摘要:內(nèi)蒙古架子山地區(qū)二長(zhǎng)花崗巖位于大興安嶺中段,為了確定其侵位時(shí)代,探討大地構(gòu)造環(huán)境,本文對(duì)該區(qū)二長(zhǎng)花崗巖進(jìn)行了系統(tǒng)的年代學(xué)和巖石地球化學(xué)研究。研究結(jié)果表明:二長(zhǎng)花崗巖鋯石U-Pb年齡為(302.9±1.2)Ma,為晚石炭世巖漿作用的產(chǎn)物;二長(zhǎng)花崗巖具有高硅(w(SiO2)=74.73%~76.60%)、富堿(w(Na2O+K2O)=6.20%~7.03%)、高鋁飽和指數(shù)(A/CNK=1.43~1.58)的特征,屬于高鉀鈣堿性系列巖石;Rb、K、Th、U富集,Ba、Sr、Ti、Nb、P呈明顯V字型虧損,稀土元素配分曲線呈右傾的輕稀土元素富集型,具有負(fù)Eu異常(δEu=0.46~0.67)、高分異指數(shù)(ID= 88.89~91.55)和低固結(jié)指數(shù)(IS=1.68~4.78)的特征,表明巖石經(jīng)歷了高分異演化作用,為高分異I型花崗巖,具有向A型花崗巖演化的趨勢(shì);176Hf/177Hf值為 0.282 850~0.282 951,εHf(t)值為 9.2~12.5,二階段模式年齡(TDM2)變化范圍為910~603 Ma,表明二長(zhǎng)花崗巖巖漿可能是新元古代新生地殼部分熔融的產(chǎn)物。內(nèi)蒙古架子山地區(qū)二長(zhǎng)花崗巖形成于后造山階段,其形成可能與古亞洲洋閉合后構(gòu)造環(huán)境從擠壓轉(zhuǎn)換成碰撞后伸展有關(guān)。
關(guān)鍵詞:鋯石U-Pb測(cè)年;地球化學(xué);晚石炭世;后造山環(huán)境;古亞洲洋;興蒙造山帶;內(nèi)蒙古架子山地區(qū)
doi:10.13278/j.cnki.jjuese.20210424
中圖分類號(hào):P588.1;P597.1
文獻(xiàn)標(biāo)志碼:A
Abstract: The monzogranite in the Jiazishan of Inner Mongolia is located in the middle part of the Daxing’anling Mountains. To determine its intrusive age and tectonic environment, the geochronology and petrogeochemistry of the monzogranite have been systematically studied. The results show that the zircon U-Pb age of the monzogranite is (302.9±1.2) Ma, which is the product of Late Carboniferous magmatism. The monzogranite is characterized by high silica (w (SiO2)=74.73%-76.60%), rich alkali (w (Na2O+K2O)=6.20%-7.03%) and high aluminum saturation index (A/CNK=1.43-1.58), belonging to the highK calcalkaline series. Rb, K, Th and U are enriched, while Ba, Sr, Ti, Nb and P are obviously Vshaped depleted. The REE pattern shows a rightleaning enrichment type of LREE, with negative Eu anomaly (δEu=0.46- 0.67). The high differentiation index (ID) (88.89-91.55) and low solidification index (IS) (1.68-4.78) indicate that the monzogranite has undergone the evolution of high differentiation and is a type highly differentiation Itype granite with a tendency to evolve to Atype granite. The 176Hf/177Hf value is 0.282 850-0.282 951, the εHf (t) value is 9.2-12.5, and the twostage mode age (TDM2) is 910-603 Ma, suggesting that the monzogranite may be the product of partial melting of juvenile crust in Neoproterozoic. The monzogranite in the Jiazishan area of Inner Mongolia was formed in the postorogenic stage, and its formation may be related to the transformation of the tectonic setting from extrusion to postcollisional extension after the closure of the PaleoAsian Ocean.
Key words:" zircon U-Pb dating; geochemistry; Late Carboniferous; postorogenic tectonic setting; PaleoAsian Ocean; XingMeng orogenic belt; Jiazishan area, Inner Mongolia
0 引言
興蒙造山帶是一條巨型復(fù)合造山帶,屬于中亞造山帶東段,位于西伯利亞板塊與華北板塊之間,是全球顯生宙時(shí)期增生最為強(qiáng)烈的地區(qū)之一。自顯生宙以來(lái),其經(jīng)歷了多期次大洋板片俯沖、地殼增生以及多個(gè)微陸塊和洋殼的碰撞拼合作用,因其復(fù)雜的構(gòu)造演化過(guò)程,該地區(qū)備受國(guó)內(nèi)外地質(zhì)學(xué)者的關(guān)注。
興蒙造山帶發(fā)育大量近東西向的古生代巖漿巖帶,其中以晚古生代巖漿活動(dòng)最為顯著,研究興蒙造山帶內(nèi)的古生代巖漿巖可以為探討古亞洲洋閉合過(guò)程、興蒙造山帶的演化及地殼增生方式提供有力證據(jù)。雖然前人對(duì)興蒙造山帶晚古生代巖漿巖開展了大量的研究,但對(duì)于該時(shí)期的區(qū)域構(gòu)造演化背景仍然存在爭(zhēng)議,主要有2種不同觀點(diǎn):1)古亞洲洋閉合造山后伸展或者類似于弧后盆地成因環(huán)境;2)安第斯型活動(dòng)大陸邊緣島弧成因環(huán)境,以及由此引出對(duì)古亞洲洋閉合時(shí)限的諸多爭(zhēng)議,例如古亞洲洋閉合于中泥盆世、晚石炭世和晚二疊世—早三疊世等。
