摘要: 鮑曼不動(dòng)桿菌,廣泛存在于自然界中,是一種條件致病革蘭陰性菌,可引起呼吸道感染、菌血癥、泌尿系感染、繼發(fā)性腦膜炎、手術(shù)部位感染和呼吸機(jī)相關(guān)性肺炎等多種致命性院內(nèi)感染,嚴(yán)重威脅人類健康。鮑曼不動(dòng)桿菌已對(duì)幾乎所有現(xiàn)有抗菌藥產(chǎn)生了耐藥性,但是近半個(gè)世紀(jì)以來(lái)鮮有抗鮑曼不動(dòng)桿菌藥物上市。因此,亟須開發(fā)新型抗鮑曼不動(dòng)桿菌藥物。唑類化合物可與多種生物靶點(diǎn)形成各種非共價(jià)鍵和共價(jià)鍵作用,廣泛存在于各種藥物中。其中,唑類雜合體可同時(shí)作用于多個(gè)細(xì)菌靶點(diǎn),具有增強(qiáng)抗菌活性和克服耐藥性的潛力,對(duì)各種難治性和耐藥鮑曼不動(dòng)桿菌感染具有潛在的體內(nèi)、外療效。本文將歸納自2020年以來(lái)所發(fā)現(xiàn)的具有抗鮑曼不動(dòng)桿菌活性的唑類雜合體的最新研究進(jìn)展,以期為今后發(fā)現(xiàn)新型藥物候選物提供理論支持。
關(guān)鍵詞: 唑;雜合體;抗菌;鮑曼不動(dòng)桿菌;耐藥;作用機(jī)制
中圖分類號(hào):R978" " " " "文獻(xiàn)標(biāo)志碼:A" " " " "文章編號(hào):1001-8751(2024)05-0289-08
Recent Advances in the Application of Azole Hybrids to Fight
Against Acinetobacter baumannii
Ke Jian-xue1," Yang Jia1," Fang Lin2, Liao Zhen2, Qiu Li 2, Liu Xiao-cheng2," Deng Jia-lun2
Abstract: The conditionally pathogenic Gram-negative pathogen Acinetobacter baumannii is found in nature and is a serious threat to human health. It can cause a variety of deadly hospital infections, including ventilator-associated pneumonia, urinary tract infections, secondary meningitis, respiratory infections, and bacteremia. Acinetobacter baumannii has already developed resistance to almost all existing antibiotics, but no new anti-Acinetobacter baumannii drugs have been launched for nearly half a century. Therefore, there is an urgent need to develop new drugs against Acinetobacter baumannii." Azoles are widely used in many different medications and can generate a variety of covalent and non-covalent interactions with different bacterial targets. Among them, azole hybrids have the ability to treat a variety of resistant Acinetobacter baumannii infections and have the ability to operate on numerous bacterial sites at once. They may also be able to overcome drug resistance and increase antibacterial effectiveness. This article will summarize the latest research progress on azole hybrids with anti-Acinetobacter baumannii activity developed since 2020, in order to provide theoretical support for the discovery of new drug candidates in the future.
