摘要:金牙金礦床是滇黔桂“金三角”地區(qū)典型的卡林型金礦床之一,礦體明顯受斷裂構(gòu)造控制,主要呈似層狀、豆莢狀、透鏡狀產(chǎn)于中三疊統(tǒng)百逢組的泥質(zhì)粉砂巖和粉砂質(zhì)泥巖中。為探討成礦流體性質(zhì)與成礦機制,對研究區(qū)流體包裹體進行巖相學(xué)研究、顯微測溫以及激光拉曼成分分析。結(jié)果表明,該礦床成礦熱液過程可以劃分為3個階段:石英-黃鐵礦階段(Ⅰ)、黃鐵礦-毒砂階段(Ⅱ)和石英-碳酸鹽階段(Ⅲ),其中Ⅱ 階段為主成礦階段。流體包裹體巖相學(xué)研究顯示:成礦期流體包裹體主要為氣液兩相包裹體,液相成分主要為H2O;氣體成分主要為CO2、N2、SO2及CH4,從早階段到晚階段平均均一溫度分別為189、157、137 ℃;平均w (NaCleq)依次為6.01%、4.18%、2.01%,初始成礦流體具有中低溫、低鹽度、低密度的特征,含CO2、N2和SO2等揮發(fā)分的H2O-NaCl體系流體。成礦早期中高溫、還原性的盆地熱鹵水與周圍地層發(fā)生了強烈的水巖反應(yīng),活化遷移其中的Au和S;主成礦期成礦流體在異常高壓與斷裂活動驅(qū)使下不斷向上流動,并與白云石中的Fe等元素反應(yīng)生成黃鐵礦和毒砂,同時與大氣降水相混合,溫度和鹽度快速降低,Au等成礦元素大量卸載;成礦晚期,流體中的成礦元素消耗殆盡,大氣降水持續(xù)混入,溫度和鹽度明顯下降,成礦作用結(jié)束。成礦機制為流體混合與水巖反應(yīng)。
關(guān)鍵詞:流體包裹體;成礦流體來源;礦床成因;金牙卡林型金礦床;滇黔桂“金三角”
doi:10.13278/j.cnki.jjuese.20210327
中圖分類號:P618.51
文獻標志碼:A
Abstract: Jinya gold deposit is one of the typical Carlintype gold deposits in the “Golden Triangle” area of Yunnan, Guizhou and Guangxi provinces. The ore bodies are obviously controlled by fault structures and are mainly layered, podshaped, and lenticular in argillaceous siltstone and silty mudstone of the Middle Triassic Baifeng Formation. In order to explore the metallogenic fluid properties and mineralization mechanism, the petrographic study, micro temperature measurement and Laser Raman spectroscopy analysis on the fluid inclusions in the study area were carried out. The metallogenic hydrothermal process of this deposit can be divided into three metallogenic stages: Quartzpyrite stage (Ⅰ), pyritearsenopyrite stage (Ⅱ) and quartzcarbonate stage (Ⅲ), and stage Ⅱ is the main metallogenic stage. The petrographic study of fluid inclusions shows that the fluid inclusions in the metallogenic period are mainly twophase vapor inclusions, and the liquid phase is mainly water; The gas composition is mainly CO2, N2, SO2 and CH4, and the average homogenization temperature from Ⅰ stage to Ⅲ stage is 189, 157, and 137 ℃, respectively; The average w(NaCleq) is 6.01%, 4.18%, and 2.01% in sequence. The initial oreforming fluid is characterized by H2O-NaCl system fluid with mediumlow temperature, low salinity, low density and contains volatile components such as CO2, N2 and SO2. In the early stage of mineralization, the hot brine in the basin with mediumhigh temperature and reducibility had a strong waterrock reaction with the surrounding strata, activating and migrating Au and S; In the main metallogenic period, the oreforming fluid continuously flows upward driven by abnormally high pressure and faulting activities, and reacts with Fe and other elements in dolomite to form pyrite and arsenopyrite. At the same time, it mixes with atmospheric precipitation, the temperature and salinity drop rapidly, and Au and other oreforming elements are unloaded in large quantities. In the late stage of mineralization, the oreforming elements in the fluid were consumed, the atmospheric precipitation continued to mix in, the temperature and salinity dropped significantly, and the mineralization ended. The mineralization mechanism is fluid mixing and waterrock reaction.
