[摘要]"目的
探討亞甲基四氫葉酸還原酶(MTHFR)基因A1298C(rs1801131)位點多態(tài)性與阿爾茨海默病(Alzheimer’s disease,AD)患者腦脊液β-淀粉樣蛋白1-42亞型(Aβ1-42)水平、認知水平及腦結(jié)構(gòu)變化的關(guān)系。
方法
選取AD神經(jīng)影像學(xué)倡議計劃(ADNI)數(shù)據(jù)庫中符合納入標(biāo)準(zhǔn)的1 271例研究對象,采用多元線性回歸模型分析MTHFR基因A1298C(rs1801131)位點多態(tài)性與AD患者腦脊液Aβ1-42水平、認知水平及腦結(jié)構(gòu)變化的關(guān)系。采用中介分析模型分析腦脊液Aβ1-42水平在MTHFR基因A1298C(rs1801131)位點多態(tài)性與認知水平關(guān)聯(lián)中的中介作用。
結(jié)果"多元線性回歸模型分析顯示,A1298C-C等位基因與AD患者腦脊液Aβ1-42水平、海馬體積及認知水平呈負相關(guān)(β=-0.121~-0.084,t=-3.308~-1.953,Plt;0.05),與認知狀態(tài)、腦室體積呈正相關(guān)(β=0.108、0.126,t=3.749、3.653,Plt;0.05)。中介分析模型顯示,腦脊液Aβ1-42水平在A1298C-C等位基因與記憶功能(ADNI_MEM)評分的關(guān)系中介導(dǎo)比率為26.0%,腦脊液Aβ1-42水平在A1298C-C等位基因與簡易精神狀態(tài)檢查表評分的關(guān)系中介導(dǎo)比率為19.9%。
結(jié)論
MTHFR基因A1298C(rs1801131)位點多態(tài)性影響AD患者腦脊液生物標(biāo)志物、認知水平及海馬體積和腦室體積,A1298C-C等位基因可能通過降低腦脊液Aβ1-42水平促進AD的發(fā)生發(fā)展。MTHFR基因靶向修飾可能成為未來高AD遺傳風(fēng)險人群的重要干預(yù)靶點。
[關(guān)鍵詞]"阿爾茨海默病;亞甲基四氫葉酸還原酶(NADPH);多態(tài)性,單核苷酸;葉酸;高半胱氨酸;腦脊髓液;淀粉樣β肽類;認知障礙
[中圖分類號]"R745.7
[文獻標(biāo)志碼]"A
MTHFR gene A1298C (rs1801131) polymorphism and its correlations with cerebrospinal fluid biomarkers, cognitive level, and brain structure changes in patients with Alzheimer’s disease
MA Yuju, HUANG Liangyu, CHEN Jiaru, TAN Lan
(Qingdao Medical College of Qingdao University, Qingdao 266071, China)
[ABSTRACT]Objective To investigate the relationship of A1298C (rs1801131) polymorphism in the MTHFR gene encoding methylenetetrahydrofolate reductase with the cerebrospinal fluid β-amyloid 1-42 subtype (Aβ1-42) level, cognitive level, and brain structure changes in patients with Alzheimer’s disease (AD).
Methods A total of 1 271 subjects who met the inclusion criteria in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database were selected. A multivariable linear regression model was used to analyze the relationship of MTHFR gene A1298C (rs1801131) polymorphism with cerebrospinal fluid Aβ1-42 level, cognitive level, and brain structure changes in AD patients. A mediation model was used to analyze the role of cerebrospinal fluid Aβ1-42 level in mediating the relationship between MTHFR gene A1298C (rs1801131) polymorphism and cognitive level.
Results
Multivariable linear regression model analysis showed that A1298C-C allele was negatively correlated with the level of Aβ1-42 in cerebrospinal fluid, hippocampal volume, and cognitive level (β=-0.121--0.084,t=-3.308--1.953,Plt;0.05), and positively correlated with cognitive status and ventricular volume (β=0.108,0.126,t=3.749,3.653,Plt;0.05). The mediation model showed that the level of Aβ1-42 in cerebrospinal fluid mediated 26.0% of the relationship between A1298C-C allele and memory function (ADNI_Memory score), and 19.9% of the relationship between A1298C-C allele and Mini-Mental State Examination score.