Key words: azole;" "hybrids;" "antibacterial;" "Acinetobacter baumannii;" "drug resistance;" "mechanisms
鮑曼不動(dòng)桿菌為不動(dòng)桿菌屬中最常見(jiàn)的一種革蘭陰性條件致病桿菌,不僅分布廣泛,而且可長(zhǎng)期存活,可引起菌血癥、肺炎、腦膜炎、腹膜炎、心內(nèi)膜炎以及泌尿道和皮膚感染等多種院內(nèi)感染,甚至死亡[1-2]。治療鮑曼不動(dòng)桿菌感染的藥物主要有碳青霉烯類、多黏菌素B和E、舒巴坦、哌拉西林/他唑巴坦、替加環(huán)素和氨基糖苷類等抗菌藥物[3],然而鮑曼不動(dòng)桿菌通過(guò)包括產(chǎn)生碳青霉烯酶、改變外膜孔蛋白、增強(qiáng)外排泵活性和改變青霉素結(jié)合蛋白位點(diǎn)等機(jī)制已對(duì)幾乎所有現(xiàn)有抗菌藥產(chǎn)生了耐藥性[4]。其中,耐碳青霉烯類藥物鮑曼不動(dòng)桿菌(CRAB)更是在世界衛(wèi)生組織“新型抗生素研發(fā)重點(diǎn)病原體清單”中高居榜首,不僅治療選擇十分有限,而且侵襲性CRAB患者的死亡率高達(dá)40%~60% [5-6]。更為嚴(yán)重的是,隨著全耐藥鮑曼不動(dòng)桿菌的出現(xiàn),鮑曼不動(dòng)桿菌業(yè)已進(jìn)化成“超級(jí)細(xì)菌”,在臨床上面臨“無(wú)藥可醫(yī)”的局面[7-8]。然而,近半個(gè)世紀(jì)以來(lái)鮮有抗鮑曼不動(dòng)桿菌藥物上市。因此,開發(fā)新型抗鮑曼不動(dòng)桿菌藥物迫在眉睫。
唑類化合物是一種至少含有一個(gè)氮原子的五元芳香雜環(huán)化合物,可通過(guò)各種非共價(jià)鍵作用如氫鍵和范德華力等與細(xì)菌靶點(diǎn)結(jié)合,廣泛存在于各種抗菌藥物中[9-10]。其中,唑類雜合體由于含有不同作用機(jī)制的藥效團(tuán)可同時(shí)作用于多個(gè)細(xì)菌靶點(diǎn),具有增強(qiáng)抗菌活性和克服耐藥性的潛力,對(duì)各種難治性和耐藥鮑曼不動(dòng)桿菌感染具有潛在的療效[11-12]。近年來(lái),科學(xué)家有針對(duì)性地設(shè)計(jì)、合成和評(píng)價(jià)了多個(gè)系列唑類雜合體的抗鮑曼不動(dòng)桿菌活性,發(fā)現(xiàn)這類化合物不僅對(duì)藥敏和耐多藥甚至全耐藥鮑曼不動(dòng)桿菌具有良好的活性,而且不易產(chǎn)生耐藥性,是開發(fā)新型抗鮑曼不動(dòng)桿菌藥物的優(yōu)秀候選物。本文將歸納自2020年以來(lái)所發(fā)展的具有抗鮑曼不動(dòng)桿菌活性的唑類雜合體的最新研究進(jìn)展,以期為今后發(fā)現(xiàn)新型藥物候選物提供理論支持。
1 噻唑/苯并噻唑/噻唑啉酮類雜合體的抗鮑曼不動(dòng)桿菌活性
苯并噻唑—吡咯雜合體1[圖1,最小抑制濃度(MIC): 0.125~2.0 μg/mL]對(duì)所測(cè)的2株野生型和61株耐多藥臨床分離鮑曼不動(dòng)桿菌顯示出極為優(yōu)秀的活性,而雜合體2(MIC: lt;0.125~4.0 μg/mL)對(duì)所測(cè)的3株野生型、1株外排缺陷、9株耐多藥和2株全耐藥臨床分離鮑曼不動(dòng)桿菌具有良好的活性[13~15]。構(gòu)—效關(guān)系研究表明,用吡咯并[3,2-f]喹唑啉替代吡唑?qū)钚杂绊懖淮?,如苯并噻唑—吡咯并[3,2-f]喹唑啉雜合體3(MIC: 1.0和1.0 μg/mL)對(duì)耐多藥鮑曼不動(dòng)桿菌ATCC 19606菌株和20-2菌株的活性是甲氧芐啶(MIC: 16和16 μg/mL)的16倍[16]。