Key words: fluid inclusion; source of oreforming fluid; deposit genesis; Jinya Carlintype gold deposit; YunnanGuizhouGuangxi “Golden Triangle”
0 引言
滇黔桂地區(qū)是中國最著名的卡林型金礦床產(chǎn)區(qū)之一,被譽為“金三角”,黃金總資源量超過800 t。該區(qū)處于濱太平洋與特提斯—喜馬拉雅兩大構(gòu)造域之間,先后經(jīng)歷了古特提斯洋閉合和太平洋板塊俯沖,構(gòu)造活動強烈,成礦條件優(yōu)越。區(qū)內(nèi)分布著水銀洞、泥堡、爛泥溝、金牙等數(shù)十個卡林型金礦床。由于區(qū)域內(nèi)部分卡林型金礦床缺少深部地質(zhì)體的直接證據(jù),金和成礦流體的來源至今仍未形成一個廣泛的共識,一些學(xué)者認為其來源于深部隱伏的中酸性巖體,一些學(xué)者主張來自于沉積地層,還有研究表明其是沉積巖和巖漿巖混合來源。
金牙金礦床是滇黔桂地區(qū)典型的卡林型金礦床,主要的載金礦物為毒砂和黃鐵礦。成礦過程是多期、多階段的,可分為沉積成巖期、熱液期和表生期3個時期;熱液期是主要成礦期,可大致分為金-石英-黃鐵礦-毒砂階段和金-石英-方解石-黃鐵礦-毒砂階段2個階段。前人研究結(jié)果顯示,毒砂Re-Os等時線年齡為(206±22)Ma,載金黃鐵礦δ34S均值為-6.22‰,而距其最近的下巴哈中酸性巖脈年齡為(95.4±2.4)Ma,顯然在時間和空間上成礦與中酸性巖脈并無成因聯(lián)系。雖然前人對金牙金礦床的研究已經(jīng)歷了數(shù)十年,但對礦床成礦流體性質(zhì)、流體壓力、成礦深度以及成礦模式方面的研究仍然較為薄弱。本文在總結(jié)前人研究成果的基礎(chǔ)上,對與硫化物共生的石英開展了系統(tǒng)性的流體包裹體研究和激光拉曼成分分析,并探討了金牙金礦床的成礦模式,以豐富區(qū)域內(nèi)卡林型金礦床的流體成礦機制。
1 地質(zhì)概況
1.1 區(qū)域地質(zhì)概況
右江盆地位于揚子板塊西南緣,先后經(jīng)歷了海西期和印支期的裂谷盆地階段,并在古特提斯洋和濱太平洋構(gòu)造域的復(fù)合作用下形成造山帶。區(qū)內(nèi)出露地層主要有泥盆系、石炭系、二疊系和三疊系等,其中三疊系分布最廣,大部分為中三疊統(tǒng)的陸源碎屑濁積巖(圖1)。區(qū)域內(nèi)巖漿活動較為強烈,主要為海西期玄武巖漿噴發(fā)和晚燕山期超基性、基性巖漿侵入,西部、東部和東南部出露白堊紀花崗巖(95.6~80.0 Ma)、長英質(zhì)巖脈(99.4~95.4 Ma),北部發(fā)育超鎂鐵巖脈(88.0~85.0 Ma)。但金牙金礦床10 km范圍內(nèi)幾乎沒有大規(guī)模的巖漿巖巖脈。
1.2 礦區(qū)地質(zhì)概況
金牙金礦床位于右江盆地的東北端,凌云復(fù)背斜北東翼,凌云碳酸鹽巖臺地與三疊系深水濁積巖接觸帶附近。礦區(qū)出露地層主要有上二疊統(tǒng),三疊系邏樓組、百逢組和河口組(圖2)。
構(gòu)造活動較為強烈,褶皺主要為南北向的巴沙—東王背斜和巴啄—林勞向斜,斷裂以近南北向為主(圖3),區(qū)域性大斷裂有F1(金牙—平樂斷裂)、F2(那元—內(nèi)郎溝斷裂),次級斷裂有F3、F4、F5、F6、F9(F7、F8距離礦床較遠,未展示在圖3上)。礦區(qū)內(nèi)無巖漿巖出露,僅局部可見少量的火山碎屑沉積巖。
礦體均產(chǎn)于F1與F2兩條近南北向主斷裂及次級斷裂內(nèi)(圖3),受斷裂構(gòu)造控制明顯。礦化帶總體呈近南北向展布,礦體主要呈層狀、豆莢狀、透鏡狀產(chǎn)于中三疊統(tǒng)百逢組的粉砂質(zhì)泥巖中(圖3,圖4);礦石礦物主要有黃鐵礦、含砷黃鐵礦、毒砂,其次為閃鋅礦、黃銅礦、方鉛礦、輝銻礦、雄黃、雌黃、自然金、銀金礦等,其中黃鐵礦和毒砂與成礦關(guān)系密切。蝕變主要為黃鐵礦化、毒砂化、碳酸鹽化及硅化等。
其中硅化、黃鐵礦化、毒砂化與成礦關(guān)系密切,硅化-黃鐵礦化-毒砂化蝕變組合載金性最好。根據(jù)圍巖蝕變、礦物共生組合和礦石的結(jié)構(gòu)構(gòu)造,金牙金礦床可劃分為沉積期、熱液期和表生期。熱液期又可劃分為石英-黃鐵礦階段(Ⅰ)、黃鐵礦-毒砂階段(Ⅱ)和石英-碳酸鹽階段(Ⅲ)3 個成礦階段。其中:Ⅰ、Ⅱ 階段是金和硫化物的主要形成階段,形成大量黃鐵礦和毒砂等硫化物,其中黃鐵礦為半自形—他形,呈浸染狀、細脈狀產(chǎn)出,金主要形成于Ⅱ 階段;Ⅲ 階段主要形成一些石英、方解石和白云石等,及少量的黃鐵礦,金礦化較弱。