Conclusion MTHFR gene A1298C (rs1801131) polymorphism affects cerebrospinal fluid biomarkers, cognitive level, hippocampal volume, and ventricular volume in AD patients. A1298C-C allele may promote the development and progression of AD by reducing the level of Aβ1-42 in cerebrospinal fluid. Targeted modification of the MTHFR gene may represent an important intervention stra-
tegy for populations with a high genetic risk of AD in the future.
[KEY WORDS] Alzheimer disease; Methylenetetrahydrofolate reductase (NADPH2); Polymorphism,single nucleotide; Folic acid; Homocysteine; Cerebrospinal fluid; "Amyloid beta-peptides; Cognition disorders
阿爾茨海默?。ˋlzheimer’s disease,AD)是一種由遺傳因素和環(huán)境因素共同作用導(dǎo)致的中樞神經(jīng)系統(tǒng)退行性疾病,AD最重要的病理改變是β淀粉樣物質(zhì)在神經(jīng)細胞外沉積形成的神經(jīng)炎性斑和過度磷酸化的tau蛋白在神經(jīng)細胞內(nèi)聚集形成的神經(jīng)原纖維纏結(jié)[1-2],隨著AD疾病的進展,患者逐漸出現(xiàn)記憶障礙和認知能力下降等臨床表現(xiàn)。亞甲基四氫葉酸還原酶(MTHFR)是葉酸代謝的關(guān)鍵酶,該酶活性的高低嚴重影響血清葉酸和同型半胱氨酸(HCY)水平[3-4]。研究發(fā)現(xiàn),MTHFR基因的多態(tài)性與AD密切相關(guān)[5-7],但是MTHFR基因A1298C(rs1801131)位點多態(tài)性與AD患者腦脊液生物標(biāo)志物、認知水平以及海馬體積和腦室體積的關(guān)系尚不明確。本研究首先通過多元線性回歸模型分析MTHFR基因A1298C(rs1801131)位點多態(tài)性與AD腦脊液生物標(biāo)志物、認知水平以及海馬體積和腦室體積的關(guān)聯(lián),再通過中介分析探討MTHFR基因A1298C(rs1801131)位點多態(tài)性影響患者認知水平的可能機制,為AD的臨床靶向治療和干預(yù)措施的制定提供理論依據(jù)。
1"資料與方法
1.1"研究資料
選取AD神經(jīng)影像學(xué)倡議計劃(ADNI)數(shù)據(jù)庫(http://adni.loni.usc.edu/data-samples)中的1 271例研究對象的臨床資料進行研究,其中包括認知正常(CN)者474例,輕度認知功能障礙(MCI)者575例,AD患者222例。研究對象排除標(biāo)準(zhǔn):①嚴重精神系統(tǒng)疾病者;②腦外傷或顱腦損傷者;③有精神藥物使用史者;④有額外補充葉酸者。根據(jù)MTHFR基因A1298C(rs1801131)位點的多態(tài)性(MTHFR A1298C基因型來自ADNI數(shù)據(jù)庫)將研究對象分為A1298C-AA組788例,A1298C-AC組375例,A1298C-CC組108例。
1.2"研究方法
在ADNI數(shù)據(jù)庫中收集研究對象的性別、年齡、受教育年限、BMI等基本特征,同時收集研究對象的APOEε4攜帶數(shù)量、腦脊液β-淀粉樣蛋白1-42亞型(Aβ1-42)水平、認知水平、腦室體積、海馬體積等指標(biāo)。其中認知水平分別采用簡易精神狀態(tài)檢查表(MMSE)、蒙特利爾認知評估量表(MoCA)、記憶功能(ADNI_MEM)和執(zhí)行功能(ADNI_EF)復(fù)合評分進行評估[8]。
1.3"統(tǒng)計學(xué)處理