進(jìn)一步研究表明,雜合體1[半數(shù)抑制濃度(IC50): 16和6.7 nmol/L]和雜合體2(IC50: 2.42和119.7 nmol/L)可高效地抑制鮑曼不動(dòng)桿菌的促旋酶和拓?fù)洚悩?gòu)酶Ⅳ,與GyrB亞單位的5'-三磷酸腺苷結(jié)合口袋結(jié)合。二者在大鼠和人肝微粒體中具有良好的代謝穩(wěn)定性,半衰期(t1/2)為45~160 min。不僅如此,雜合體2(1.0 mg/kg, 靜脈注射)還顯示出良好的體內(nèi)藥代動(dòng)力學(xué)性質(zhì),其半衰期為1.0 h,清除率(CL)為54.8 mL/(min·?kg),穩(wěn)態(tài)分布體積(Vss)為2.3 L/kg,藥時(shí)曲線下面積(AUC0-∞)為304 (h·ng)/mL。基于此,雜合體1和2在抗鮑曼不動(dòng)桿菌尤其是耐多藥甚至全耐藥鮑曼不動(dòng)桿菌領(lǐng)域極具進(jìn)一步研究?jī)r(jià)值。
噻唑—吡咯雜合體4(MIC: 4.0 μg/mL)對(duì)藥敏型鮑曼不動(dòng)桿菌顯示出良好的活性[17],而噻唑—香豆素雜合體5a,b(MIC: 2.0和1.0 μg/mL)和雜合體6(MIC: 2.0 μg/mL)的抗藥敏型鮑曼不動(dòng)桿菌活性與環(huán)丙沙星(MIC: 1.0 μg/mL)相當(dāng),是左氧氟沙星的4~8倍[18]。作用機(jī)制研究結(jié)果表明,雜合體6可通過(guò)破壞細(xì)胞膜和細(xì)胞質(zhì)內(nèi)容物泄漏、插入DNA和細(xì)胞內(nèi)氧化應(yīng)激發(fā)揮抗菌作用。因此,這類雜合體可作為抗鮑曼不動(dòng)桿菌候選物進(jìn)行深入研究。
噻唑—磺酰胺雜合體7(MIC: 0.5 μg/mL)和雜合體8 (MIC: 0.25 μg/mL)抗藥敏型鮑曼不動(dòng)桿菌活性是諾氟沙星(MIC: 8.0 μg/mL)的16和32倍,且雜合體8可在濃度為2×MIC時(shí)2 h內(nèi)可降低3 Log10 CFU/mL的細(xì)菌負(fù)載[19]。作用機(jī)制研究結(jié)果表明,雜合體8可有效地破壞生物膜,抑制乳酸脫氫酶,并通過(guò)產(chǎn)生活性氧和氮干擾細(xì)胞氧化還原穩(wěn)態(tài)。值得注意的是,雜合體8可通過(guò)破壞根除已存在的生物膜以降低耐藥性的產(chǎn)生,該雜合體與鮑曼不動(dòng)桿菌連續(xù)培養(yǎng)16代后MIC值僅增加到2倍,而諾氟沙星增加到了原來(lái)的8倍。基于此,雜合體8作為抗鮑曼不動(dòng)桿菌候選物進(jìn)一步研究。
噻唑—喹啉雜合體9a,b(MIC: 0.5和0.5 μg/mL)和雜合體10a,b(MIC: 0.25和0.25 μg/mL)對(duì)產(chǎn)新德里金屬-β-內(nèi)酰胺酶1 (NDM-1)的鮑曼不動(dòng)桿菌具有極為優(yōu)秀的抗菌活性,其中,雜合體10a(MIC: 2.0 μg/mL)對(duì)產(chǎn)OXA-23酶的CRAB還顯示出良好活性,值得進(jìn)一步評(píng)價(jià)[20]。噻唑啉酮—呋喃雜合體11a,b(MIC: 8.0和8.0 μg/mL)和雜合體12(MIC: 8.0 μg/mL)具有潛在的抗藥敏型鮑曼不動(dòng)桿菌活性,三者的活性是頭孢曲松(MIC: 32 μg/mL)的4倍[21]。不僅如此,三者(半數(shù)細(xì)胞毒性濃度/CC50: >32 μg/mL)對(duì)正常HEK-293細(xì)胞的毒性相對(duì)較低。因此,三者可作為先導(dǎo)物進(jìn)行進(jìn)一步結(jié)構(gòu)修飾。
2 咪唑類雜合體的抗鮑曼不動(dòng)桿菌活性