2 流體包裹體研究
2.1 樣品采集與分析
流體包裹體樣品采集自那元礦段3號礦體地表露頭和568 m中段的粉砂質(zhì)泥巖,對其中發(fā)育的流體包裹體進行了巖相學(xué)觀察、顯微測溫研究和激光拉曼成分分析。
流體包裹體顯微測溫和激光拉曼成分分析實驗在桂林理工大學(xué)地球科學(xué)學(xué)院流體包裹體實驗室完成。包裹體測溫測試儀器為 Linkam THMS-600型冷熱臺(-196~600 ℃),測試精度為±0.1 ℃。測試前,用國際標樣(人造純H2O及w(NaCleq)為25%的H2O-NaCl包裹體)系統(tǒng)校正流體包裹體的參數(shù)。測試期間,當溫度lt;30 ℃時,升溫速率為1 ℃/min;當溫度超過200 ℃時,升溫速率為10 ℃/min;當溫度接近相變化及冰點時,升溫速率小于0.2 ℃/min。激光拉曼光譜使用儀器為Renishaw System-2000顯微共焦激光拉曼光譜儀,激光波長為514 nm,激光功率20 mW,激光束斑直徑1 μm,光譜分辨率1~2 cm-1,流體包裹體以30 s積分時間、一次掃描次數(shù)的條件采集光譜。
2.2 流體包裹體巖相學(xué)特征
含金硅化角礫巖和含金硅化粉砂巖中的流體包裹體多為原生包裹體,大部分呈隨機零散狀分布,少數(shù)成群分布,無明顯的定向性。單個包裹體大小不一,直徑較小,在1~8 μm之間,形態(tài)有圓狀、橢圓狀、長條狀和不規(guī)則狀等(圖5)。依據(jù)包裹體相態(tài)和氣液相比例將包裹體劃分為以下3種類型。
純氣相包裹體(V):該類型包裹體約占總數(shù)的5%,直徑一般為1~2 μm,顏色略深,單個包裹體呈近圓狀或橢圓狀。
純液相包裹體(L):數(shù)量較少,直徑一般為1~2 μm,呈鏈狀或孤立狀,單個包裹體形態(tài)多呈近圓狀或橢圓狀。
氣液兩相包裹體(L+V):數(shù)量占包裹體總數(shù)的90%,單個包裹體呈近長條狀或不規(guī)則形狀。氣泡較小,氣液比一般介于10%~30%之間,直徑一般為3~8 μm。
2.3 流體包裹體顯微測溫、壓力與成礦深度估算
與成礦相關(guān)的含金硅化角礫巖和含金硅化粉砂巖中的流體包裹體測溫和鹽度結(jié)果見圖6和圖7。
由圖6和圖7可見:流體包裹體
均一溫度相差不大,集中于120~240 ℃之間,個別溫度高達240 ℃以上;鹽度w (NaCleq)主要分布在0~8%之間,平均為3.76%。
石英-黃鐵礦階段(Ⅰ):均一溫度介于135~246 ℃之間(平均值為189 ℃),冰點溫度范圍為-5.50~-1.40 ℃(平均-3.74 ℃);根據(jù)Hall等的鹽度公式,計算得知w (NaCleq)為2.40%~8.54%(平均6.01%);包裹體成礦流體密度采用劉斌等提出的密度計算公式,求得其密度范圍為0.83~0.99 g/cm3(表1)。
黃鐵礦-毒砂階段(Ⅱ):均一溫度為119~243 ℃(平均為157 ℃),均一溫度峰值集中在134~181 ℃,冰點溫度范圍為-4.50~-0.10 ℃(平均-2.55 ℃),w (NaCleq)為0.18%~7.15%(平均4.18%),密度在0.81~0.99 g/cm3之間(表1)。
石英-碳酸鹽階段(Ⅲ):均一溫度范圍為108~162 ℃(平均137 ℃),冰點溫度范圍為-4.80~-0.10(平均-1.21 ℃),w (NaCleq)為0.18%~7.58%(平均2.01%),密度范圍為0.91~1.00 g/cm3(表1)。
根據(jù)流體包裹體捕獲壓力的經(jīng)驗公式(p1=p0Tht/T0, p0=219+2620w(NaCleq), T0=374+920w(NaCleq)。其中,p1為成礦壓力(105 Pa),p0為初始壓力(105 Pa),Tht為實測均一溫度(℃),T0為初始溫度(℃),w (NaCleq)為鹽度(%),對3個樣品中氣液兩相包裹體進行了估算,3個階段成礦壓力范圍分別為12.62~18.98、10.11~14.69、7.25~11.83 MPa。鑒于本次實驗獲得的壓力數(shù)據(jù)值較小并且相差不大,因此成礦流體可能屬于靜水壓力體系,最終求得成礦深度為0.27~1.90 km。
為了研究金牙金礦床成礦流體的成分,本次實驗選擇成礦階段礦石中石英的氣液兩相包裹體進行
激光拉曼光譜分析。結(jié)果(圖8)表明,流體包裹體液相成分主要為H2O,氣體成分主要為CO2、N2和SO2,并且還出現(xiàn)一定量的CH4。
3 討論
3.1 成礦流體性質(zhì)