前人對(duì)大興安嶺南段的晚古生代巖漿巖研究程度較高,但對(duì)大興安嶺中段的晚古生代巖漿巖研究程度較低。本文通過(guò)對(duì)位于大興安嶺中段內(nèi)蒙古架子山地區(qū)二長(zhǎng)花崗巖的鋯石U-Pb年代學(xué)、Hf同位素、地球化學(xué)特征進(jìn)行研究,以期精確厘定二長(zhǎng)花崗巖的侵位時(shí)代,分析其巖石地球化學(xué)屬性,探討其巖漿源區(qū)特征、巖石成因和構(gòu)造環(huán)境,為認(rèn)識(shí)這一地區(qū)晚古生代構(gòu)造體制轉(zhuǎn)變的時(shí)限提供相應(yīng)依據(jù)。
1 地質(zhì)背景及巖石學(xué)特征
研究區(qū)位于內(nèi)蒙古自治區(qū)興安盟科爾沁右翼前旗明水河鎮(zhèn),地處大興安嶺中段,在大地構(gòu)造位置上屬于興蒙造山帶東段,先后經(jīng)歷了古亞洲洋構(gòu)造域、蒙古—鄂霍茨克構(gòu)造域、古太平洋構(gòu)造域的疊加演化,發(fā)育了一系列的東西向及北北東向斷裂構(gòu)造(圖1a)。區(qū)域內(nèi)巖漿活動(dòng)強(qiáng)烈,發(fā)育大量侵入巖,以海西期和燕山期中酸性侵入巖為主,其中,海西期侵入巖主要為石炭紀(jì)晚期二長(zhǎng)花崗巖,燕山期侵入巖主要為侏羅紀(jì)閃長(zhǎng)巖、堿長(zhǎng)花崗巖和花崗斑巖,巖體長(zhǎng)軸方向?yàn)楸北睎|向,受區(qū)域構(gòu)造斷裂控制明顯。
研究區(qū)內(nèi)出露的地層主要為侏羅系上統(tǒng)瑪尼吐組、白音高老組和第四系(圖1b)。其中,瑪尼吐組以英安巖和安山巖為主,白音高老組以凝灰?guī)r為主,第四系主要由腐殖土及殘破積物、河床及沼澤沉積物組成,分布于研究區(qū)的溝谷和寬緩的洼地中。
本文研究的二長(zhǎng)花崗巖呈巖基狀分布于研究區(qū)中東部,新鮮面呈肉紅色,具中—粗?;◢徑Y(jié)構(gòu),塊狀構(gòu)造(圖2a、b),見(jiàn)高嶺土化、絹云母化和硅化現(xiàn)象,主要由斜長(zhǎng)石、鉀長(zhǎng)石、石英及少量黑云母組成(圖2c、d)。其中:斜長(zhǎng)石呈半自形板狀,局部交代鉀長(zhǎng)石,粒徑一般為2.0~4.1 mm,體積分?jǐn)?shù)約為30%;鉀長(zhǎng)石呈半自形板狀,主要為條紋長(zhǎng)石,少部分與石英呈文象交生體產(chǎn)出,具高嶺土化,零星可見(jiàn)絹云母化,多被斜長(zhǎng)石交代,局部少量殘留,粒徑在2.0~5.0 mm之間,體積分?jǐn)?shù)約為30%;石英呈他形粒狀,具輕微波狀消光,粒徑為2.0~4.9 mm,
Q. 石英;Kf. 鉀長(zhǎng)石;Pl. 斜長(zhǎng)石。c、d圖為正交偏光。
體積分?jǐn)?shù)約為35%;黑云母呈片狀,星散分布,部分被絹云母、不透明礦物等交代,粒徑為0.2~2.0 mm,體積分?jǐn)?shù)不足5%。
2 樣品采集及分析方法
本次研究共采集了5件二長(zhǎng)花崗巖進(jìn)行主、微量和稀土元素分析,并且對(duì)樣品J004進(jìn)行了鋯石U-Pb測(cè)年。樣品J001、J003、J004采自地表,樣品J096、J101分別采自鉆孔ZK0409的37 m和52 m處(圖1b)。
鋯石單礦物挑選和陰極發(fā)光均在河北省區(qū)域地質(zhì)礦產(chǎn)調(diào)查研究所(廊坊)完成,單礦物分選采用常規(guī)方法。即樣品經(jīng)粉碎后首先采用傳統(tǒng)的重力和磁選的方法分選和富集;隨后在雙目鏡下挑選出透明、晶形好、無(wú)明顯裂隙和包裹體的鋯石;再將不同形態(tài)和大小的鋯石用環(huán)氧樹脂固定制靶,進(jìn)行透射光和反射光觀察、照相;最后將鋯石拋光至暴露內(nèi)部后,使用JSM-IT300掃描電子顯微鏡對(duì)鋯石樣品進(jìn)行陰極發(fā)光(CL)觀察,記錄顯微結(jié)構(gòu),以用作鋯石U-Pb同位素測(cè)量時(shí)選擇分析點(diǎn)的依據(jù)。
鋯石U-Pb同位素定年在核工業(yè)北京地質(zhì)研究院完成,使用的儀器是激光剝蝕多接收器電感耦合等離子體質(zhì)譜儀(LA-ICP-MS),激光波長(zhǎng)為193 nm。剝蝕實(shí)驗(yàn)選取的激光束斑大小為35 μm,分析過(guò)程中,測(cè)試樣品每個(gè)樣點(diǎn)的背景采集時(shí)間為20 s,信號(hào)采集時(shí)間為50 s。每測(cè)定5次樣品點(diǎn)后,測(cè)定2次鋯石標(biāo)樣91500,用來(lái)校正U-Pb、Th-Pb同位素分餾和儀器質(zhì)量誤差。數(shù)據(jù)采集完成后,利用ICPMSDataCal軟件進(jìn)行數(shù)據(jù)離線處理,采用Andersen提出的ComPbCorr3.17校正程序進(jìn)行普通鉛校正,年齡諧和圖的繪制采用Isoplot軟件。
鋯石Lu-Hf同位素測(cè)試在中國(guó)地質(zhì)調(diào)查局天津地質(zhì)調(diào)查中心完成,使用的儀器為美國(guó)Thermo Fisher公司生產(chǎn)的Neptune多接收器電感耦合等離子體質(zhì)譜儀,激光器為美國(guó)ESI公司生產(chǎn)的NEW WAVE 193 nm FX ArF準(zhǔn)分子激光器,波長(zhǎng)193 nm,脈沖寬度小于4 ns。測(cè)試參照鋯石陰極發(fā)光(CL)圖像,選擇在原年齡測(cè)定點(diǎn)位置或附近進(jìn)行,激光剝蝕束斑直徑為50 μm,儀器狀態(tài)監(jiān)控和樣品外部校正采用國(guó)際標(biāo)準(zhǔn)鋯石91500。
主量、微量和稀土元素測(cè)試分析在河北省區(qū)域地質(zhì)礦產(chǎn)調(diào)查研究所(廊坊)完成,主量元素測(cè)試儀器為荷蘭帕納科公司研制的Axiosmax X射線熒光光譜儀,相對(duì)誤差小于±2%;微量和稀土元素測(cè)試儀器為美國(guó)賽默飛世爾科技公司(Thermo Fisher Scientific)研制的X SeriseⅡ電感耦合等離子體質(zhì)譜儀(ICP-MS),相對(duì)誤差小于±5%。儀器的分析流程如下:先將200目樣品置于105 ℃烘箱中烘干12 h;之后準(zhǔn)確稱取粉末樣品50 mg置于Teflon溶樣彈中,先后緩慢加入1 mL高純HNO3和1 mL高純HF;再將Teflon溶樣彈放入鋼套,擰緊后置于190 ℃烘箱中加熱24 h以上,待溶樣彈冷卻,開蓋后置于140 ℃電熱板上蒸干;隨后加入1 mL的HNO3并再次蒸干;然后分別加入1 mL高純HNO3、1 mL 超純水和1 mL內(nèi)標(biāo)In(質(zhì)量分?jǐn)?shù)為1×10-6),再次將Teflon溶樣彈放入鋼套,擰緊后置于190 ℃烘箱中加熱12 h以上;最后將溶液轉(zhuǎn)入聚乙烯料瓶中,并用2% HNO3稀釋至100 g以備ICP-MS測(cè)試。
3 測(cè)試結(jié)果
3.1 鋯石U-Pb年齡
本文對(duì)二長(zhǎng)花崗巖樣品J004進(jìn)行了LA-ICP-MS鋯石U-Pb測(cè)年,測(cè)年結(jié)果列于表1。在進(jìn)行鋯石U-Pb測(cè)年時(shí),為了避免繼承核的影響,大部分測(cè)點(diǎn)位于鋯石的幔部或邊部。