采用R軟件(版本4.0.3)、IBM SPSS Statistics軟件(版本25.0)和PLINK軟件(版本1.07)對數(shù)據(jù)進行統(tǒng)計分析。計數(shù)資料以例(率)表示,組間比較采用Pearson卡方檢驗;計量資料以±s表示,組間比較采用單因素方差分析,進一步兩兩比較采用Bonferroni檢驗。采用多元線性回歸模型以分析A1298C(rs1801131)位點多態(tài)性(自變量)與腦脊液Aβ1-42水平、海馬體積、腦室體積和認知水平的相關(guān)性;以腦脊液Aβ1-42水平、海馬體積、腦室體積和認知水平為因變量,以研究對象年齡、性別、BMI、教育程度及APOE ε4基因的攜帶數(shù)量為協(xié)變量,當(dāng)分析腦結(jié)構(gòu)時,顱內(nèi)體積(對全腦實質(zhì)的總測量)也加入?yún)f(xié)變量中。將腦脊液生物標(biāo)志物和神經(jīng)影像學(xué)數(shù)據(jù)去3倍極值以后進行正態(tài)化。采用中介分析模型分析腦脊液Aβ1-42水平在MTHFR基因A1298C(rs1801131)位點多態(tài)性與認知水平關(guān)聯(lián)中的中介作用。通過R軟件中的“mediate”、“car”和“l(fā)m”包進行介導(dǎo)分析,以10 000個自舉重采樣確定中介效應(yīng)顯著性,以A1298C(rs1801131)位點多態(tài)性為自變量,AD腦脊液生物標(biāo)志物Aβ1-42水平為中介變量,以認知評分(ADNI_MEM、MMSE評分)為因變量,性別、年齡、教育程度、BMI和APOE ε4攜帶數(shù)量為協(xié)變量。以Plt;0.05為差異具有統(tǒng)計學(xué)意義。
2"結(jié)""果
2.1"研究對象的基本特征
三組研究對象的MMSE評分、ADNI_MEM評分、海馬體積、腦室體積和認知狀態(tài)比較,差異有顯著性(F=4.716~5.778,χ2=16.496,Plt;0.05),其中,與A1298C-AA組比較,A1298C-CC組研究對象的MMSE和ADNI_MEM評分顯著降低,AD患者比例顯著增多,腦室體積顯著增大,海馬體積顯著縮?。≒lt;0.05)。見表1。
2.2"MTHFR基因A1298C(rs1801131)位點多態(tài)性與AD患者腦脊液Aβ1-42水平、海馬體積、腦室體積及認知水平的關(guān)系
多元線性回歸分析結(jié)果顯示,A1298C-C等位基因與腦脊液Aβ1-42水平、海馬體積及認知水平呈負相關(guān)(β=-0.121~-0.084,t=-3.308~-1.953,Plt;0.05),而與認知狀態(tài)和腦室體積呈正相關(guān)(β=0.108、0.126,t=3.749、3.653,Plt;0.05)。見表2。
2.3"腦脊液Aβ1-42水平在MTHFR基因A1298C(rs1801131)位點多態(tài)性與認知水平關(guān)聯(lián)中的中介作用
在MTHFR基因A1298C(rs1801131)位點多態(tài)性、腦脊液Aβ1-42水平、ADNI_MEM中介分析模型當(dāng)中,A1298C-C等位基因?qū)τ贏DNI_MEM評分的直接效應(yīng)(β=-0.090,95%CI=-0.169~-0.010,t=-2.210,Plt;0.05)、間接效應(yīng)(β=-0.032,95%CI=-0.169~0.000,Plt;0.05)和總效應(yīng)(β=-0.121,95%CI=-0.205~-0.040,t=-2.812,Plt;0.05)均達到統(tǒng)計學(xué)意義,腦脊液Aβ1-42水平在A1298C-C等位基因與ADNI_MEM評分的關(guān)系當(dāng)中介導(dǎo)比率為26.0%;而在MTHFR基因A1298C(rs1801131)位點多態(tài)性、Aβ1-42、MMSE中介分析模型當(dāng)中,A1298C-C等位基因?qū)MSE評分的直接效應(yīng)(β=-0.122,95%CI=-0.219~-0.020,t=-2.415,Plt;0.05)、間接效應(yīng)(β=-0.031,95%CI=-0.060~-0.000,Plt;0.05)和總效應(yīng)(β=-0.152,95%CI=-0.252~-0.050,t=-2.908,Plt;0.05)同樣均達到統(tǒng)計學(xué)意義,腦脊液Aβ1-42水平在A1298C-C等位基因與MMSE評分的關(guān)系中介導(dǎo)比率為19.9%。
3"討""論
越來越多的研究顯示,MTHFR基因A1298C(rs1801131)位點多態(tài)性與AD及認知障礙顯著性相關(guān)[9-11],但MTHFR基因A1298C(rs1801131)位點多態(tài)性與AD患者腦脊液Aβ1-42水平、海馬體積、腦室體積及認知水平的具體關(guān)系尚不清楚。
