGCNA包進(jìn)行分析。
2" 結(jié)果與分析
2.1" WGCNA篩選裸頸相關(guān)基因模塊
本研究對(duì)裸頸雞裸頸部位皮膚組織和常羽雞頸部皮膚組織進(jìn)行轉(zhuǎn)錄組測(cè)序分析,在20個(gè)樣本的原始數(shù)據(jù)中共檢測(cè)到16 859個(gè)基因,將所有組別中基因表達(dá)量變化不明顯(標(biāo)準(zhǔn)偏差≤0.5)的基因剔除,最終剩余1 407個(gè)基因用于后續(xù)分析。WGCNA分析可以識(shí)別高度相關(guān)性基因所組成的基因簇,最終可根據(jù)基因模塊中核心基因?qū)⒛K與表型進(jìn)行關(guān)聯(lián)分析。本研究中設(shè)置決定系數(shù)(R 2)>0.8,軟閾值(β)=20。利用Dynamic Tree Cut方法共識(shí)別得到13個(gè)模塊,然后將高度相似的基因模塊進(jìn)行合并最終得到10個(gè)基因模塊(圖1),它們分別為黃色(yellow)、棕褐色(tan)、藍(lán)綠色(turquoise)、紫色(purple)、黃綠色(greenyellow)、紅色(red)、藍(lán)色(blue)、綠色(green)、紫紅色(magenta)和灰色(grey)模塊,分別包含163、36、239、44、38、100、344、105、181和157個(gè)基因,其中,灰色模塊中的基因沒(méi)有參考意義。
本研究以相關(guān)系數(shù)|r|≥0.3,P<0.05為條件,共篩選到黃色、藍(lán)綠色、紅色和藍(lán)色4個(gè)與天津猴雞裸頸性狀顯著相關(guān)的基因模塊(圖2),考慮到基因模塊在天津猴雞裸頸公、母雞與常羽公、母雞中的負(fù)相關(guān)性,最終選擇藍(lán)綠色和藍(lán)色模塊中共計(jì)583個(gè)基因用于后續(xù)分析。
2.2" 藍(lán)綠色和藍(lán)色基因模塊中基因富集
GO功能分析顯著富集到77條GO條目(Q<0.05),包括40條生物學(xué)過(guò)程(BP,biological process)條目、18條細(xì)胞組分(CC,cellular component)條目以及19條分子功能(MF,molecular function)條目,圖3為T(mén)OP30 GO條目的可視化結(jié)果。本研究重點(diǎn)關(guān)注BP條目,結(jié)果發(fā)現(xiàn)脂滴組織(Lipid droplet organization)、甘油三酯儲(chǔ)存負(fù)調(diào)控(Negative regulation of sequestering of triglyceride)、甘油三酯分解代謝過(guò)程(Triglyceride catabolic process)、脂質(zhì)沉積(Lipid storage)和甘油三酯生物合成過(guò)程(Triglyceride biosynthetic process)等脂肪相關(guān)條目以及肌肉收縮(Muscle contraction)、肌節(jié)組織(Sarcomere organization)、肌原纖維組織(Myofibril assembly)等肌肉相關(guān)生物學(xué)過(guò)程條目。
KEGG通路富集分析獲得10條顯著富集的通路(Q<0.05),其中脂肪代謝相關(guān)通路占比較高,包括PPAR信號(hào)通路(PPAR signaling pathway)、甘油酯代謝(Glycerolipid metabolism)和脂肪酸生物合成(Fatty acid biosynthesis),TOP20通路(圖4)中脂肪細(xì)胞因子信號(hào)通路(Adipocytokine signaling pathway)、脂肪酸降解(Fatty acid degradation)和甘油磷脂代謝(Glycerophospholipid metabolism)等也與脂肪代謝密切相關(guān)。此外,TOP20通路中發(fā)現(xiàn)多條重要的通路如鈣信號(hào)通路(Calcium signaling pathway)、神經(jīng)活性配體-受體相互作用(Neuroactive ligand-receptor interaction)通路、TGF-β信號(hào)通路和黏著斑(Focal adhesion)信號(hào)通路等。