鋯石CL圖像(圖3a)顯示,鋯石形態(tài)多為長(zhǎng)柱狀,短柱狀次之,長(zhǎng)度一般為100~250 μm,長(zhǎng)寬比大多為1∶1~3∶1,具金剛光澤,斷口呈棱角狀,單顆粒鋯石樣品均具有明顯巖漿振蕩環(huán)帶結(jié)構(gòu),內(nèi)部結(jié)構(gòu)清晰,表現(xiàn)出巖漿成因鋯石的特點(diǎn)。鋯石微量元素分析顯示,U的質(zhì)量分?jǐn)?shù)為111×10-6~619×10-6,Th的質(zhì)量分?jǐn)?shù)為69×10-6~767×10-6,Th/U值為0.45~1.39(表1),平均值為0.75,大于0.4,顯示其具有巖漿鋯石成因的特征。
鋯石U-Pb年齡結(jié)果顯示,單顆粒鋯石206Pb/238U年齡介于(311±2)~(298±2)Ma,加權(quán)平均年齡為(302.9±1.2)Ma(MSWD=1.5,n=27)(圖3b)。27個(gè)數(shù)據(jù)點(diǎn)均落在諧和線上或其附近,說(shuō)明被測(cè)鋯石未遭受明顯的后期熱事件影響,亦說(shuō)明沒(méi)有Pb丟失或Pb丟失較少,表明該測(cè)年結(jié)果可信度較高,為晚石炭世巖漿活動(dòng)產(chǎn)物。
3.2 鋯石Hf同位素特征
鋯石Hf同位素測(cè)試是在鋯石U-Pb測(cè)年的基礎(chǔ)上,從中挑選20個(gè)鋯石點(diǎn)進(jìn)行微區(qū)原位測(cè)試,測(cè)試結(jié)果見(jiàn)表2。由表2可知:176Yb/177Hf值分布范圍為0.024 584~0.050 984,平均值為0.036 299;176Lu/177Hf值分布范圍為0.000 924~0.001 951,平均值為0.001 357,176Lu/177Hf值均小于0.002 000,表明在花崗巖中,鋯石在形成以后基本沒(méi)有明顯的放射性成因Hf的積累,因此所測(cè)定的176Lu/177Hf值基本可以代表鋯石結(jié)晶時(shí)體系的Hf同位素組成;鋯石的εHf(t)值為9.2~12.5,平均值為10.6,變化范圍較小;一階段模式年齡值(TDM1)為575~436 Ma,平均值為516 Ma;二階段模式年齡(TDM2)為910~603 Ma,平均值為779 Ma;fLu/Hf值變化范圍為-0.97~-0.94,平均值為-0.96。
3.3 全巖地球化學(xué)特征
從樣品的主量元素、微量元素和稀土元素的分析結(jié)果(表3)可以看出:全巖w(SiO2)較高,為74.73%~76.60%,平均值75.55%,顯示高硅的特征;全堿質(zhì)量分?jǐn)?shù)較高,為6.20%~7.03%,平均值6.63%,K2O/Na2O值為1.27~1.60,里特曼指數(shù)σ 值為1.17~1.52;樣品中w(P2O5)、w(TiO2)、w(Fe2O3)、w(FeO)、w(CaO)、w(MgO)、w(MnO)較低,此外,樣品的分異指數(shù)(ID)較高(88.89~91.55),固結(jié)指數(shù)(IS)較低(1.68~4.78),表明二長(zhǎng)花崗巖經(jīng)歷了高分異演化作用。在w(K2O)-w(SiO2)圖解(圖4a)中,巖石樣品點(diǎn)均落于高鉀鈣堿性系列范圍內(nèi),表明巖石為高鉀鈣堿性系列的花崗巖;w(Al2O3)在 13.53%~15.18%之間,鋁飽和指數(shù)A/CNK在 1.43~1.58之間,在巖石A/NK-A/CNK圖解(圖4b)中,巖石樣品點(diǎn)落在過(guò)鋁質(zhì)范圍內(nèi),顯示樣品具有過(guò)鋁質(zhì)特征。綜上所述,內(nèi)蒙古架子山地區(qū)二長(zhǎng)花崗巖屬于過(guò)鋁質(zhì)高鉀鈣堿性巖石系列。
二長(zhǎng)花崗巖中稀土元素總量較高,w(∑REE)為 97.79×10-6~243.56×10-6,平均值為162.06×10-6,w(LREE)為 86.75×10-6~221.43×10-6,w(HREE)為 11.04×10-6~22.13×10-6。在球粒隕石標(biāo)準(zhǔn)化
稀土元素配分
圖解(圖5a)中,曲線呈明顯右傾,(La/Yb)N的值為 6.17~11.21,說(shuō)明輕重稀土元素分餾明顯,輕稀土相對(duì)富集,重稀土相對(duì)虧損。巖石具有中度負(fù)Eu異常(0.46~0.67),指示巖漿演化過(guò)程中發(fā)生了分離結(jié)晶作用或部分熔融過(guò)程中斜長(zhǎng)石殘留在源區(qū)。
從原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖(圖5b)上可以看出,樣品的微量元素變化特征基本一致,總體趨勢(shì)呈向右陡傾斜的特征,Rb、K、Th、U富集,Ba、Sr、Ti、Nb、P明顯呈V字型虧損。其中,Ti、P元素的虧損可能與磷灰石、榍石、鈦鐵礦等礦物的分離結(jié)晶有關(guān)。
4 討論
4.1 二長(zhǎng)花崗巖成因類型
大量研究表明,準(zhǔn)確判定花崗巖成因類型不僅對(duì)于深入研究巖漿源區(qū)性質(zhì)和巖漿作用過(guò)程具有重要意義,而且對(duì)巖漿形成構(gòu)造環(huán)境的判別同樣具有重要意義。正確判定二長(zhǎng)花崗巖的成因類型,需要從礦物學(xué)和巖石地球化學(xué)兩方面進(jìn)行。在礦物學(xué)特征上,A型花崗巖通常含有霓石、霓輝石、鈉閃石、鈉鐵閃石、鐵橄欖石等暗色礦物,S型花崗巖常含有特征的富鋁礦物,如堇青石、白云母及石榴子石等,I型花崗巖中常見(jiàn)角閃石、榍石等礦物。在巖石地球化學(xué)上,A型花崗巖富SiO2、K2O、全堿、Rb、Th、Nb、Ta、Zr、Hf、Ga、Y,貧Al2O3、CaO、Sr、Ba、Eu、Cr、Ti和P,Ga/Al值較高,并具有明顯的負(fù)Eu異常,稀土元素常呈輕稀土富集型的“海鷗式”分布,I型花崗巖相比于S型花崗巖具有更高的Na、Ca和Nd質(zhì)量分?jǐn)?shù),以及更低的Sr質(zhì)量分?jǐn)?shù)初始值。
內(nèi)蒙古架子山地區(qū)二長(zhǎng)花崗巖主要由斜長(zhǎng)石、鉀長(zhǎng)石、石英及少量黑云母組成,w(SiO2)為74.73%~76.60%,w(K2O+Na2O)為6.20%~7.03%,K2O/Na2O值為1.27~1.60,里特曼指數(shù)σ值為1.17~1.52,鋁飽和指數(shù)A/CNK為1.43~1.58,屬于過(guò)鋁質(zhì)高鉀鈣堿性系列巖石;巖石礦物組合中未發(fā)現(xiàn)用于判別S型強(qiáng)過(guò)鋁質(zhì)花崗巖和A型花崗巖的相關(guān)礦物;另外二長(zhǎng)花崗巖10 000Ga/Al值為1.99~2.31,平均值為2.25,低于A型花崗巖平均值3.75,TFeO/MgO值為2.83~6.32,平均值為4.42,不同于A型花崗巖TFeO/MgO>10的特征,w(Zr)為183.36×10-6~216.41×10-6,均值為202.68×10-6,不同于A型花崗巖中w(Zr)>250×10-6的特征,w(Zr+Nb+Ce+Y)為281.15×