A1298C(rs1801131)位點是MTHFR最常見的基因多態(tài)性位點之一,該位點位于1號染色體(1p36.3)片段的NADPH調(diào)控域和s-腺苷甲硫氨酸結(jié)合位點[12],A1298C(rs1801131)位點上的腺嘌呤被胞嘧啶取代,導(dǎo)致MTHFR酶中的谷氨酸變?yōu)楸彼?,致MTHFR對熱不耐受而活性降低[12-13]。在葉酸-HCY的生物代謝過程中,MTHFR將5,10-亞甲基四氫葉酸轉(zhuǎn)化為5-甲基四氫葉酸,為HCY轉(zhuǎn)化為甲硫氨酸提供甲基,甲硫氨酸進一步生成S-腺苷甲硫氨酸,為人體生物代謝提供活性甲基[14]。研究顯示,A1298C-AC雜合子和A1298C-CC純合子個體細胞內(nèi)MTHRF活性分別為A1298C-AA純合子的60%~92%和52%~66%[15],從而使機體內(nèi)5-甲基四氫葉酸和甲基的可用性減少,HCY水平升高[16],以上改變可能最終導(dǎo)致大腦的認知水平下降,增加患AD的風(fēng)險[17]。
本研究結(jié)果顯示,A1298C-C等位基因與患者腦脊液Aβ1-42水平呈負相關(guān),研究表明Aβ1-42蛋白在腦組織細胞外沉積可導(dǎo)致腦脊液中Aβ1-42水平的降低[18-19],因此推測A1298C-C等位基因可能通過促進Aβ1-42蛋白在腦組織細胞外沉積參與AD病理進程,進一步也提示A1298C-C等位基因可能是AD的危險因素。A1298C-C等位基因攜帶者MTHFR酶活性降低,導(dǎo)致5-甲基四氫葉酸水平降低,HCY水平升高。進一步研究表明,機體血液中HCY水平升高和5-甲基四氫葉酸水平降低均可促進腦脊液Aβ1-42蛋白聚集而使淀粉樣蛋白異常沉積[17,20]。HOFFMAN等[21]研究認為,MTHFR酶功能缺陷可增強淀粉樣蛋白-β前體上蘇氨酸668位點的磷酸化和去甲基化蛋白磷酸酶2A的累積,以及激活糖原合成酶激酶3β,三者對促進腦組織中Aβ蛋白沉積變性發(fā)揮協(xié)同作用。
本研究結(jié)果顯示,A1298C-C等位基因與患者認知水平呈顯著負相關(guān),與認知狀態(tài)呈顯著正相關(guān)。因此,A1298C-C等位基因攜帶者的總體認知水平、記憶及執(zhí)行功能可能更容易受損,增加了認知障礙發(fā)生的風(fēng)險。本研究結(jié)果顯示,A1298C-C等位基因與患者腦脊液Aβ1-42水平呈負相關(guān)。研究顯示,認知水平與患者腦脊液Aβ1-42水平顯著相關(guān)[22-24]。因此推測A1298C位點多態(tài)性可能通過影響腦脊液Aβ1-42水平而致患者的認知水平下降。為了證實這一推論,本研究又進行了中介分析,結(jié)果顯示腦脊液Aβ1-42水平在A1298C-C等位基因與ADNI_MEM評分關(guān)系中介導(dǎo)比率為26.0%,腦脊液Aβ1-42水平在A1298C-C等位基因與MMSE評分關(guān)系中介導(dǎo)比率為19.9%,提示MTHFR A1298C-C等位基因患者對認知的影響不完全由腦脊液Aβ1-42水平介導(dǎo),A1298C-C等位基因可能直接影響患者認知水平,或存在其他影響患者認知水平的中介物質(zhì),比如膽堿等[25],有待未來進一步探討。
本研究發(fā)現(xiàn)A1298C-C等位基因與患者腦室體積呈正相關(guān),但與海馬體積呈負相關(guān),提示A1298C-C等位基因可能通過影響腦結(jié)構(gòu)來促進AD的發(fā)生發(fā)展。既往研究報道顯示HCY與患者區(qū)域腦容量缺陷有關(guān)[26],且血漿中HCY水平可能介導(dǎo)了這一中介效應(yīng)[27]。由于ADNI數(shù)據(jù)庫中HCY數(shù)據(jù)不足,所以在本研究當(dāng)中未能發(fā)現(xiàn)這一中介效應(yīng)。JADAVJI等[28]研究發(fā)現(xiàn),MTHFR基因多態(tài)性改變導(dǎo)致的膽堿能代謝異常與小鼠的全腦和海馬體積減小相關(guān)。因此,我們推斷MTHFR A1298C-C等位基因可能通過影響腦結(jié)構(gòu)促進AD的進展。