2.3" 蛋白質(zhì)互作網(wǎng)絡(luò)
蛋白質(zhì)互作網(wǎng)絡(luò)分析結(jié)果顯示,藍(lán)綠色和藍(lán)色2個(gè)基因模塊中共528個(gè)基因編碼蛋白質(zhì)被String(V12.0)數(shù)據(jù)識(shí)別,以度(Degree)表示節(jié)點(diǎn)(基因編碼蛋白質(zhì))的連通性,度越高節(jié)點(diǎn)連通性越高,越處于核心位置。圖5展示了度評(píng)分≥20分的所有蛋白質(zhì)的網(wǎng)絡(luò)互作圖,結(jié)果顯示ACTN2基因編碼蛋白質(zhì)的連通性最高,其次是MYL10基因編碼蛋白質(zhì),此外,發(fā)現(xiàn)多條與肌肉相關(guān)的基因編碼蛋白質(zhì)包括肌球蛋白輕鏈和重鏈的眾多家族成員,以及多條與毛囊發(fā)育密切相關(guān)的基因編碼蛋白質(zhì),包括SOX9和PPARGC等基因編碼蛋白質(zhì)。
3" 討論
禽類(lèi)的皮膚主要包括表皮、真皮和皮下組織3部分,毛囊由表皮和真皮的共同作用形成:毛囊發(fā)育初期由間充質(zhì)細(xì)胞相互凝集并分化為富有彈性的真皮層,緊接著表皮在真皮層誘導(dǎo)信號(hào)作用下開(kāi)始伸長(zhǎng)和集結(jié),使得表皮逐漸變厚,形成羽毛基板,并促使真皮發(fā)育成真皮乳頭(毛乳頭)。與此同時(shí),在羽毛基板的作用下,表皮細(xì)胞再次發(fā)生凝集,表皮隆起形成羽芽,即為初級(jí)毛囊。羽毛由毛囊發(fā)育形成,是角質(zhì)化的復(fù)雜表皮附屬物,具有層次分明的分支結(jié)構(gòu),起到保溫、隔熱、求偶、信息傳遞等作用。毛囊的形成和羽毛發(fā)育涉及到眾多生物過(guò)程以及調(diào)控分子,包括成纖維細(xì)胞生長(zhǎng)因子、表皮生長(zhǎng)因子以及Wnt/β-catenin信號(hào)通路、TGF-β信號(hào)通路和BMP信號(hào)通路等。
本研究采集雜交F1代裸頸天津猴雞以及雜交F1代常羽天津猴雞頸部皮膚組織進(jìn)行轉(zhuǎn)錄組測(cè)序分析,結(jié)合WGCNA分析以期在全基因組范圍內(nèi)挖掘與天津猴雞裸頸發(fā)育相關(guān)的基因。結(jié)果共篩選到1 407個(gè)基因,并進(jìn)行基因模塊構(gòu)建,同時(shí)將表型與基因模塊關(guān)聯(lián)分析,最終篩選到藍(lán)綠色和藍(lán)色2個(gè)基因模塊中共計(jì)583個(gè)基因與裸頸表型呈顯著相關(guān)。
對(duì)藍(lán)綠色和藍(lán)色2個(gè)基因模塊中基因進(jìn)行GO功能分析,結(jié)果發(fā)現(xiàn)多條與脂肪相關(guān)的顯著富集BP條目。皮下組織是皮膚的最底層,主要由脂肪組織和結(jié)締組織構(gòu)成,連接真皮和肌肉。研究發(fā)現(xiàn),包圍毛囊的脂肪組織在毛囊生長(zhǎng)期增加,而在毛囊休止期減少,這表明皮下脂肪細(xì)胞在延長(zhǎng)毛囊生長(zhǎng)期方面起著關(guān)鍵作用;此外,皮下脂肪富含多種干細(xì)胞,它們分泌的各種生長(zhǎng)因子已被證實(shí)可以促進(jìn)毛發(fā)生長(zhǎng),包括VEGF、HGF、IGF-1、PDGF、KGF以及FGF-1和FGF-2等。肌肉是皮下脂肪緊密相連的組織,家禽頸部皮下肌肉不僅可以提供支撐和穩(wěn)定的作用,還是幫助保護(hù)頭部和頸部的重要結(jié)構(gòu),隔離和保護(hù)頸部的血管和神經(jīng),此外,頸部肌肉的運(yùn)動(dòng)可以增加血液流動(dòng)和營(yíng)養(yǎng)供應(yīng),有助于羽毛的形成和生長(zhǎng);毛囊周?chē)嬖谛畹钠交?,又稱(chēng)豎毛肌(Arrector pili muscle),它們與毛囊干細(xì)胞區(qū)域之間存在著動(dòng)態(tài)的相互作用,有助于促進(jìn)皮膚再生過(guò)程中的毛囊生長(zhǎng)和組織重建,本研究發(fā)現(xiàn)多條顯著富集的肌肉相關(guān)BP條目可能與其相關(guān)。