10-6~358.94×10-6,均值為305.08×10-6,不同于A型花崗巖中w(Zr+Nb+Ce+Y)>350×10-6的特征,且在Whalen等提出的以10 000Ga/Al為基礎(chǔ)的花崗巖分類判別圖解(圖6a、b)中,樣品點(diǎn)均落于I、S型花崗巖區(qū)域內(nèi)。以上證據(jù)均表明,二長(zhǎng)花崗巖不屬于A型花崗巖,可能是I型或S型花崗巖。將樣品投到(K2O+Na2O)/CaO-w(Zr+Nb+Ce+Y)圖解(圖6c)中,樣品點(diǎn)落在分異的長(zhǎng)英質(zhì)花崗巖與A型花崗巖區(qū)附近;在w(TiO2)-w(Zr)花崗巖類型判別圖解(圖6d)中,樣品點(diǎn)均落入I型花崗巖區(qū)域內(nèi),并且二長(zhǎng)花崗巖的分異指數(shù)(ID)為88.89~91.55,固結(jié)指數(shù)(IS)為1.68~4.78,表明二長(zhǎng)花崗巖為高分異的I型花崗巖,具有向A型花崗巖演化的趨勢(shì)。
4.2 巖漿來(lái)源
大量研究表明,大興安嶺地區(qū)在顯生宙新生陸殼的增長(zhǎng)最為顯著,從新元古代至中生代先后經(jīng)歷了古亞洲洋和蒙古—鄂霍茨克洋的開啟、俯沖及閉合,導(dǎo)致大規(guī)模的幔源物質(zhì)底侵,并伴隨著新生地殼的形成。前人研究表明,興蒙造山帶古生代花崗巖具有虧損的同位素組成,且模式年齡集中于新元古代,部分為早古生代,并普遍認(rèn)為這些花崗巖多是中亞造山帶演化過(guò)程中新生地殼熔融的產(chǎn)物。
內(nèi)蒙古架子山二長(zhǎng)花崗巖樣品中20個(gè)鋯石測(cè)點(diǎn)的176Hf/177Hf值為0.282 850~0.282 951,平均值為0.282 892,εHf(t)值為9.2~12.5,平均值為10.6,二階段模式年齡(TDM2)變化范圍為910~603 Ma,平均值為779 Ma,二階段Hf模式年齡集中在新元古代,反映其源區(qū)物質(zhì)為新元古代期間新增生的年輕下地殼物質(zhì)。在εHf(t)-t圖解(圖7a)和176Hf/177Hf-t圖解(圖7b)中,顯示數(shù)據(jù)點(diǎn)均落在球粒隕石演化線和虧損地幔演化線之間,且集中分布,在圖7a中,樣品點(diǎn)均落在興蒙造山帶東段區(qū)域;且內(nèi)蒙古架子山二長(zhǎng)花崗巖與興蒙造山帶東段多數(shù)花崗巖一樣,具有虧損的Hf同位素組成,推測(cè)巖漿可能主要來(lái)源于虧損的幔源物質(zhì)熔融。目前對(duì)于此類同位素虧損的花崗巖成因有以下幾種觀點(diǎn):來(lái)源于俯沖洋殼的部分熔融;幔源巖漿高度分異并同化地殼物質(zhì);殼幔巖漿混合;新生地殼物質(zhì)的熔融。
俯沖洋殼熔融物質(zhì)常具有埃達(dá)克巖特征,具有高Sr、低Y、輕重稀土強(qiáng)烈分異的特點(diǎn),而架子山二長(zhǎng)花崗巖Sr質(zhì)量分?jǐn)?shù)較低(107.76×10-6~157.87×10-6),Y質(zhì)量分?jǐn)?shù)較高(15.00×10-6~29.03×10-6),Sr/Y較低(5.39~7.85),(La/Yb)N較低(6.17~11.21),這些特征均表明架子山二長(zhǎng)花崗巖并非洋殼熔融的產(chǎn)物。地幔熔融主要產(chǎn)生基性巖漿,即便經(jīng)過(guò)高度分異作用,也主要產(chǎn)生中性成分的巖漿巖,酸性巖很少,并且與基性巖密切伴生,而架子山地區(qū)周邊無(wú)大面積基性巖出露;因此,架子山二長(zhǎng)花崗巖不太可能來(lái)源于基性巖漿分異。架子山二長(zhǎng)花崗巖SiO2質(zhì)量分?jǐn)?shù)高達(dá)74.73%~76.60%,與殼幔混合成因花崗巖特征明顯不同,故排除其殼幔巖漿混合成因。綜合以上分析,內(nèi)蒙古架子山地區(qū)二長(zhǎng)花崗巖可能來(lái)源于新元古代新生地殼的熔融。
4.3 地質(zhì)意義
興蒙造山帶位于西伯利亞板塊和華北板塊之間,古生代地質(zhì)構(gòu)造作用非?;钴S,先后經(jīng)歷了大洋俯沖、地殼增生、多塊體碰撞拼合、后造山伸展拉張等構(gòu)造事件,形成了多條俯沖增生型構(gòu)造-巖漿巖帶。與俯沖作用相關(guān)的巖漿巖多形成于早古生代,與碰撞造山相關(guān)的巖漿活動(dòng)多形成于早石炭世。近年來(lái),通過(guò)對(duì)興蒙造山帶晚古生代的巖漿巖研究發(fā)現(xiàn),晚古生代早期以鈣堿性—高鉀鈣堿性系列為主,晚期以堿性系列巖漿為主,但對(duì)晚古生代巖漿構(gòu)造背景的解釋仍不統(tǒng)一,一些學(xué)者認(rèn)為在310 Ma左右仍存在弧巖漿事件,另一些學(xué)者認(rèn)為該時(shí)期已經(jīng)進(jìn)入造山后演化階段。
本次研究的架子山地區(qū)二長(zhǎng)花崗巖形成于晚石炭世,具有高硅、富堿的特征,屬于過(guò)鋁質(zhì)高鉀鈣堿性系列巖漿巖,高鉀鈣堿性巖漿巖的出現(xiàn)說(shuō)明造山演化已經(jīng)發(fā)展到最后階段。在成因類型上,二長(zhǎng)花崗巖屬于I型花崗巖,具有向A型演化的趨勢(shì)。在構(gòu)造判別圖中,二長(zhǎng)花崗巖樣品落入后碰撞花崗巖區(qū)域(圖8a、b);表明架子山二長(zhǎng)花崗巖形成于后碰撞階段,與前人對(duì)區(qū)域內(nèi)出露的晚石炭世巖漿巖的研究成果一致,如達(dá)來(lái)廟地區(qū)晚石炭世花崗巖、狠麥溫都爾花崗巖、阿木古楞復(fù)式二長(zhǎng)花崗巖等均形成于后碰撞階段。近年來(lái),對(duì)興蒙造山帶晚古生代的巖漿巖研究發(fā)現(xiàn),石炭紀(jì)花崗巖大部分屬于I型花崗巖,而早二疊世花崗巖多屬于A型花崗巖,石炭紀(jì)巖漿活動(dòng)多在310 Ma之前,典型的A型花崗巖活動(dòng)時(shí)間則在292~273 Ma,李可等對(duì)內(nèi)蒙古巴彥烏拉地區(qū)寶力格組火山-沉積地層中的流紋巖進(jìn)行測(cè)年,獲得其形成年齡為(307.0±6.3)Ma,具有IA過(guò)渡型的特征;楊澤黎等在內(nèi)蒙古達(dá)來(lái)廟地區(qū)發(fā)現(xiàn)具有I—A過(guò)渡型特征的花崗巖,其形成年齡為(301.2±2.1)Ma;王樹慶等在京各斯臺(tái)發(fā)現(xiàn)了A型花崗巖體,測(cè)得其形成年齡為(301.3±1.5)Ma,為區(qū)域內(nèi)較早的堿性巖漿活動(dòng)。這些研究成果均表明在晚石炭世洋盆閉合后構(gòu)造環(huán)境處于從擠壓向伸展轉(zhuǎn)變的早期。綜上所述,架子山地區(qū)二長(zhǎng)花崗巖形成于造山后碰撞階段,巖體的形成表明古亞洲洋在晚石炭世之前已經(jīng)閉合,晚石炭世已經(jīng)進(jìn)入后造山階段,并開始逐漸向伸展環(huán)境轉(zhuǎn)化。
5 結(jié)論
1)鋯石U-Pb定年結(jié)果表明,架子山地區(qū)二長(zhǎng)花崗巖形成時(shí)代為(302.9±1.2)Ma,為晚石炭世巖漿作用產(chǎn)物。
2)二長(zhǎng)花崗巖具有富硅、過(guò)鋁質(zhì)、高分異的特征,輕重稀土元素分餾明顯,具有中度的負(fù)Eu異常,Rb、K、Th、U富集,Ba、Sr、Ti、Nb、P明顯呈V字型虧損,屬于高鉀鈣堿性系列巖漿巖。
3)巖石成因類型為高分異的I型花崗巖,具有向A型花崗巖演化的趨勢(shì),形成于造山后碰撞階段,巖體的形成表明古亞洲洋在晚石炭世之前已經(jīng)閉合,晚石炭世已經(jīng)進(jìn)入后造山階段,并開始逐漸向伸展環(huán)境轉(zhuǎn)化。