本研究所納入的基因位點是葉酸代謝通路中最常見的突變位點之一,能夠從基因?qū)用娉霭l(fā)解釋葉酸代謝關(guān)鍵酶在AD發(fā)生發(fā)展中的作用。但本研究仍有一定的局限性,首先本研究沒有納入其他認知領(lǐng)域的測試,比如抑郁和焦慮量表評分(已知的混雜因素),而且缺乏血清中葉酸水平和HCY水平的數(shù)據(jù),這些都限制了數(shù)據(jù)分析結(jié)果的可靠性;其次,A1298C(rs1801131)基因型的分布存在種族差異,因此本研究的結(jié)果可能無法直接外推到亞洲人群。
綜上所述,本研究的結(jié)果表明MTHFR基因A1298C(rs1801131)位點多態(tài)性影響AD患者腦脊液Aβ1-42水平、認知水平及腦結(jié)構(gòu),最終導(dǎo)致AD發(fā)病風(fēng)險增加,A1298C-C等位基因可能通過降低腦脊液Aβ1-42水平促進AD的發(fā)生發(fā)展。MTHFR基因可能成為未來A1298C-C等位基因攜帶AD患者的重要干預(yù)靶點。
作者聲明:譚蘭、馬瑜鞠參與了研究設(shè)計,馬瑜鞠、黃良玉、陳佳茹參與了論文的寫作和修改。所有作者均閱讀并同意發(fā)表該論文,且均聲明不存在利益沖突。
[參考文獻]
[1]MUELLER S G, WEINER M W, THAL L J, et al. The Alzheimer’s disease neuroimaging initiative[J]. Neuroimaging Clin N Am, 2005,15(4):869-877.
[2]SCHELTENS P, DE STROOPER B, KIVIPELTO M, et al. Alzheimer’s disease[J]. Lancet, 2021,397(10284):1577-1590.
[3]PERIN M T, MACAS-GARCA D, JESS S, et al. Homocysteine levels, genetic background, and cognitive impairment in Parkinson’s disease[J]. J Neurol, 2023,270(1):477-485.
[4]PUJOL N, MANE"A N, BERGE"D, et al. Influence of BDNF and MTHFR polymorphisms on hippocampal volume in firs-tepisode psychosis[J]. Schizophr Res, 2020,223:345-352.
[5]BOUGUERRA K, TAZIR M, MELOULI H, et al. The methylenetetrahydrofolate reductase C677T and A1298C genetic polymorphisms and plasma homocysteine in Alzheimer’s disease in an Algerian population[J]. Int J Neurosci, 2024,134(8):918-923.
[6]DUAN H L, ZHOU D Z, XU N, et al. Association of unhealthy lifestyle and genetic risk factors with mild cognitive impairment in Chinese older adults[J]. JAMA Netw Open, 2023,6(7):e2324031.
[7]SASNER M, PREUSS C, PANDEY R S, et al. In vivo validation of late-onset Alzheimer’s disease genetic risk factors[J]. Alzheimers Dement, 2024,20(7):4970-4984.
[8]CRANE P K, CARLE A, GIBBONS L E, et al. Development and assessment of a composite score for memory in the Alzheimer’s Disease Neuroimaging Initiative (ADNI)[J]. Brain Imaging Behav, 2012,6(4):502-516.
[9]DURMAZ A, KUMRAL E, DURMAZ B, et al. Genetic factors associated with the predisposition to late onset Alzheimer’s disease[J]. Gene, 2019,707:212-215.