KEGG通路富集分析獲得10條顯著富集的通路,其中甘油酯代謝、脂肪酸生物合成可能與皮下脂肪發(fā)育相關(guān),此外,TOP20通路中還發(fā)現(xiàn)PPAR信號(hào)通路、脂肪細(xì)胞因子信號(hào)通路、脂肪酸降解和甘油磷脂代謝等脂肪相關(guān)通路。家禽皮下脂肪主要由3種成分組成:甘油三酯、脂肪酸和膽固醇。甘油三酯占據(jù)了大部分的皮下脂肪組織,由甘油和3個(gè)脂肪酸分子結(jié)合而成,是能量的主要儲(chǔ)存形式;脂肪酸是家禽皮下脂肪的另一個(gè)重要成分,分為飽和脂肪酸、單不飽和脂肪酸和多不飽和脂肪酸;膽固醇是一種脂類(lèi)物質(zhì),也是家禽皮下脂肪的組成部分之一。
此外,研究發(fā)現(xiàn)鈣信號(hào)通路與毛囊發(fā)育之間存在密切關(guān)系,通路中的一些關(guān)鍵成員,如鈣調(diào)素和鈣離子通道蛋白可以影響毛囊細(xì)胞的功能和生長(zhǎng),它們通過(guò)調(diào)節(jié)細(xì)胞內(nèi)鈣離子濃度,影響毛囊細(xì)胞的代謝活性和信號(hào)傳導(dǎo),從而影響毛囊的發(fā)育和生長(zhǎng)。神經(jīng)活性配體-受體相互作用通路是一種重要的信號(hào)傳導(dǎo)通路,研究結(jié)果表明通路中的神經(jīng)遞質(zhì)如乙酰膽堿、多巴胺和5-羥色胺等可能通過(guò)與相應(yīng)的受體結(jié)合,調(diào)節(jié)毛囊干細(xì)胞的增殖和分化,影響毛囊周期性生長(zhǎng)的不同階段。TGF-β可通過(guò)調(diào)控毛囊干細(xì)胞的增殖、分化和存活,影響毛囊的生長(zhǎng)周期和再生能力,此外,TGF-β信號(hào)通路還參與調(diào)控毛囊的周期性轉(zhuǎn)變,包括毛囊的生長(zhǎng)期、退行期和休止期的轉(zhuǎn)換。黏著斑通路是細(xì)胞內(nèi)信號(hào)傳導(dǎo)通路,可通過(guò)調(diào)節(jié)細(xì)胞外基質(zhì)與細(xì)胞內(nèi)骨架的相互作用,影響毛囊干細(xì)胞的增殖和分化,從而影響毛囊的發(fā)育和再生。
蛋白質(zhì)網(wǎng)絡(luò)互作發(fā)現(xiàn)ACTN2基因編碼蛋白質(zhì)的連通性最高,位于藍(lán)綠色基因模塊,并在裸頸皮膚中高表達(dá),該基因編碼的蛋白質(zhì)參與細(xì)胞骨架和肌肉的收縮,目前,雖沒(méi)有直接研究結(jié)果表明ACTN2參與毛囊發(fā)育,但在衰老性脫羽中發(fā)現(xiàn)該基因的表達(dá)量呈現(xiàn)下調(diào)趨勢(shì);其次,MYL10基因編碼蛋白質(zhì)的連通性最高,也位于藍(lán)綠色基因模塊,該基因編碼的蛋白質(zhì)是肌球蛋白輕鏈的家族成員之一,Adam等 研究發(fā)現(xiàn)MYL10基因通過(guò)參與Wnt信號(hào)通路和LEF1相互作用,最終調(diào)控毛囊干細(xì)胞的命運(yùn)和毛囊發(fā)育過(guò)程。蛋白質(zhì)互作網(wǎng)絡(luò)中還發(fā)現(xiàn)位于藍(lán)色基因模塊中的MYL4、MYL6、MYL9和位于藍(lán)綠色模塊中的MYL3、MYL12A等多個(gè)同家族成員,推測(cè)其可能也參與毛囊的發(fā)育進(jìn)程;此外,蛋白質(zhì)互作網(wǎng)絡(luò)中還發(fā)現(xiàn)多條肌球蛋白重鏈基因家族成員(MYH11、MYH15、MYH1B、MYH1G、MYH7、MYH7B),它們編碼的蛋白質(zhì)與肌球蛋白輕鏈共同組成了肌肉中的主要成分肌球蛋白,同時(shí)肌肉與毛囊發(fā)育相關(guān),因此,推測(cè)上述基因也與毛囊發(fā)育相關(guān)。