參考文獻(xiàn)(References):
Xiao W J, Windley B F, Yuan C, et al. Paleozoic Multiple SubductionAccretion Processes of the Southern Altaids . American Journal of Science, 2009, 309(3): 221-270.
Xu B,Charvet J,Chen Y,et al. Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China): Framework,Kinematics,Geochronology and Implication for Tectonic Evolution of Central Asian Orogenic Belt . Gondwana Research, 2013, 23(4): 1342-1364.
Sengr A M C, Natal’in B A, Burtman V S. Evolution of the Altaid Tectonic Collage and Paleozoic Crustal Growth in Eurasia . Nature, 1993, 364: 299-307.
李可,張志誠(chéng),馮志碩,等. 興蒙造山帶中段北部晚古生代兩期巖漿活動(dòng)及其構(gòu)造意義. 地質(zhì)學(xué)報(bào),2015,89(2):272-288.
Li Ke, Zhang Zhicheng, Feng Zhishuo, et al. TwoPhase Magmatic Events During Late Paleozoic in the North of the Central Inner MongoliaDa Hinggan Orogenic Belt and Its Tectonic Significance . Acta Geologica Sinica, 2015, 89(2):272-288.
李紅英,周志廣,李鵬舉,等. 內(nèi)蒙古西烏旗晚石炭世—早二疊世伸展事件:來(lái)自大石寨組火山巖的證據(jù). 大地構(gòu)造與成礦學(xué),2016,40(5):996-1013.Li Hongying, Zhou Zhiguang, Li Pengju, et al. A Late CarboniferousEarly Permian Extensional Event in Xi Ujimqin Qi, Inner Mongolia: Evidence from Volcanic Rocks of Dashizhai Formation . Geotectonica et Metallogenia, 2016, 40(5):996-1013.
Hong D, Wang S, Han B F, et al. PostOrogenic Alkaline Granites from China and Comparisons with Anorogenic Alkaline Granites Elsewhere . Journal of Asian Earth Sciences, 1996, 13:13-27.
Li J Y. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the PaleoAsian Ocean and Subduction of the PaleoPacific Plate. Journal of Asian Earth Sciences, 2006, 26(3/4): 207-224.
Jahn B M,Litvinovsky B A, Zanvilevich A N, et al. Peralkaline Granitoid Magmatism in the MongolianTransbaikalian Belt: Evolution, Petrogenesis and Tectonic Significance . Lithos, 2009, 113(3/4): 521-539.
Zhang X H, Yuan L L, Xue F H, et al. Early Permian AType Granites from Central Inner Mongolia, North China: Magmatic Tracer of PostCollisional Tectonics and Oceanic Crustal Recycling . Gondwana Research, 2014, 28: 311-327.
Tang K D. Tectonic Development of Paleozoic Foldbelts at the North Margin of the SinoKorean Craton . Tectonics, 1990, 9(2): 249-260.
Xu B, Chen B. Framework and Evolution of the Middle Paleozoic Orogenic Belt Between Siberian and North China Plates in Northern Inner Mongolia . Science in China: Series D, 1997, 40(5): 463-469.
Jahn B, Wu F Y, Chen B. Massive Granitoid Generation in Central Asia: Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic . Episodes, 2000, 23(2): 82-92.
Jahn B M, Capdevila R, Liu D Y, et al. Sources of Phanerozoic Granitoids in the Transect BayanhongorUlaan Baatar, Mongolia: Geochemical and Nd Isotopic Evidence, and Implications for Phanerozoic Crustal Growth . Journal of Asian Earth Sciences, 2004, 23(5): 629-653.
Chen C, Zhang Z C, Guo Z, et al. Geochronology,Geochemistry, and Its Geological Significance of the Permian Mandula Mafic Rocks in Damaoqi, Inner Mongolia . Science China Earth Sciences, 2012, 55(1):39-52.
Ma X,Chen B,Chen J F, et al. Zircon SHRIMP U-Pb Age, Geochemical, Sr-Nd Isotopic, and InSitu Hf Isotopic Data of the Late CarboniferousEarly Permian Plutons in the Northern Margin of the North China Craton . Science China Earth Sciences, 2013, 56(1): 126-144.