咪唑—異惡唑雜合體13(圖2,MIC: 0.5 μg/mL)的抗藥敏型鮑曼不動(dòng)桿菌的活性是克林沙星(MIC: 2.0 μg/mL)、諾氟沙星(MIC: 8.0 μg/mL)和磺胺甲唑(MIC: 32 μg/mL)的4~64倍[22]。時(shí)間—?dú)麆?dòng)力學(xué)研究表明,雜合體13抑制鮑曼不動(dòng)桿菌生長(zhǎng)活性呈濃度依賴性,且在4×MIC濃度下2 h內(nèi)能降低4.0 Log10 CFU/mL的細(xì)菌負(fù)載。作用機(jī)制研究表明,雜合體13可通過(guò)破壞細(xì)菌膜的完整性,提高活性氧的產(chǎn)生,降低谷胱甘肽的活性,并與DNA相互作用發(fā)揮抗菌活性。
咪唑—二吲哚雜合體Bacillimidazole G (14, MIC: 2.6 μg/mL)對(duì)缺失脂多糖 (LPS)的鮑曼不動(dòng)桿菌ΔlpxC顯示出強(qiáng)抗菌活性[23],而含有腙的咪唑—氧化吲哚雜合體15(MIC: 1.0 μg/mL)的抗藥敏型鮑曼不動(dòng)桿菌活性是諾氟沙星(MIC: 8.0 μg/mL)和甲硝唑(MIC: 128 μg/mL)的8和128倍[24]。作用機(jī)制研究結(jié)果表明,雜合體15不僅可通過(guò)形成雜合體15-DNA超分子復(fù)合物來(lái)影響細(xì)菌的繁殖,而且可通過(guò)膜破裂、蛋白質(zhì)滲漏、乳酸脫氫酶失活、代謝停滯和促進(jìn)活性氧積累殺滅細(xì)菌。特別值得一提的是,耐藥性試驗(yàn)表明,雜合體15在細(xì)菌傳30代后MIC基本上沒(méi)有變化,而諾氟沙星的MIC則提高了16倍,提示雜合體15不易產(chǎn)生耐藥性。
咪唑—噻唑雜合體16(MIC: 4.0 μg/mL)的抗藥敏型鮑曼不動(dòng)桿菌活性與諾氟沙星(MIC: 4.0 μg/mL)相當(dāng)且對(duì)正常LO2和HEK-293T細(xì)胞系的毒性(CC50: >32 μg/mL)較低[25]。作用機(jī)制研究結(jié)果表明,雜合體16可通過(guò)乳酸脫氫酶的失活誘導(dǎo)代謝功能障礙,并提高活性氧的累積,最終導(dǎo)致細(xì)菌的氧化損傷。此外,雜合體16可形成雜合體16-DNA超分子復(fù)合物,進(jìn)而誘導(dǎo)細(xì)菌死亡。進(jìn)一步研究發(fā)現(xiàn),雜合體16可在濃度為8×MIC時(shí)2 h內(nèi)降低~3.0 Log10 CFU/mL的鮑曼不動(dòng)桿菌負(fù)擔(dān)。耐藥性試驗(yàn)表明,雜合體16在細(xì)菌傳20代后MIC提高到了原來(lái)的3倍,而諾氟沙星的MIC則提高到了原來(lái)的32倍,提示雜合體16不易產(chǎn)生耐藥性。
咪唑—砜雜合體17a,b(MIC: 16和16 μg/mL)和18a,b(MIC: 16和16 μg/mL)具有中等強(qiáng)度的抗藥敏型鮑曼不動(dòng)桿菌活性,其活性是磺胺噻唑(MIC: 64 μg/mL)的8倍,但略弱于諾氟沙星(MIC: 8.0 μg/mL)[26]。作用機(jī)制研究結(jié)果顯示,這類雜合體可與DNA形成穩(wěn)定的雜合體-DNA超分子復(fù)合物,這可能會(huì)阻礙DNA復(fù)制進(jìn)而發(fā)揮抗菌作用。因此,這類雜合體可作為抗鮑曼不動(dòng)桿菌先導(dǎo)物進(jìn)行進(jìn)一步結(jié)構(gòu)修飾。
3 吡唑類雜合體的抗鮑曼不動(dòng)桿菌活性