金牙金礦床流體包裹體類型簡單,主要為含CO2的H2O-NaCl型流體包裹體,未見明顯的流體減壓沸騰特征,均一溫度集中于120~240 ℃,從早階段到晚階段成礦流體的溫度逐漸降低,平均溫度分別為189、157和137 ℃;鹽度集中在0.18%~8.54%,從早階段到晚階段平均鹽度w (NaCleq)分別為6.01%、4.18%和2.01%。溫度和鹽度雖變化范圍不大但呈逐漸降低趨勢,說明成礦流體經(jīng)歷了流體混合。初始成礦流體應(yīng)為中低溫、低鹽度、低密度流體,同時含有CO2、N2和SO2等揮發(fā)分。成礦流體具有典型的盆地流體或熱鹵水的特征,與前人研究結(jié)果一致。
3.2 成礦物質(zhì)來源
金牙金礦床載金黃鐵礦的硫同位素(w(34S) =-6.30‰~-2.70‰)和鉛鍶同位素組成表明,成礦物質(zhì)主要來源于沉積盆地,方解石和石英中氫、氧同位素(wD(方解石) =-69. 67‰~-30. 94‰, w18O(方解石)= 4.28‰~10.17‰,wD(石英)=-70.00‰~-56.83‰,w18O(石英)= 13.41‰~16.25‰)的測定結(jié)果表明,成礦流體為同生沉積的間隙水與天水相混的混合水,而且碳同位素(w(13 C)= -3.25‰~-2.12‰)表明間隙水具有同生鹵水的性質(zhì)。右江盆地自早泥盆世開始裂陷沉降,至晚三疊世快速沉積了近萬米的濁積巖系地層,這些濁積巖中金的含量是區(qū)域背景值的數(shù)十到數(shù)百倍,尤其是中三疊統(tǒng)百逢組,說明地層具有為成礦提供Au的可能性。
Li等利用LA-ICPMS(激光剝蝕-等離子體質(zhì)譜)以及SIMS(二次離子質(zhì)譜儀)原位微區(qū)方法對金牙金礦床熱液期載金環(huán)帶黃鐵礦進行了詳細的研究,結(jié)果表明,成礦流體主要來源于沉積盆地并混入部分大氣降水,熱液期載金環(huán)帶黃鐵礦由核心到邊緣可以分為核部(Py1,δ34S均值為-6.89‰)、環(huán)帶(Py2,δ34S均值為-5.60‰)和邊緣(Py3,δ34S均值為-5.99‰)3個環(huán)帶,金質(zhì)量分數(shù)和硫同位素比值具有周期性變化的特征,但無本質(zhì)差別。同時根據(jù)硫同位素值計算了流體混合的比例,并提出:盆地內(nèi)部的成礦流體在壓力的驅(qū)使下,由盆地中心向臺地邊緣運移,并沿白云質(zhì)碳酸巖臺地邊緣斷裂上升,交代富Fe白云質(zhì)巖石,形成核部含金黃鐵礦(Py1),此時大氣降水混入量較少,約為3%;當斷裂處于開放狀態(tài)時,大氣降水持續(xù)混入,Au等成礦物質(zhì)由于溫度降低大量卸載,形成富Au的環(huán)帶(Py2),此時大氣降水混入量高達32%;隨著斷裂開放程度的減小,大氣降水混入量減少(23%),則形成相對貧Au的邊緣(Py3)。這證明了金牙金礦床成礦階段有流體混入,為本次研究提供了參考依據(jù)。
3.3 右江盆地演化與成礦機制
右江盆地的構(gòu)造演化經(jīng)歷了海西和印支2個構(gòu)造階段。海西期,由于哀牢山—紅河洋盆開裂,右江地區(qū)出現(xiàn)若干平行分布的裂陷帶,沉積物以深水相為主,盆地具有大陸被動邊緣裂谷系的特點。印支期,由于濱太平洋構(gòu)造的作用,盆地再張裂和擴張,從而進入弧后盆地發(fā)展階段。中三疊世—晚三疊世期間為沉積速率很大的過補償沉積階段,沉積了厚度大于5 000 m的地層。
印支運動期間,右江盆地同時接受了來自越北陸地和云開古陸的陸地碎屑物??焖俪练e導(dǎo)致大量的古海水來不及排出而封存在碎屑巖中,成巖過程中封存的古海水形成了盆地鹵水。在異常地溫梯度的作用下,鹵水的溫度可能高達300 ℃左右,具有巨大的萃取和攜帶金屬的能力,同時由于差異壓實作用,盆地中沉積厚度大的區(qū)域,形成了一系列的異常高壓中心,驅(qū)動盆地熱鹵水向四周流動。
角圖為所測包裹體。
研究顯示,大多數(shù)熱液環(huán)境中的Au主要以硫化氫絡(luò)合物的形式遷移。在缺氧的條件下,高溫、還原和不飽和的盆地熱鹵水與周圍的地層發(fā)生了強烈的水巖反應(yīng),活化遷移其中的Au和S(Ⅰ 階段成礦流體平均溫度189 ℃,平均鹽度6.01%),并進行水平運移。當流體水平遷移到盆地與地臺之間的斷裂時,斷裂阻礙了流體的側(cè)向流動,迫使流體改變流動路徑,從側(cè)向水平流動轉(zhuǎn)變?yōu)檠刂鴶嗔严蛏狭鲃樱黧w與臺地邊緣富Fe的白云質(zhì)圍巖的水巖反應(yīng)逐漸增強,并將地層中的鈣質(zhì)溶解,發(fā)生去碳酸鹽化,使得斷裂附近地層的滲透率和孔隙度逐漸加大。成礦流體在異常高壓中心與斷裂活動的驅(qū)使下不斷向上遷移,其中的S2-與地層中Fe2+結(jié)合生成FeS2(黃鐵礦),或者S2-與地層中Fe2+和As結(jié)合生成FeAsS(毒砂)。