Hu C S, Li W, Xu C, et al. Geochemistry and Zircon U-Pb-Hf Isotopes of the Granitoids of Baolidao and Halatu Plutons in Sonidzuoqi Area, Inner Mongolia: Implications for Petrogenesis and Geodynamic Setting . Journal of Asian Earth Sciences, 2015, 97(B): 294-306.
Zhang Z,Ke L, Li J, et al. Geochronology and Geochemistry of the Eastern Erenhot Ophiolitic Complex: Implications for the Tectonic Evolution of the Inner MongoliaDaxinganling Orogenic Belt . Journal of Asian Earth Sciences, 2015, 97: 279-293.
張臣,劉樹文,韓寶福,等. 內(nèi)蒙古商都大石溝花崗巖體鋯石SHRIMP U-Pb年齡及其意義. 巖石學(xué)報(bào),2007,23(3):591-596.Zhang Chen, Liu Shuwen, Han Baofu, et al. SHRIMP U-Pb Dating of Dashigou BiotiteKFelspar Granites in Shangdu, Inner Mongolia, and Its Significance . Acta Petrologica Sinica, 2007, 23(3): 591-596.
Zhang S H, Zhao Y, Song B, et al. Contrasting Late Carboniferous and Late PermianMiddle Triassic Intrusive Suites from the Northern Margin of the North China Craton: Geochronology, Petrogenesis and Tectonic Implications . Geological Society of America Bulletin, 2009, 121: 181-200.
Jian P, Liu D Y,Krner A, et al. Time Scale of an Early to MidPaleozoic Orogenic Cycle of the Longlived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for Continental Growth . Lithos, 2008, 101(3/4): 233-259.
Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic Granitoids in Northeastern China . Journal of Asian Earth Science, 2011, 41(1): 1-30.
Liu J F, Li J Y, Chi X G, et al. A LateCarboniferous to Early EarlyPermian SubductionAccretion Complex in Daqing Pasture, Southeastern Inner Mongolia: Evidence of Northward Subduction Beneath the Siberian Paleoplate Southern Margin . Lithos, 2013, 177: 285-296.
李可,張志誠(chéng),馮志碩,等. 內(nèi)蒙古中部巴彥烏拉地區(qū)晚石炭世—早二疊世火山巖鋯石SHRIMP U-Pb定年及其地質(zhì)意義. 巖石學(xué)報(bào),2014, 30(7):2041-2054.Li Ke, Zhang Zhicheng, Feng Zhishuo, et al. Zircon SHRIMP U-Pb Dating and Its Geological Significance of the LateCarboniferous to EarlyPermian Volcanic Rocks in Bayanwula Area, the Central of Inner Mongolia . Acta Petrologica Sinica, 2014, 30(7): 2041-2054.
吳子杰,汪洋,崔培龍,等. 大興安嶺北部諾敏河地區(qū)早石炭世A型花崗巖的年代學(xué)、地球化學(xué)及Hf同位素研究. 地質(zhì)學(xué)報(bào),2020,94(8):2200-2211.Wu Zijie, Wang Yang, Cui Peilong, et al. The Early Carboniferous AType Granite in Nuominhe Area, Northern Da Hing’an Mountains: Geochronology, Geochemistry and Hf Isotope Studies . Acta Geologica Sinica, 2020, 94(8): 2200-2211.
董金龍,白志達(dá),徐德兵,等. 大興安嶺牙克石地區(qū)新元古代與晚古生代兩類巖石組合的構(gòu)造屬性及其地質(zhì)意義. 巖石學(xué)報(bào),2018,34(6):1758-1774.Dong Jinlong, Bai Zhida, Xu Debing, et al. Tectonic Nature and Geological Significance for Two Types of Neoproterozoic and Late Paleozoic Rock Assemblages in Yakeshi Region, Great Hinggan Range . Acta Petrologica Sinica, 2018, 34(6):1758-1774.
王樹慶,胡曉佳,楊澤黎,等. 興蒙造山帶中段錫林浩特躍進(jìn)地區(qū)石炭紀(jì)島弧型侵入巖:年代學(xué)、地球化學(xué)、Sr-Nd-Hf同位素特征及其地質(zhì)意義. 地球科學(xué),2018,43(3):672-695.Wang Shuqing, Hu Xiaojia, Yang Zeli, et al. Geochronology, Geochemistry, Sr-Nd-Hf Isotopic Characteristics and Geological Significance of Carboniferous Yuejin Arc Intrusive Rocks of Xilinhot, Inner Mongolia . Earth Science, 2018, 43(3): 672-695.
石文杰,趙旭,魏俊浩,等. 興蒙造山帶南段白音圖嘎地區(qū)A型花崗巖地球化學(xué)特征及其對(duì)古亞洲洋演化的制約. 大地構(gòu)造與成礦學(xué),2020,44(1):141-156.Shi Wenjie, Zhao Xu, Wei Junhao, et al. Geochemical Characteristics of AType Granites in Southern Xingmeng Orogen and Constraints on the Evolution of the PaleoAsian Ocean . Geotectonica et Metallogenia, 2020, 44(1): 141-156.
Zhang X H, Mao Q, Zhang H F,et al. Mafic and Felsic Magma Interaction During the Construction of HighK CalcAlkaline Plutons Within a Metacratonic Passive Margin: The Early Permian Guyang Batholith from the Northern North China Craton . Lithos, 2011, 125: 569-591.
Xiao W J, Windley B F, Hao J,et al. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt . Tectonics, 2003, 22(6): 1069-1090.
卿敏,唐明國(guó),葛良勝,等. 內(nèi)蒙古蘇右旗畢力赫金礦區(qū)安山巖LA-ICP-MS鋯石U-Pb年齡、元素地球化學(xué)特征及其形成的構(gòu)造環(huán)境. 巖石學(xué)報(bào),2012,28(2):514-524.Qing Min, Tang Mingguo, Ge Liangsheng, et al. LA-ICP-MS Zircon U-Pb Age, Geochemistry of Andesite in Bilihe Goldfield, Suniteyouqi, Inner Mongolia and Its Tectonic Significance. Acta Petrologica Sinica, 2012, 28(2): 514-524.
邵濟(jì)安,唐克東,何國(guó)琦. 內(nèi)蒙古早二疊世構(gòu)造古地理的再造. 巖石學(xué)報(bào),2014, 30(7):1858-1866.Shao Ji’an, Tang Kedong, He Guoqi. Early Permian TectonoPalaeogeographic Reconstruction of Inner Mongolia, China . Acta Petrologica Sinica, 2014, 30(7): 1858-1866.
Xu B, Zhao P, Wang Y, et al. The PreDevonian Tectonic Framework of Xing’anMongolia Orogenic Belt (XMOB) in North China . Journal of Asian Earth Sciences, 2015, 97(1): 183-196.
Li Y, Zhou H, Brouwer F M, et al. Nature and Timing of the Solonker Suture of the Central Asian Orogenic Belt: Insights from Geochronology and Geochemistry of Basic Intrusions in the Xilin Gol Complex, Inner Mongolia, China . International Journal of Earth Sciences, 2014, 103(1): 41-60.
Jian P, Liu D,Krner A, et al. Evolution of a Permian Intraoceanic ArcTrench System in the Solonker Suture Zone, Central Asian Orogenic Belt, China and Mongolia . Lithos, 2010, 118(1/2): 169-190.