吡唑—吡咯雜合體19(圖3,MIC: 4.0 μg/mL)對(duì)藥敏型鮑曼不動(dòng)桿菌顯示出良好的活性,且與黏菌素聯(lián)用對(duì)耐黏菌素菌株和CRAB菌株顯示出協(xié)同作用[27]。由此可見(jiàn),雜合體19既可單獨(dú)使用,又可作為聯(lián)合給藥中的重要組分對(duì)抗耐藥鮑曼不動(dòng)桿菌,提示可作為候選物進(jìn)一步研究。而吡唑并[1,5-a]嘧啶-噻吩雜合體20a~c(MIC: 31.25 μg/mL)顯示出中等強(qiáng)度的抗藥敏型鮑曼不動(dòng)桿菌活性,且活性與替加環(huán)素(MIC: 31.25 μg/mL)相當(dāng)[28-30]。因此,這類雜合體可作為抗鮑曼不動(dòng)桿菌先導(dǎo)物進(jìn)行深入結(jié)構(gòu)修飾。
吡唑—亞胺雜合體21a,b (MIC: 1.56~3.12 μg/mL和3.12~6.25 μg/mL)和雜合體22a,b(MIC: 0.78~3.12 μg/mL和1.56~3.12 μg/mL)對(duì)所測(cè)的3株鮑曼不動(dòng)桿菌的活性與黏菌素(MIC: 1.56~3.12 μg/mL)相當(dāng)[31-32]。作用機(jī)制研究結(jié)果表明,這類雜合體可通過(guò)破壞生物膜發(fā)揮抑菌作用,值得深入研究。
4 惡唑/惡唑烷酮/惡二唑類雜合體的抗鮑曼不動(dòng)桿菌活性
惡唑—吡咯并[3,2-f]喹唑啉雜合體23(圖4; MIC: 0.5和2.0 μg/mL)的抗藥敏型鮑曼不動(dòng)桿菌ATCC 17978和耐多藥鮑曼不動(dòng)桿菌ATCC 19606的活性優(yōu)于諾氟沙星 (MIC: 0.5和16 μg/mL)和甲氧芐啶(MIC: 1.0和32 μg/mL)[33],而惡二唑—吡咯雜合體24 (MIC: lt;2.0 μg/mL)的抗鮑曼不動(dòng)桿菌活性是對(duì)照藥紅霉素(MIC: 128 μg/mL)和萬(wàn)古霉素(MIC: 1024 μg/mL)的gt;64倍[34]。鑒于雜合體23和24具有優(yōu)秀的抗鮑曼不動(dòng)桿菌活性,二者可作為候選物進(jìn)行深入評(píng)價(jià)。
惡唑烷酮—萘啶酮雜合體25(MIC: 0.03 μg/mL)和雜合體26(MIC: 0.015 μg/mL)對(duì)耐多藥鮑曼不動(dòng)桿菌活性是環(huán)丙沙星(MIC: 64 μg/mL)的2 048和4 096倍[35]。特別值得一提的是,雜合體25(平均MIC90: 0.5 μg/mL)對(duì)所測(cè)的43株臨床分離鮑曼不動(dòng)桿菌的活性是環(huán)丙沙星(平均MIC90: 16 μg/mL)的32倍。在小鼠大腿感染耐多藥鮑曼不動(dòng)桿菌NCTC13420模型中,雜合體25顯示出劑量依賴性體內(nèi)活性,且在皮下注射給藥劑量為60 mg/kg時(shí)可降低2.9 Log10 CFU/g的細(xì)菌載量。
5 1,2,3-三氮唑/1,2,4-三氮唑類雜合體的抗鮑曼不動(dòng)桿菌活性
1,2,3-三氮唑—環(huán)丙沙星雜合體27(圖5,MIC: 3.12 μg/mL)的抗藥敏型鮑曼不動(dòng)桿菌活性是環(huán)丙沙星(MIC: 6.25 μg/mL)的2倍[36-38],而1,2,4-三氮唑—氟喹諾酮雜合體28a,b(MIC: 6.0 μg/mL)的抗藥敏型鮑曼不動(dòng)桿菌活性與環(huán)丙沙星(MIC: 2.5 μg/mL)相當(dāng)[39]。因此,1,2,3-三氮唑/1,2,4-三氮唑—氟喹諾酮雜合體是新型抗鮑曼不動(dòng)桿菌的潛在候選物。