[10]JIANG Y L, XIAO X W, WEN Y F, et al. Genetic effect of MTHFR C677T, A1298C, and A1793G polymorphisms on the age at onset, plasma homocysteine, and white matter lesions in Alzheimer’s disease in the Chinese population[J]. Aging, 2021,13(8):11352-11362.
[11]SIMS R, HILL M, WILLIAMS J. The multiplex model of the genetics of Alzheimer’s disease[J]. Nat Neurosci, 2020,23(3):311-322.
[12]RAGHUBEER S, MATSHA T E. Methylenetetrahydrofolate (MTHFR), the one-carbon cycle, and cardiovascular risks[J]. Nutrients, 2021,13(12):4562.
[13]BOTTO L D, YANG Q. 5, 10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: A HuGE review[J]. Am J Epidemiol, 2000,151(9):862-877.
[14]LI W X, DAI S X, ZHENG J J, et al. Homocysteine metabolism gene polymorphisms (MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) jointly elevate the risk of folate deficiency[J]. Nutrients, 2015,7(8):6670-6687.
[15]LIEVERS K J, BOERS G H, VERHOEF P, et al. A second common variant in the methylenetetrahydrofolate reductase (MTHFR) gene and its relationship to MTHFR enzyme acti-
vity, homocysteine, and cardiovascular disease risk[J]. J Mol Med, 2001,79(9):522-528.
[16]LUO M, JI H H, ZHOU X H, et al. Correlation of homocysteine metabolic enzymes gene polymorphism and mild cognitive impairment in the Xinjiang Uygur population[J]. Med Sci Monit, 2015,21:326-332.
[17]KAMAT P K, VACEK J C, KALANI A, et al. Homocysteine induced cerebrovascular dysfunction: A link to Alzheimer’s disease etiology[J]. Open Neurol J, 2015,9:9-14.
[18]FAGAN A M, MINTUN M A, MACH R H, et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans[J]. Ann Neurol, 2006,59(3):512-519.
[19]WISCH J K, GORDON B A, BOERWINKLE A H, et al. Predicting continuous amyloid PET values with CSF and plasma Aβ42/Aβ40[J]. Alzheimers Dement, 2023,15(1):e12405.
[20]JAKUBOWSKI H. Homocysteine thiolactone detoxifying enzymes and Alzheimer’s disease[J]. Int J Mol Sci, 2024,25(15):8095.
[21]HOFFMAN A, TALESKI G, QIAN H, et al. Methylenetetrahydrofolate reductase deficiency deregulates regional brain amyloid-β protein precursor expression and phosphorylation levels[J]. J Alzheimers Dis, 2018,64(1):223-237.
[22]BHATTARAI P, TAHA A, SONI B, et al. Predicting cognitive dysfunction and regional hubs using Braak staging amyloid-beta biomarkers and machine learning[J]. Brain Inform, 2023,10(1):33.
[23]GULISANO W, MAUGERI D, BALTRONS M A, et al. Role of amyloid-β and tau proteins in Alzheimer’s disease: Confuting the amyloid cascade[J]. J Alzheimers Dis, 2019,68(1):415.
[24]JIA J P, NING Y Y, CHEN M L, et al. Biomarker changes during 20 years preceding Alzheimer’s disease[J]. N Engl J Med, 2024,390(8):712-722.
[25]BEKDASH R A. Neuroprotective effects of choline and other methyl donors[J]. Nutrients, 2019,11(12):2995.
[26]RAJAGOPALAN P, HUA X, TOGA A W, et al. Homocysteine effects on brain volumes mapped in 732 elderly indivi-
duals[J]. Neuroreport, 2011,22(8):391-395.
[27]RAJAGOPALAN P, JAHANSHAD N, STEIN J L, et al. Common folate gene variant, MTHFR C677T, is associated with brain structure in two independent cohorts of people with mild cognitive impairment[J]. Neuroimage Clin, 2012,1(1):179-187.
[28]JADAVJI N M, DENG L Y, LECLERC D, et al. Severe methylenetetrahydrofolate reductase deficiency in mice results in behavioral anomalies with morphological and biochemical changes in hippocampus[J]. Mol Genet Metab, 2012,106(2):149-159.
(本文編輯"耿波)