毛囊周期性生長(zhǎng)是由靜止毛囊底部干細(xì)胞推動(dòng)的,Kadaja等通過(guò)條件性靶向成年小鼠毛囊干細(xì)胞中的SOX9基因,發(fā)現(xiàn)該基因?qū)γ腋杉?xì)胞的維持至關(guān)重要,同時(shí)能抑制毛囊干細(xì)胞向表皮細(xì)胞分化;另一項(xiàng)研究在一家患有多毛癥的家族中發(fā)現(xiàn)SOX9基因上游的拷貝數(shù)變異顯著降低了毛囊中該基因的表達(dá),表明該基因與毛囊發(fā)育密切相關(guān);Ho等研究發(fā)現(xiàn)PPARGC基因亞型PPARGC1α在男性雄激素性脫發(fā)患者的毛囊中表達(dá)逐漸增加,且該基因在小鼠的毛發(fā)周期中呈現(xiàn)表達(dá)動(dòng)態(tài)變化,進(jìn)一步試驗(yàn)結(jié)果表明,PPARGC1α的激活可以減少人類(lèi)毛囊皮層細(xì)胞和上皮角質(zhì)細(xì)胞的增殖,從而影響毛發(fā)的生長(zhǎng)和發(fā)育。
4" 結(jié)論
本研究通過(guò)對(duì)天津猴雞雜交F1代裸頸雞和常羽雞頸部皮膚組織進(jìn)行轉(zhuǎn)錄組測(cè)序,結(jié)合WGCNA分析發(fā)現(xiàn)多條重要的BP條目以及KEGG通路,包括脂滴組織、甘油三酯儲(chǔ)存負(fù)調(diào)控、甘油三酯分解代謝、肌肉收縮和肌節(jié)組織以及PPAR信號(hào)通路、鈣信號(hào)通路和TGF-β信號(hào)通路,同時(shí),蛋白質(zhì)互作發(fā)現(xiàn)了ACTN2、MYL10、SOX9和PPARGC等重要基因,本研究結(jié)果將為天津猴雞的保護(hù)、開(kāi)發(fā)和利用提供一定參考作用。
參考文獻(xiàn):
MARANGONI F, CORSELLO G, CRICELLI C, et al. Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: an Italian consensus document. Food amp; Nutrition Research,2015,59:27606.
ZAHEER K. An updated review on chicken eggs:production, consumption,management aspects and nutritional benefits to human health. Food amp; Nutrition Sciences,2015,6(13):1208-1220.
GOO D, KIM J H, PARK G H, et al. Effect of heat stress and stocking density on growth performance,breast meat quality,and intestinal barrier function in broiler chickens. Animals (Basel),2019,9(3):107.
KHAN R U, NIKOUSEFAT Z, SELVAGGI M, et al. Effect of ascorbic acid in heat-stressed poultry. Worlds Poultry Science Journal,2012,68(3):477-490.
NAGA RAJA KUMARI K, NARENDRA NATH D. Ameliorative measures to counter heat stress in poultry. World’s Poultry Science Journal,2018,74(1):117-130.