1,2,4-三氮唑—嘧啶雜合體29(MIC: 0.5 μg/mL)的抗藥敏型鮑曼不動(dòng)桿菌活性是諾氟沙星(MIC: 2.0 μg/mL)和磺胺嘧啶(MIC: 16 μg/mL)的4和32倍,且對(duì)正常LO2和293T細(xì)胞未顯示出明顯毒性(CC50: gt;64 μg/mL)[40]。雜合體29不易產(chǎn)生耐藥性,其在給藥20 d后MIC值增長(zhǎng)到原來(lái)4倍,而諾氟沙星則提高到原來(lái)的32倍。作用機(jī)制研究表明,雜合體29可以分散形成的生物膜,通過(guò)降低代謝活性來(lái)抑制鮑曼不動(dòng)桿菌的生長(zhǎng),通過(guò)凹槽結(jié)合作用與DNA相互作用而不是插入和切割DNA來(lái)阻斷DNA復(fù)制,從而抑制細(xì)菌生長(zhǎng)。在感染鮑曼不動(dòng)桿菌的小鼠模型中,雜合體29顯示出良好的體內(nèi)活性,在口服每日給藥30 mg/kg時(shí)可降低3.5 Log10 CFU/mL的細(xì)菌負(fù)載。藥代動(dòng)力學(xué)研究結(jié)果表明,雜合體29(10 mg/kg, 口服給藥)具有良好的藥代動(dòng)力學(xué)性質(zhì),其t1/2為4.39 h,達(dá)峰時(shí)間(tmax)為0.58 h,平均保留時(shí)間(MRT)為4.67 h,CL為1244 mL/(h·?kg),Cmax為 2130 ng/mL,AUC0-∞為8078 (h·ng)/mL,口服生物利用度(F)為35.4%。優(yōu)秀的體內(nèi)外抗鮑曼不動(dòng)桿菌活性加上良好的藥代動(dòng)力學(xué)性質(zhì)使得雜合體29極具進(jìn)一步開發(fā)價(jià)值。
6 結(jié)論
鮑曼不動(dòng)桿菌是院內(nèi)感染的主要致病菌之一,可引起多種疾病甚至死亡。盡管臨床上使用的多種抗菌藥對(duì)藥敏型鮑曼不動(dòng)桿菌感染具有良好的療效,然而隨著這些藥物長(zhǎng)時(shí)間的廣泛使用甚至濫用,導(dǎo)致各種耐藥和難治性鮑曼不動(dòng)桿菌不斷涌現(xiàn),嚴(yán)重威脅人類生命健康。因此,開發(fā)新型抗鮑曼不動(dòng)桿菌藥物勢(shì)在必行。
自2020年以來(lái),藥物化學(xué)家設(shè)計(jì)和合成了多個(gè)系列唑類雜合體,并篩選了此類化合物的抗鮑曼不動(dòng)桿菌活性。結(jié)果表明,這類雜合體對(duì)藥敏和耐多藥甚至全耐藥鮑曼不動(dòng)桿菌具有良好的體內(nèi)外活性,如雜合體1, 2, 3, 9, 10, 23, 25和26對(duì)耐多藥和/或全耐藥鮑曼不動(dòng)桿菌具有極為優(yōu)秀的活性,在抗耐藥鮑曼不動(dòng)桿菌感染領(lǐng)域可能大有作為;雜合體25和29具有良好的體內(nèi)抗鮑曼不動(dòng)桿菌活性和藥代動(dòng)力學(xué)性質(zhì),極具進(jìn)一步開發(fā)前景。由此可見(jiàn),對(duì)唑類雜合體進(jìn)行合理的結(jié)構(gòu)優(yōu)化和深入的活性評(píng)價(jià)是獲得新型抗鮑曼不動(dòng)桿菌藥物的有效手段之一。
參 考 文 獻(xiàn)
Moubareck C A, Halat D H. Insights into Acinetobacter baumannii: A review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen[J]. Antibiotics, 2020, 9(3): e119.
Crunkhorn S. A new antibiotic for A. baumannii[J]. Nat Rev Drug Discov, 2023, 22: e536.
Michalopoulos A, Falagas M E. Treatment of Acinetobacter infections[J]. Expert Opin Pharmacother, 2010, 11(5): 779-788.
姚丹玲, 朱衛(wèi)民. 耐碳青霉烯鮑曼不動(dòng)桿菌耐藥機(jī)制研究進(jìn)展[J]. 國(guó)外醫(yī)藥(抗生素分冊(cè)), 2020, 41(1): 11-16.