同時與大氣降水相混合,進而導(dǎo)致溫度和鹽度下降(Ⅱ 階段成礦流體平均溫度157 ℃,平均鹽度4.18%),此時流體中S2-持續(xù)消耗,導(dǎo)致流體中的載金絡(luò)陰離子團HS-的濃度降低。在溫度與載金絡(luò)陰離子團濃度下降的雙重作用下,Au與FeS2和FeAsS同時卸載。由于溫度的下降,也導(dǎo)致流體中的SiO2過飽和從而大量沉淀,造成了大面積與金礦化密切共生的硅化,成礦流體中的Au和其他成礦物質(zhì)逐漸消耗殆盡。隨著大氣降水的持續(xù)混入,流體溫度和鹽度明顯下降(Ⅲ 階段成礦流體平均溫度137 ℃,平均鹽度2.01%),SiO2等低溫脈石礦物大量結(jié)晶,局部可見少量的硫化,但不含Au,成礦作用過程結(jié)束。
綜上所述,流體混合(盆地流體與大氣降水相混合)和水巖反應(yīng)(成礦流體中的S2-與地層中Fe2+和As相結(jié)合)是金牙金礦床的主要沉積原因。
4 結(jié)論
1)金牙金礦床的流體包裹體主要為氣液兩相包裹體。石英-黃鐵礦階段(Ⅰ)、黃鐵礦-毒砂階段(Ⅱ)和石英-碳酸鹽階段(Ⅲ)的平均均一溫度分別為189、157、137 ℃,平均w (NaCleq)值分別為6.01%、4.18%、2.01%,壓力分別為12.62~18.98、10.11~14.69、7.25~11.83 MPa,深度在0.27~1.90 km之間。
2)金牙金礦床初始成礦流體為中低溫、低鹽度、低密度,同時含有CO2、N2和SO2等揮發(fā)分的H2O-NaCl流體。
3)成礦早期(Ⅰ 階段),中高溫、還原性的盆地熱鹵水與周圍的地層發(fā)生了強烈的水巖反應(yīng),活化遷移其中的Au和S(溫度范圍135~246 ℃,鹽度范圍2.40%~8.54%);主成礦期(Ⅱ 階段),成礦流體在異常高壓與斷裂活動驅(qū)使下不斷向上流動,并與白云石中的Fe等元素反應(yīng)生成黃鐵礦和毒砂,同時與大氣降水相混合,溫度和鹽度快速降低(溫度范圍119~243 ℃,鹽度范圍0.18%~7.15%),Au等成礦元素大量卸載;成礦晚期(Ⅲ 階段),流體中的成礦元素消耗殆盡,大氣降水持續(xù)混入,溫度和鹽度產(chǎn)生明顯下降(溫度范圍108~162 ℃,鹽度范圍0.18%~7.58%),成礦作用結(jié)束。
參考文獻(References):
Su W C,Dong W D,Zhang X C,et al. CarlinType Gold Deposits in the DianQianGui “Golden Triangle” of Southwest China. Reviews in Economic Geology,2019,20:157-185.
Chen M H,Zhang Z Q,Santosh M,et al. The CarlinType Gold Deposits of the “Golden Triangle” of SW China: Pb and S Isotopic Constraints for the Ore Genesis. Journal of Asian Earth Sciences,2015,103:115-128.
Yan J,Hu R,Liu S,et al. NanoSIMS Element Mapping and Sulfur Isotope Analysis of AuBearing Pyrite from Lannigou CarlinType Au Deposit in SW China:New Insights into the Origin and Evolution of AuBearing Fluids. Ore Geology Reviews,2018,92:29-41.
趙靜,梁金龍,李軍,等. 貴州貞豐水銀洞金礦礦床成因與成礦模式:來自載金黃鐵礦NanoSIMS多元素Mapping及原位微區(qū)硫同位素的證據(jù). 地學(xué)前緣,2018,25(1):157-167.
Zhao Jing, Liang Jinlong, Li Jun, et al. Genesisand Metallogenic Model of the Shuiyindong Gold Deposit, Guizhou Province: Evidences from HighResolution MultiElement Mapping and In Situ Sulfur Isotopes of AuCarrying Pyrites by NanoSIMS. Earth Science Frontiers, 2018, 25(1):157-167.