WASTI S, SAH N, MISHRA B. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals (Basel),2020,10(8):1266.
GERAERT P A, GUILLAUMIN S, LECLERCQ B. Are genetically lean broilers more resistant to hot climate?. British Poultry Science,1993,34(4):643-653.
MERAT P. Potential usefulness of the Na (Naked Neck) gene in poultry production. World’s Poultry Science Journal,1986,42(2):124-142.
SOMES R G. International registry of poultry genetic stocks. Bulletin Storrs Agricultural Experiment Station University of Connecticut,1988,94(92):50-57.
PITEL F, BERG R, COQUERELLE G, et al. Mapping the Naked Neck (NA) and Polydactyly (PO) mutants of the chicken with microsatellite molecular markers. Genetics Selection Evolution,2000,32(1):73-86.
MOU C, PITEL F, GOURICHON D, et al. Cryptic patterning of avian skin confers a developmental facility for loss of neck feathering. PLoS Biology,2011,9(3):e1001028.
ZORICIC S, MARIC I, BOBINAC D, et al. Expression of bone morphogenetic proteins and cartilage-derived morphogenetic proteins during osteophyte formation in humans. Journal of Anatomy,2003,202(Pt 3):269-277.
余哲琪,田佳迎,李啟黌,等. p38 MAPK抑制劑對(duì)熱應(yīng)激雌性雛雞主要生殖激素分泌的影響. 中國(guó)家禽,2021,43(1):76-80.
NORAMLY S, MORGAN B A. BMPs mediate lateral inhibition at successive stages in feather tract development. Development,1998(19):125.
JUNG H S, FRANCIS-WEST P H, WIDELITZ R B, et al. Local inhibitory action of BMPs and their relationships with activators in feather formation:implications for periodic patterning. Developmental Biology,1998,196(1):11-23.
MOU C, JACKSON B, SCHNEIDER P, et al. Generation of the primary hair follicle pattern. National Academy of Sciences,2006,103:9075-9080.
SICK S, REINKER S, TIMMER J, et al. Wnt and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science,2006,314(5804):1447-1450.
NORAMLY S, FREEMAN A, MORGAN B A. Beta-catenin signaling can initiate feather bud development. Development,1999,126(16):3509-3521.
WIDELITZ R B, JIANG T X, LU J, et al. Beta-catenin in epithelial morphogenesis:conversion of part of avian foot scales into feather buds with a mutated beta-catenin. Developmental Biology,2000,219(1):98-114.
ANDL T, REDDY S T, GADDAPARA T, et al. Wnt signals are required for the initiation of hair follicle development. Developmental Cell,2002,2(5):643-653.
MANDLER M, NEUBSER A. FGF signaling is required for initiation of feather placode development. Development,2004,131(14):3333-3343.
SONG H K, LEE S H, GOETINCK P F. FGF-2 signaling is sufficient to induce dermal condensations during feather development. Developmental Dynamics,2004,231(4): 741-749.
CHEN S, ZHOU Y, CHEN Y, et al. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics,2018,34(17):i884-i890.
KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memory requirements. Nature Methods,2015,12(4):357-360.
ANDERS S, PYL P T, HUBER W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics,2015,31(2):166-169.
ROBERTS A, TRAPNELL C, DONAGHEY J, et al. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biology,2011,12(3): R22.
王宇棟. ERK/Wnt信號(hào)通路調(diào)控吉林白鵝胚胎期皮膚毛囊生長(zhǎng)發(fā)育的研究. 長(zhǎng)春:吉林農(nóng)業(yè)大學(xué),2023.
DHOUAILLY D. A new scenario for the evolutionary origin of hair, feather, and avian scales. Journal of Anatomy,2009,214(4):587-606.
HUBBARD J K, UY J A, HAUBER M E, et al. Vertebrate pigmentation: from underlying genes to adaptive function. Trends in Genetics,2010,26(5):231-239.
YUE Z, JIANG T X, WU P, et al. Sprouty/FGF signaling regulates the proximal-distal feather morphology and the size of dermal papillae. Developmental Biology,2012,372(1):45-54.
王睿智. 濟(jì)寧青山羊毛囊發(fā)育特性與EGF、IGF2基因差異表達(dá)的研究. 泰安:山東農(nóng)業(yè)大學(xué),2011.