Zampaloni C, Mattei P, Bleicher K, et al. A novel antibiotic class targeting the lipopolysaccharide transporter[J]. Nature, 2024, 625: 566-571.
Du X, Xu X, Yao J, et al. Predictors of mortality in patients infected with carbapenem-resistant Acinetobacter baumannii: A systematic review and meta-analysis[J]. Am J Infect Control, 2019, 47: 1140-1145.
Rangel K, Lechuga G C, Souza A L A, et al. Pan-drug resistant Acinetobacter baumannii, but not other strains, are resistant to the bee venom peptide melittin[J]. Antibiotics, 2020, 9(4): e178.
Lee C R, Lee J H, Park M, et al. Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options[J]. Front Cell Infect Microbiol, 2017, 7: e55.
Emami L, Faghih Z, Ataollahi E, et al. Azole derivatives: Recent advances as potent antibacterial and anti-fungal agents[J]. Curr Med Chem, 2023, 30(2): 220-249.
鄢笑非, 劉康, 舒暢, 等. 抗MRSA吡唑雜合體的研究進(jìn)展[J]. 國(guó)外醫(yī)藥(抗生素分冊(cè)), 2021, 42(6): 321-327.
薛華. 1,3-噁唑雜合體抗金黃色葡萄球菌活性研究[J]. 國(guó)外醫(yī)藥(抗生素分冊(cè)), 2021, 42(06): 333-338.
Andrei G ?, Andrei B F, Roxana P R. Imidazole derivatives and their antibacterial activity-a mini-review[J]. Mini-Rev Med Chem, 2021, 21(11): 1380-1392.
Cotman A E, Durcik M, Benedetto D, et al. Discovery and hit-to-lead optimization of benzothiazole scaffold-based DNA gyrase inhibitors with potent activity against Acinetobacter baumannii and Pseudomonas aeruginosa[J]. J Med Chem, 2023, 66(2): 1380-1425.
Durcik M, Cotman A E, Toplak Z?, et al. New dual inhibitors of bacterial topoisomerases with broad-spectrum antibacterial activity and in vivo efficacy against vancomycin-intermediate Staphylococcus aureus[J]. J Med Chem, 2023, 66(6): 3968-3994.
Sterle M, Durcik M, Stevenson C E M, et al. Exploring the 5?substituted 2?aminobenzothiazole-based DNA gyrase B inhibitors active against ESKAPE pathogens[J]. ACS Omega, 2023, 8: 24387-24395.
Zhu Z, Chen C, Zhang J, et al. Exploration and biological evaluation of 1,3- diamino?7H?pyrrol[3,2?f]quinazoline derivatives as dihydrofolate reductase inhibitors[J]. J Med Chem, 2023, 66: 13946-13967.
Ahmed S, Mital A, Akhir A, et al. Pyrrole-thiazolidin-4-one analogues exhibit promising anti-tuberculosis activity[J]. Asian J Org Chem, 2024, 13(6):e202400054.
Yang X C, Hu C F, Zhang P L, et al. Coumarin thiazoles as unique structural skeleton of potential antimicrobial agents[J]. Bioorg Chem, 2022, 124: e105855.
Wang J, Zhang P L, Ansari M F, et al. Molecular design and preparation of 2-aminothiazole sulfanilamide oximes as membrane active antibacterial agents for drug resistant Acinetobacter baumannii[J]. Bioorg Chem, 2021, 113: e105039.
Litim B, Djahoudi A, Meliani S, et al. Synthesis and potential antimicrobial activity of novel α-aminophosphonates derivatives bearing substituted quinoline or quinolone and thiazole moieties[J]. Med Chem Res, 2022, 31: 60-74.
Chaban T, Matiichuk Y, Chulovska Z, et al. Synthesis and biological evaluation of new 4-oxo-thiazolidin-2-ylidene derivatives as antimicrobial agents[J]. Arch Pharm, 2021, 354(7): e2100037.
Yang X, Sun H, Maddili S K, et al. Dihydropyrimidinone imidazoles as unique structural antibacterial agents for drug-resistant gram-negative pathogens[J]. Eur J Med Chem, 2022, 232: e114188.
Ham S L, Lee T H, Kim K J, et al. Discovery and biosynthesis of imidazolium antibiotics from the probiotic Bacillus licheniformis[J]. J Nat Prod, 2023, 86: 850-859.