Jian P,Krner A, Windly B F, et al. Carboniferous and Cretaceous MaficUltramafic Massifs in Inner Mongolia (China): A SHRIMP Zircon and Geochemical Study of the Previously Presumed Integral “Hegenshan Ophiolite” . Lithos, 2012, 142/143: 48-66.
王樹慶,胡曉佳,趙華雷,等. 內(nèi)蒙古京格斯臺(tái)晚石炭世堿性花崗巖年代學(xué)及地球化學(xué)特征:巖石成因及對(duì)構(gòu)造演化的約束. 地質(zhì)學(xué)報(bào),2017,91(7):1467-1482.Wang Shuqing, Hu Xiaojia, Zhao Hualei, et al. Geochronology and Geochemistry of Late Carboniferous Jinggesitai Alkaline Granites, Inner Mongolia: Petrogenesis and Implications for Tectonic Evolution . Acta Geologica Sinica, 2017, 91(7): 1467-1482.
吳福元,孫德有,林強(qiáng). 東北地區(qū)顯生宙花崗巖的成因與地殼增生. 巖石學(xué)報(bào),1999,15(2):181-189.Wu Fuyuan, Sun Deyou, Lin Qiang. Petrogenesis of the Phanerozoic Granites and Crustal Growth in Northeast China . Acta Petrologica Sinica, 1999, 15(2): 181-189.
陳衍景,張成,李諾,等. 中國(guó)東北鉬礦床地質(zhì). 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2012,42(5): 1223-1268.Chen Yanjing, Zhang Cheng, Li Nuo, et al. Geology of the Mo Deposits in Northeast China . Journal of Jilin University (Earth Science Edition), 2012, 42(5): 1223-1268.
郭向國(guó),黃蒙輝,王兆強(qiáng),等. 內(nèi)蒙古巴根黑格其爾鉛鋅礦花崗斑巖鋯石U-Pb年代學(xué)、地球化學(xué)及Sr-Nd-Pb-Hf同位素研究.地質(zhì)學(xué)報(bào),2020,94(2):527-552.Guo Xiangguo, Huang Menghui, Wang Zhaoqiang, et al. Zircon U-Pb Geochronology, Geochemical Characteristics, and Sr-Nd-Pb-Hf Isotopic Composition of Granite Porphyry in the Bagenheigeqier Ore District, Inner Mongolia . Acta Geologica Sinica, 2020, 94(2):527-552.
Liu Y S, Hu Z C, Gao S, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard . Chemical Geology, 2008, 257(1): 34-43.
Anderson T. Correction of Common Lead in the U-Pb Analyses that do not Report 204Pb .Chemical Geology, 2002, 192(1):59-79.
Ludwig K. User Manual for Isoplot 3.1: A Geochronological Toolkit for Microsoft Excel . Brekeley: Geochronology Center Special Publication, 2003: 472-504.
吳元保,鄭永飛. 鋯石成因礦物學(xué)研究及其對(duì)U-Pb年齡解釋的制約. 科學(xué)通報(bào),2004,49(16):1589-1604.Wu Yuanbao, Zheng Yongfei. Genetic Mineralogy of Zircon and Its Constraints on U-Pb Dating Interpretation . Chinese Science Bulletin, 2004, 49(16): 1589-1604.
Hoskin P W O,Schaltegger U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis . Reviews in Mineralogy Geochemistry, 2003, 53(1): 27-62.
Amelin Y, Lee D C, Halliday A N, et al. Nature of the Earth’s Earliest Crust from Hafnium Isotopes in Single Detrital Zircons . Nature, 1999, 399:252-255.
Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. //Saunders A D, Norry M J. Magmatism in the Ocean Basins. London: Geological Society, Special Publication, 1989:313-345.
Rickwood P C. Boundary Lines Within Petrologic Diagrams Which Use Oxides of Major and Minor Elements . Lithos, 1989, 22(4):247-263.
Maniar P D, Piccoli P M. Tectonic Discrimination of Granitoids . GSA Bulletin, 1989, 101: 635-643.
華北,高雪,胡兆國(guó),等. 興蒙造山帶西段烏珠新烏蘇花崗巖巖石成因和構(gòu)造背景:地球化學(xué)、U-Pb年代學(xué)和Sr-Nd-Hf同位素約束. 巖石學(xué)報(bào),2020,36(5):1426-1444.Hua Bei, Gao Xue, Hu Zhaoguo, et al. Petrogenesis and Tectonic Setting of the Wuzhuxinwusu Granite, Western XingMeng Orogenic Belt: Evidences from Geochemistry, Zircon U-Pb Geochronology and Sr-Nd-Hf Isotopes . Acta Petrologica Sinica, 2020, 36(5):1426-1444.
Yang L Q, Gao X, Shu Q H. Multiple Mesozoic PorphyrySkarn Cu (Mo-W) Systems in Yidun Terrane, East Tethys: Constraints from Zircon U-Pb and Molybdenite Re-Os Geochronology . Ore Geology Reviews, 2017, 90:813-826.
Deng J, Wang C,Bagas L, et al. Crustal Architecture and Metallogenesis in the SouthEastern North China Craton . Earth Science Reviews, 2018, 182:251-272.
張旗,王元龍,金惟俊,等. 造山前、造山和造山后花崗巖的識(shí)別. 地質(zhì)通報(bào),2008,27(1):1-18.Zhang Qi, Wang Yuanlong, Jin Weijun, et al. Criteria for the Recognition of Pre, Synand PostOrogenic Granitic Rocks . Geological Bulletin of China, 2008, 27(1): 1-18.
Frost C D, Frost B R. On Ferroan (AType) Granitoids: Their Compositional Variability and Modes of Origin . Journal of Petrology, 2011, 52(1):39-53.
楊立強(qiáng),高雪,和文言. 義敦島弧晚白堊世斑巖成礦系統(tǒng). 巖石學(xué)報(bào),2015,31(11):3155-3170.Yang Liqiang, Gao Xue, He Wenyan. Late Cretaceous Porphyry Metallogenic System of the Yidun Arc, SW China . Acta Petrologica Sinica, 2015, 31(11): 3155-3170.
陳澤翰,章佳,趙志丹,等. 內(nèi)蒙古科爾沁右翼前旗地區(qū)黑云母二長(zhǎng)花崗巖的巖石地球化學(xué)、年代學(xué)特征及其地質(zhì)意義. 地學(xué)前緣,2020,27(4):172-183.Chen Zehan, Zhang Jia, Zhao Zhidan, et al. Petrogeochemistry and Geochronology of Biotite Monzonitic Granites in the Horqin Right Front Banner Area, Inner Mongolia and the Geological Significance . Earth Science Frontiers, 2020, 27(4): 172-183.
Whalen J B,Currie K L, Chappell B W. AType Granites: Geochemical Characteristics, Discrimination and Petrogenesis . Contributions to Mineralogy and Petrology, 1987, 95(4):407-419.
姚磊,呂志成,葉天竺,等. 大興安嶺南段內(nèi)蒙古白音查干Sn多金屬礦床石英斑巖的鋯石U-Pb年齡、地球化學(xué)和Nd-Hf同位素特征及地質(zhì)意義. 巖石學(xué)報(bào),2017,33(10):3183-3199.Yao Lei, Lü Zhicheng, Ye Tianzhu, et al. Zircon U-Pb Age, Geochemical and Nd-Hf Isotopic Characteristics of Quartz Porphyry in the Baiyinchagan Sn Polymetallic Deposit, Inner Mongolia, Southern Great Xing’an Range, China . Acta Petrologica Sinica, 2017, 33(10): 3183-3199.