李院強,龐保成,呂嘉文,等. 廣西金牙金礦載金硫化物化學(xué)成分特征及其對成礦物源的指示. 有色金屬(礦山部分),2015,67(5):27-46.
Li Yuanqiang, Pang Baocheng, Lü Jiawen,et al. Composition of GoldBearing Sulfides and Their Implication for OreForming Materials in Jinya Gold Deposit, Guangxi Province. Nonferrous Metals, 2015, 67(5): 27-46.
劉蘇橋,陳懋弘,楊鋒,等. 廣西金牙金礦毒砂Re-Os同位素測年和硫同位素示蹤. 桂林理工大學(xué)學(xué)報,2014,34(3):423-430.
Liu Suqiao, Chen Maohong, Yang Feng, et al. Re-Os Dating and Sulfur Isotope Tracing of Arsenopyrites from Jinya Gold Deposit in Guangxi. Journal of Guilin University of Technology, 2014, 34(3):423-430.
Zhao J,Liang J L,Li J,et al. Gold and Sulfur Sources of the Taipingdong CarlinType Gold Deposit: Constraints from Simultaneous Determination of Sulfur Isotopes and Trace Elements in Pyrite Using Nanoscale Secondary Ion Mass Spectroscopy. Ore Geology Reviews,2020,117:103299.
Liang J L,Li J,Liu X M,et al. Multiple Element Mapping and InSitu S Isotopes of AuCarrying Pyrite of Shuiyindong Gold Deposit, Southwestern China Using NanoSIMS: Constraints on Au Sources, Ore Fluids, and Mineralization Processes. Ore Geology Reviews,2020,123:103576.
Wang G Z,Hu R Z,Su W C,et al. Fluid Flow and Mineralization of Youjiang Basin in the YunnanGuizhouGuangxi Area, China. Science in China:Series D,2003,46:99-109.
Xie Z J,Xia Y,Cline J,et al. Magmatic Origin for SedimentHosted Au Deposits, Guizhou Province, China: In Situ Chemistry and Sulfur Isotope Composition of Pyrites, Shuiyindong and Jinfeng Deposits. Economic Geology,2018,113:1627-1652.
Chen M H,Mao J W,Li C,et al. Re-Os Isochron Ages for Arsenopyrite from CarlinLike Gold Deposits in the YunnanGuizhouGuangxi “Golden Triangle”, Southwestern China. Ore Geology Reviews,2015,64:316-327.
Gu X X,Zhang Y M,Li B,et al. Hydrocarbon and OreBearing Basinal Fluids:A Possible Link Between Gold Mineralization and Hydrocarbon Accumulation in the Youjiang Basin, South China. Miner Deposita,2011,47(6):663-682.
Hou L,Peng H J,Ding J,et al. Textures and In Situ Chemical and Isotopic Analyses of Pyrite, Huijiabao Trend, Youjiang Basin, China:Implications for Paragenesis and Source of Sulfur. Economic Geology,2016,111(2):331-353.
Wang K R,Zhou Y Q,Li F Q,et al. SPM and SEM Study on the Occurrence of Micrograined Gold in the Jinya Gold Deposit, Guangxi. Chinese Science Bulletin,1992,37(22):1906-1910.
方耀奎. 廣西鳳山金牙金礦床:我國獨特的卡林型金礦床. 廣西地質(zhì),1992,5(2):41-48.
Fang Yaokui. Jinya Gold Deposit in Fengshan, Guangxi:An Unique CarlinType Gold Deposit of China. Geology of Guangxi,1992,5(2):41-48.
祁士華,殷鴻福. 廣西金牙金礦金的來源探討. 地質(zhì)科技情報,1999,18(2):3-5.
Qi Shihua,Yin Hongfu. Study of Source of Gold in Jinya Gold Deposit, Guanngxi Province. Geological Science and Technology Information,1999,18(2):3-5.
錢定福,李玉衡,李志生,等. 金牙金礦床金的賦存狀態(tài)研究. 地質(zhì)評論,1988,34(4):71-78.
Qian Dingfu, Li Yuheng, Li Zhisheng, et al. Modes of Occurrence of Gold in the Jinya Gold Deposit. Geological Review,1988,34(4):71-78.
肖建新,楊建民,林暢松,等. 微細浸染型金礦床礦體與圍巖對比研究. 黃金地質(zhì),2002,8(3):47-52.
Xiao Jianxin,Yang Jianmin,Lin Changsong,et al. The Comparison Between Orebodies and Wall Rocks of the Fine Disseminated Gold Deposits. Gold Geology,2002,8(3):47-52.
鄭浩,蔡明海,楊斌. 廣西鳳山金牙金礦床地質(zhì)特征及成因初步分析. 礦物學(xué)報,2015,35(增刊1):264.
Zheng Hao,Cai Minghai,Yang Bin. Geological Characteristics and Genesis of Jinya Gold Deposit in Fengshan, Guangxi. Acta Mineralogica Sinica,2015,35(Sup.1):264.
曾允孚,劉文均,陳洪德,等. 右江復(fù)合盆地的沉積特征及其構(gòu)造演化. 廣西地質(zhì),1992,5(4):1-14.