DASGUPTA R, FUCHS E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development,1999,126(20):4557-4568.
NIIMORI D, KAWANO R, FELEMBAN A, et al. Tsukushi controls the hair cycle by regulating TGF-β1 signaling. Developmental Biology,2012,372(1):81-87.
SONG L L, CUI Y, YU S J, et al. Expression characteristics of BMP2, BMPR-IA and Noggin in different stages of hair follicle in yak skin. General and Comparative Endocrinology,2018,260:18-24.
NEPAL S, VENKATARAM A, MYSORE V. The role of adipose tissue in hair regeneration:a potential tool for management?. Journal of Cutaneous and Aesthetic Surgery,2021,14(3):295-304.
PARK P J, CHO E G. Kojyl cinnamate ester derivatives increase adiponectin expression and stimulate adiponectin-induced hair growth factors in human dermal papilla cells. International Journal of Molecular Sciences,2019,20(8):1859.
RAHMAN M T, SOBUR M A, ISLAM M S, et al. Zoonotic diseases:etiology,impact,and control. Microorganisms,2020,8(9):1405.
TORKAMANI N, RUFAUT N, JONES L, et al. The arrector pili muscle, the bridge between the follicular stem cell niche and the interfollicular epidermis. Anatomical Science International,2017,92(1):151-158.
KOWALSKA E, KUCHARSKA-GACA J, KUZNIACKA J, et al. Effects of legume-diet and sex of ducks on the growth performance, physicochemical traits of meat and fatty acid composition in fat. Scientific Reports,2020,10(1):13465.
FOUAD A M, EL-SENOUSEY H K. Nutritional factors affecting abdominal fat deposition in poultry:a review. Asian-Australasian Journal of Animal Sciences,2014,27(7):1057-1068.
KHAVEH N, SCHACHLER K, BERGHFER J, et al. Altered hair root gene expression profiles highlight calcium signaling and lipid metabolism pathways to be associated with curly hair initiation and maintenance in Mangalitza pigs. Frontiers in Genetics,2023,14:1184015.
BHAT B, YASEEN M, SINGH A, et al. Identification of potential key genes and pathways associated with the Pashmina fiber initiation using RNA-seq and integrated bioinformatics analysis. Scientific Reports,2021,11(1):1766.
MABROUK I, ZHOU Y, WANG S, et al. Transcriptional characteristics showed that miR-144-y/FOXO3 participates in embryonic skin and feather follicle development in zhedong white goose. Animals (Basel),2022,12(16):2099.
RISHIKAYSH P, DEV K, DIAZ D, et al. Signaling involved in hair follicle morphogenesis and development. International Journal of Molecular Sciences,2014,15(1):1647-1670.
LI C, FENG C, MA G, et al. Time-course RNA-seq analysis reveals stage-specific and melatonin-triggered gene expression patterns during the hair follicle growth cycle in Capra hircus. BMC Genomics,2022,23(1):140.
MIRMIRANI P, KARNIK P. Comparative gene expression profiling of senescent and androgenetic alopecia using microarray analysis. Berlin, Heidelberg: Springer Berlin Heidelberg,2010:67-76.
ADAM R C, YANG H, GE Y, et al. Temporal layering of signaling effectors drives chromatin remodeling during hair follicle stem cell lineage progression. Cell Stem Cell,2018,22(3):398-413.
SCHIAFFINO S, ROSSI A C, SMERDU V, et al. Developmental myosins: expression patterns and functional significance. Skeletal Muscle,2015,5:22.
KADAJA M, KEYES B E, LIN M, et al. SOX9: a stem cell transcriptional regulator of secreted niche signaling factors. Genes amp; Development,2014,28(4):328-341.
FANTAUZZO K A, KURBAN M, LEVY B, et al. Trps1 and its target gene SOX9 regulate epithelial proliferation in the developing hair follicle and are associated with hypertrichosis. PLoS Genetics,2012,8(11):e1003002.
HO B S, VAZ C, RAMASAMY S, et al. Progressive expression of PPARGC1α is associated with hair miniaturization in androgenetic alopecia . Scientific Reports,2019,9(1):8771.
(責(zé)任編輯:黃克玲)