Chen Y J, Chen H Y, Zaw K, et al. Geodynamic Settings and Tectonic Model of Skarn Gold Deposits in China: An Overview . Ore Geology Reviews, 2007, 31:139-169.
陸勝,王可勇,趙煥利,等.大興安嶺漠河前哨林場(chǎng)侵入巖年代學(xué)、巖石地球化學(xué)特征及其地質(zhì)意義. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2021,51(1):126-140.Lu Sheng, Wang Keyong, Zhao Huanli, et al. Geochronology, Geochemistry and Geological Significance of Intrusive Rocks in Qianshao Forest Farm of Mohe Area, Great Xing’an Range. Journal of Jilin University (Earth Science Edition), 2021,51(1):126-140.
邵濟(jì)安,張履橋,牟保磊. 中亞造山帶東段鈾、鉬礦床分布與中間地塊的關(guān)系.吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2011,41(6):1667-1675.Shao Ji’an, Zhang Lüqiao, Mu Baolei. Distribution of Uranium and Molybdenum Deposits and Their Relations with Medium Massifs in Central Asian Orogenic Zone . Journal of Jilin University (Earth Science Edition), 2011, 41(6):1667-1675.
Chen" B, Arakawa Y. Elemental and Nd-Sr Isotopic Geochemistry of Granitoids from the West Junggar Foldbelt (NW China), with Implications for Phanerozoic Continental Growth. Geochimica et Cosmochimica Acta," 2005,69(5): 1307-1320.
林強(qiáng),葛文春,吳福元,等. 大興安嶺中生代花崗巖類的地球化學(xué). 巖石學(xué)報(bào),2004,20(3):403-412.Lin Qiang, Ge Wenchun., Wu Fuyuan, et al. Geochemistry of Mesozoic Granites in Da Hinggan Ling Ranges. Acta Petrologica Sinica, 2004, 20(3): 403-412.
Wu F Y, Jahn B M, Wilde S, et al. Phanerozoic Crustal Growth: U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China. Tectonophysics, 2000, 328(1/2):89-113.
Yang J H, Wu F Y, Shao J A, et al. Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters, 2007, 246(3/4):336-352.
孫超,茍軍,孫德有,等.黑龍江省西北部晚古生代I-A型花崗巖的成因及構(gòu)造意義.吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2021,51(4):1082-1097.Sun Chao, Gou Jun, Sun Deyou,et al. Petrogenesis and Tectonic Implication of Late Paleozoic I-A Type Granites in the Northwest Heilongjiang Province. Journal of Jilin University (Earth Science Edition), 2021,51(4):1082-1097.
Vervoort J D,Pachelt P J, Gehrels G E. Constraintson Early Earth Differentiation from Hafnium and Neodymium Isotopes . Nature, 1996, 379:624-627.
薛懷民,郭利軍,侯增謙,等. 中亞—蒙古造山帶東段的錫林郭勒雜巖:早華力西期造山作用的產(chǎn)物而非古老陸塊?鋯石SHRIMP U-Pb年代學(xué)證據(jù). 巖石學(xué)報(bào),2009,25(8):2001-2010.Xue Huaimin, Guo Lijun, Hou Zengqian, et al. The Xilingeie Complex from the Eastern Part of the Central AsianMongolia Orogenic Belt, China: Products of Early Variscan Orogeny Other Than Ancient Block: Evidence from Zircon SHRIMP U-Pb Ages . Acta Petrologica Sinica, 2009, 25(8): 2001-2010.
Chen B,Jahn B M, Tian W. Evolution of the Solonker Suture Zone: Constraints from Zircon U-Pb Ages, Hf Isotopic Ratios and WholeRock Nd-Sr Isotope Compositions of Subduction and CollisionRelated Magmas and Forearc Sediments . Journal of Asian Earth Sciences, 2009, 34(3):245-257.
鮑慶中,張長(zhǎng)捷,吳之理,等. 內(nèi)蒙古白音高勒地區(qū)石炭紀(jì)石英閃長(zhǎng)巖SHRIMP鋯石U-Pb年代學(xué)及其意義. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2007,37(1):15-23.Bao Qingzhong, Zhang Changjie, Wu Zhili, et al. SHRIMP U-Pb Zircon Geochronology of a Carboniferous QuartzDiorite in Baiyingaole Area, Inner Mongolia and Its Implications . Journal of Jilin University (Earth Science Edition), 2007, 37(1):15-23.
Liegeois J P, Navez J, Hertogen J, et al. Contrasting Origin of PostCollisional HighK CalcAlkaline and Shoshonitic Versus Alkaline and Peralkaline Granitoids: The Use of Sidling Normalization .Lithos, 1998, 45(1): 1-28.
Pearce J A, Harris N B W,Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks . Journal of Petrology, 1984, 25(4): 956-983.
楊澤黎,王樹慶,胡曉佳,等. 內(nèi)蒙古達(dá)來(lái)廟地區(qū)晚石炭世花崗巖成因及其對(duì)興蒙造山帶北部構(gòu)造體制轉(zhuǎn)變的指示. 地球科學(xué),2019,44(1):268-283.Yang Zeli, Wang Shuqing, Hu Xiaojia, et al. Petrogenesis of the LateCarboniferous Granites of Dalaimiao, Inner Mongolia and Its Implications for the Tectonic Transformation of Northern Margin of Xing’anMongolian Orogenic Belt . Earth Science, 2019, 44(1): 268-283.
何付兵,徐吉祥,谷曉丹,等. 內(nèi)蒙古東烏珠穆沁旗阿木古楞復(fù)式花崗巖體時(shí)代、成因及地質(zhì)意義. 地質(zhì)論評(píng),2013,59(6):1150-1164.He Fubing, Xu Jixiang, Gu Xiaodan, et al. Ages, Origin and Geological Implications of the Amuguleng Composite Granite in East Ujimqin Banner, Inner Mongolia . Geological Review, 2013,59(6):1150-1164.
韓寶福. 后碰撞花崗巖類的多樣性及其構(gòu)造環(huán)境判別的復(fù)雜性. 地學(xué)前緣,2007,14(3):64-72.Han Baofu. Diverse PostCollisional Granitoids and Their Tectonic Setting Discrimination . Earth Science Frontiers, 2007, 14(3):64-72.
程銀行,滕學(xué)建,辛后田,等. 內(nèi)蒙古東烏旗狠麥溫都爾花崗巖SHRIMP鋯石U-Pb年齡及其地質(zhì)意義. 巖石礦物學(xué)雜志,2012,31(3):323-334.Cheng Yinhang, Teng Xuejian, Xin Houtian, et al. SHRIMP Zircon U-Pb Dating of Granites in Mahonondor Area, East Ujimqin Banner, Inner Mongolia . Acta Petrologica et Mineralogica, 2012, 31(3):323-334.
吉林大學(xué)學(xué)報(bào)(地球科學(xué)版)2023年3期