Zeng Yunfu,Liu Wenjun,Chen Hongde,et al. Evolution of the Youjiang Composite Basin. Geology of Guangxi,1992,5(4):1-14.
曾允孚,劉文均,陳洪德,等. 華南右江復(fù)合盆地的沉積構(gòu)造演化. 地質(zhì)學(xué)報,1995,69(2):113-124.
Zeng Yunfu,Liu Wenjun,Chen Hongde,et al. Evolution of Sedimentation and Tectonics of the Youjiang Composite Basin, South China. Acta Geologica Sinica,1995,69(2):113-124.
陳翠華,何彬彬,顧雪祥,等. 右江沉積盆地演化與微細浸染型金礦床成礦作用關(guān)系探討. 地質(zhì)與勘探,2004,40(1):21-25.
Chen Cuihua,He Binbin,Gu Xuexiang,et al. Relationship Between Evolution of the Youjiang Sedimentary Basin and Metallogenesis of MicroDisseminated Gold Deposits. Geology and Prospecting,2004,40(1):21-25.
龐保成,林暢松,羅先熔,等. 右江盆地微細浸染型金礦成礦流體特征與來源. 地質(zhì)與勘探,2005,41(1):13-17.
Pang Baocheng,Lin Changsong,Luo Xianrong,et al. The Characteristic and Origin of OreForming Fliud from MicroDisseminated Gold Deposits in Youjiang Basin. Geology and Prospecting,2005,41(1):13-17.
Cheng Y B,Mao J W. Age and Geochemistry of Granites in Gejiu Area, Yunnan Province, SW China: Constraints on Their Petrogenesis and Tectonic Setting. Lithos,2010,120(3):258-276.
Zhu J J,Hu R Z,Richards J P,et al. No Genetic Link Between Late Cretaceous Felsic Dikes and CarlinType Au Deposits in the Youjiang Basin, Southwest China. Ore Geology Reviews,2017,84:328-337.
Mao J W,Cheng Y B,Chen M H,et al. Major Types and TimeSpace Distribution of Mesozoic Ore Deposits in South China and Their Geodynamic Settings. Miner Deposita,2013,48(3):267-294.
Xu B,Jiang S T,Wang R,et al. Late Cretaceous Granites from the Giant Dulong SnPolymetallic Ore District in Yunnan Province, South China:Geochronology, Geochemistry, Mineral Chemistry and Nd-Hf Isotopic Compositions. Lithos,2015,218/219:54-72.
Liu S,Su W C,Hu R Z,et al. Geochronological and Geochemical Constraints on the Petrogenesis of Alkaline Ultramafic Dykes from Southwest Guizhou Province, SW China. Lithos,2010,114(1):253-264.
Su W C,Hu R Z,Xia B,et al. Calcite Sm-Nd Isochron Age of the Shuiyindong CarlinType Gold Deposit, Guizhou, China. Chemical Geology,2009,258(3/4):269-274.
劉虎. 廣西金牙金礦床地球化學(xué)特征及找礦遠景研究 .南寧: 廣西大學(xué),2013.
Liu Hu. Geochemical Characteristics and Prospecting Prospect of Jinya Gold Deposit in Guangxi. Nanning: Guangxi University, 2013.
Bodnar R. A Method of Calculating Fluid Inclusion Volumes Based on Vapor Bubble Diameters and P-V-T-X Properties of Inclusion Fluids. Economic Geology,1983,78: 535-542
Hall D L,Sterner S M,Bodnar R J. Freezing Point Depression of NaCl-H2O Solution. Economic Geology,1988,83(1):197-202.
劉斌,段光賢.NaCl-H2O溶液包裹體的密度式和等容式及其應(yīng)用. 礦物學(xué)報,1987,7(4):345-352.
Liu Bin,Duan Guangxian. The Density and Isochoric Formulae for NaCl-H2O Fluid Inclusions and Their Applications. Acta Mineralogica Sinica,1987,7(4): 345-352.
王紅梅,張文淮,祁士華. 廣西金牙金礦床成礦流體地球化學(xué). 礦物巖石地球化學(xué)通報,1998,17(4):45-47.
Wang Hongmei,Zhng Wenhuai,Qi Shihua. OreForming Fluid Geochemistry of the Jinya Gold Deposit in Guangxi. Bulletin of Mineralogy, Petrology and Geochemistry,1998,17(4):45-47.
李澤琴,陳尚迪,王獎?wù)椋? 桂西金牙微細浸染型金礦床同位素地球化學(xué)研究. 礦物巖石,1995,15(2):66-72.
Li Zeqin,Chen Shangdi,Wang Jiangzhen,et al. Isotope Geochemistry of Jinya Disseminated Gold Deposit in Western Gaungxi. Mineral Rock,1995,15(2):66-72.
劉金鐘,范德廉. 桂西北金牙金礦床的物質(zhì)來源探討. 礦床地質(zhì),1992,11(3):233-240.
Liu Jinzhong,F(xiàn)ang Delian. A Tentative Discussion on the Material Sources of the Jinya Gold Deposit in Northeastern Guangxi. Mineral Deposits,1992,11(3): 233-240.