Li F F, Zhang P L, Tangadanchu V K R, et al. Novel metronidazole-derived three-component hybrids as promising broad-spectrum agents to combat oppressive bacterial resistance[J]. Bioorg Chem, 2022, 122: e105718.
Li W, Yang X, Ahmad N, et al. Novel aminothiazoximone-corbelled ethoxycarbonylpyrimidones with antibiofflm activity to conquer Gram-negative bacteria through potential multitargeting effects[J]. Eur J Med Chem, 2024, 268: e116219.
Bheemanaboina R R Y, Wang J, Hu Y Y, et al. A facile reaction to access novel structural sulfonyl-hybridized imidazolyl ethanols as potential DNA-targeting antibacterial agents[J]. Bioorg Med Chem Lett, 2021, 47: e128198.
Sannio F, Brizzi A, Prete R D, et al. Optimization of pyrazole compounds as antibiotic adjuvants active against colistin- and carbapenem-resistant Acinetobacter baumannii[J]. Antibiotics, 2022, 11: e1832.
Eldaly S M, Metwally N H. Green synthesis of some new azolopyrimidines as antibacterial agents based on thiophene-chalcone[J]. Synth Commun, 2024, 54(5): 348-370.
Pokhodylo N, Manko N, Finiuk N, et al. Primary discovery of 1-aryl-5-substituted-1H-1,2,3-triazole-4-carboxamides as promising antimicrobial agents[J]. J Mol Struct, 2021, 1246: e131146.
Amin N H, El-Saadi M T, Ibrahim A A, et al. Design, synthesis and mechanistic study of new 1,2,4-triazole derivatives as antimicrobial agents[J]. Bioorg Chem, 2021, 111: e104841.
Alkhaibari I, Raj, K C H, Angappulige D H, et al. Novel pyrazoles as potent growth inhibitors of staphylococci, enterococci and Acinetobacter baumannii bacteria[J]. Future Med Chem, 2022, 14(4): 233-244.
Delancey E, Allison D, Raj H K C, et al. Synthesis of 4,4'-(4-formyl-1H-pyrazole-1,3-diyl) dibenzoic acid derivatives as narrow spectrum antibiotics for the potential treatment of Acinetobacter Baumannii infections[J]. Antibiotics, 2020, 9: e650.
Yuan D, Liu S, Li S, et al. Design, synthesis and biological evaluation of 7-substituted-1,3-diaminopyrrol[3,2-f]quinazolines as potential antibacterial agents[J]. ChemMedChem, 2023, 18(12): e202300078.
Kim H, Gu L, Yeo H, et al. Rapid assembly of pyrrole-ligated 1,3,4-oxadiazoles and excellent antibacterial activity of iodophenol substituents[J]. Molecules, 2023, 28: e3638.
Lyons A, Kirkham J, Blades K, et al. Discovery and structure-activity relationships of a novel oxazolidinone class of bacterial type Ⅱ topoisomerase inhibitors[J]. Bioorg Med Chem Lett, 2022, 65: e128648.
Agarwal A, Singh P, Maurya A, et al. Ciprofloxacin-tethered 1,2,3-triazole conjugates: New quinolone family compounds to upgrade our antiquated approach against bacterial infections[J]. ACS Omega, 2022, 7(3): 2725-2736.
Upadhyay R, Kumar R, Jangra M, et al. Synthesis of bioactive complex small molecule-ciprofloxacin conjugates and evaluation of their antibacterial activity[J]. ACS Comb Sci, 2020, 22: 440-445.
Osman E O, Attia H, Samir R, et al. Design, synthesis, and antibacterial activity of a new series of cipro?oxacin-thiadiazole hybrid[J]. J Mol Struct, 2023, 1282: e135135.
Lukin A P, Komarova K, Vinogradova L, et al. Synthesis and antibacterial evaluation of ciprofloxacin congeners with spirocyclic amine[J]. Int J Mol Sci, 2023, 24(2): e954.
Tan Y M, Wang Y, Li S, et al. Azolylpyrimidinediols as novel structural scaffolds of DNA-groove binders against intractable Acinetobacter baumannii[J]. J Med Chem, 2023, 66(7): 4910-4931.