王國田. 桂西北地區(qū)三條銣-鍶等時線年齡. 南方自然資源,1992,5(1):29-35.
Wang Guotian. Three Strontium and Rubidium Isotime Ages in Northwest Guangxi. Nanfang Ziran Ziyuan,1992,5(1): 29-35.
朱賴民,劉顯凡,金景福,等. 滇-黔-桂微細浸染型金礦床時空分布與成礦流體來源研究. 地質(zhì)科學(xué),1998,33(4):3-5.
Zhu Laimin,Liu Xianfan,Jin Jingfu,et al. The Study of the TimeSpace Distribution and Source of OreForming Fluid for the FineDisseminated Gold Deposits in the YunnanGuizhouGuangxi Area. Scientia Geologica Sinica,1998,33(4):3-5.
李甫安. 桂西北主要金礦床地質(zhì)特征. 南方自然資源,1990,3(3):49-64.
Li Fuan. Geological Characteristics of the Principal Gold Deposits in Northwestern Guangxi. Nanfang Ziran Ziyuan,1990,3(3):49-64.
Li X H,Bai L A,Yue Z H,et al. Mineralization Processes Involved in the Formation of the Jinya CarlinType Au Deposit, Northwestern Guangxi, China:Evidence from In Situ Trace Element and S Isotope Geochemistry of AuBearing Zoned Pyrite. Ore Geology Reviews,2021,138:104376.
杜遠生,黃宏偉,黃志強,等. 右江盆地晚古生代—三疊紀盆地轉(zhuǎn)換及其構(gòu)造意義. 地質(zhì)科技情報,2009,28(6):10-15.
Du Yuansheng,Huang Hongwei,Huang Zhiqiang,et al. Basin Translation from Late Palaeozoic to Triassic of Youjiang Basin and Its Tectonic Significance. Geological Science and Technology Information,2009,28(6):10-15.
Cline J,Hofstra A H. OreFluid Evolution at the Getchell CarlinType Gold Deposit, Nevada, USA. European Journal of Mineralogy,2000,12(1):195-212.
Kuehn C A,Rose A W. Carlin Gold Deposits, Nevada; Origin in a Deep Zone of Mixing Between Normally Pressured and over Pressured Fluids. Economic Geology,1995,90(1):17-36.
Ohmoto H. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Economic Geology,1972,67(5):551-578.
Seal R R. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy amp; Geochemistry,2006,61:633-677.
孫永剛,李碧樂,孫豐月,等. 青海省巴斯湖鉛鋅礦床M9礦體成因探討:流體包裹體和H-O-S同位素約束. 吉林大學(xué)學(xué)報(地球科學(xué)版),2020,50(5):1373-1386.
Sun Yonggang, Li Bile, Sun Fengyue, et al. Genesis of M9 Ore Body of Basihu Pb-Zn Deposit in Qinghai Province: Constraints of Fluid Inclusions and H-O-S Isotopic Evidences. Journal of Jilin University(Earth Science Edition), 2020, 50(5): 1373-1386.
辛未,孟元庫,許志河,等. 哀牢山成礦帶長安金礦床成因:地質(zhì)特征、流體包裹體測溫和H-O-S-Pb同位素制約. 吉林大學(xué)學(xué)報(地球科學(xué)版),2022,52(5):1610-1625.
Xin Wei, Meng Yuanku, Xu Zhihe, et al. Genesis of Chang’an Gold Deposit in Ailaoshan Metallogenic Belt: Constraints from Geological Characteristic, Fluid Inclusion Thermometer and H-O-S-Pb Isotope. Journal of Jilin University(Earth Science Edition), 2022, 52(5): 1610-1625.
唐名鷹,朱德全,丁正江,等. 柴北緣阿日特克山斑巖型銅鉬礦床流體包裹體、穩(wěn)定同位素特征及其地質(zhì)意義. 吉林大學(xué)學(xué)報(地球科學(xué)版),2022,52(5):1525-1539.
Tang Mingying, Zhu Dequan, Ding Zhangjiang, et al. Fluid Inclusions, Stable Isotope Characteristics and Geological Significance of Aritekeshan Porphyry Cu-Mo Deposit in Northern Qaidam Basin. Journal of Jilin University(Earth Science Edition), 2022, 52(5): 1525-1539.
毛興強,王恩德,楊群,等. 山東省膠東半島新立金礦床成因. 地質(zhì)通報,2022,41(10):1855-1868.
Mao Xingqiang, Wang Ende, Yang Qun, et al. Genesis of Xinli Gold Deposit in Jiaodong Peninsula, Shandong Province. Geological Bulletin of China, 2022, 41(10): 1855-1868
賈宏翔,陳仁義,薛建玲,等. 遼寧白云金礦流體包裹體研究:對流體演化及成礦機制的指示. 地質(zhì)通報,2022,41(11):2065-2080.
Jia Hongxiang, Chen Renyi, Xue Jianling, et al. Research on Fluid Inclusions of the Baiyun Gold Deposit, Liaoning Province: Implications for Fluid Evolution and Metallogenic Mechanism. Geological Bulletin of China, 2022, 41(11): 2065-2080.