亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        通化地區(qū)中生代大川花崗巖巖體成因與REE賦存狀態(tài)

        2023-12-29 00:00:00張婷婷董國(guó)振安玉偉褚小磊柏鋮璘孫景貴

        摘要:吉林南部地區(qū)位于華北克拉通北緣東段,是一個(gè)經(jīng)歷了太古宙、元古宙、古生代、中生代以及新生代漫長(zhǎng)地質(zhì)歷史演化的地質(zhì)構(gòu)造區(qū),廣泛發(fā)育晚中生代富集稀土元素的堿長(zhǎng)花崗巖。本文選取該區(qū)富集稀土元素的大川花崗巖體,開(kāi)展巖相學(xué)、鋯石U-Pb年代學(xué)與Hf同位素、巖石地球化學(xué)研究,結(jié)果表明:該巖體主要由細(xì)粒、中粒和粗粒黑云母堿長(zhǎng)花崗巖所組成,其次是花崗偉晶巖;主量元素具有高硅(w(SiO2)=72.56%~84.09%)、低鋁(w(Al2O3)=8.15%~14.76%)、準(zhǔn)鋁—強(qiáng)過(guò)鋁質(zhì)(A/CNK=0.98~1.60)的特征,屬于高鉀鈣堿性系列;樣品稀土質(zhì)量分?jǐn)?shù)較高(w(ΣREE)=88.53×10-6~839.95×10-6),(La/Yb)N=2.30~41.24,富集輕稀土元素,虧損重稀土元素,稀土配分模式為右傾型,Eu負(fù)異常比較明顯,δEu值為0.05~0.60,分異指數(shù)(ID=86.72~97.69)較高,固結(jié)指數(shù)(IS=0.16~1.13)較低,顯示在巖漿演化過(guò)程中經(jīng)歷了斜長(zhǎng)石、黑云母、磷灰石等礦物不同程度的分離結(jié)晶作用,結(jié)合巖相學(xué)特征,初步認(rèn)為大川堿長(zhǎng)花崗巖為高分異花崗巖;粗粒黑云母堿長(zhǎng)花崗巖單顆粒鋯石U-Pb同位素年齡為(120.8±1.6)Ma;鋯石εHf(t)值全部為負(fù)值(-10.7~-5.2),對(duì)應(yīng)的Hf同位素二階段模式年齡為2 587~2 090 Ma;基于同位素與巖石地球化學(xué)數(shù)據(jù),初始巖漿起源于新太古代—古元古代陸殼物質(zhì)的部分熔融,巖體為同源巖漿房經(jīng)巖漿結(jié)晶分異作用后巖漿上侵就位的產(chǎn)物。巖礦鑒定及全巖微量顯示,隨著巖漿的演化,石英含量逐漸升高,黑云母含量逐漸降低,稀土總量也逐漸降低,稀土主要富集在粗粒黑云母堿長(zhǎng)花崗巖相中。

        關(guān)鍵詞:

        通化地區(qū);元素地球化學(xué);U-Pb同位素定年;Hf同位素;巖石成因;REE賦存狀態(tài)

        doi:10.13278/j.cnki.jjuese.20220290

        中圖分類(lèi)號(hào):P588.12;P597

        文獻(xiàn)標(biāo)志碼:A

        Abstract: The southern part of Jilin is located in the eastern section of the northern margin of the North China craton, which has experienced a long geological evolution in the Archean, Proterozoic, Paleozoic, Mesozoic and Cenozoic. The alkalifeldspar granite enriched in rare earth elements in the Late Mesozoic is widely developed in this area. In this paper, the Dachuan granite enriched in rare earth elements was selected to carry out petrography, zircon U-Pb dating and Hf isotope, petrogeochemistry analysis. The results show that the granite is mainly composed of finegrained, mediumgrained and coarsegrained biotite alkalifeldspar granite, followed by granitepegmatite. The main elements have the characteristics of high silicon (w (SiO2) =72.56%-84.09%), low aluminum (w (Al2O3) =8.15%-14.76%), quasi aluminumstrong peraluminum (A/CNK= 0.98-1.60), belonging to the high potassium calcalkaline series. The samples have a high rare earth mass fraction (w (ΣREE) =88.53×10-6-839.95×10-6), (La/Yb)N=2.30-41.24, enriched in light rare earth elements, depleted in heavy rare earth elements. The partition pattern of rare earth elements is rightleaning type, with obvious negative Eu anomaly and δEu value ranging from 0.05 to 0.60. The differentiation index (ID=86.72-97.69) is high, and the consolidation index (IS=0.16-1.13) is low, indicating that the magma evolution has experienced different degrees of separation and crystallization of plagioclase, biotite, apatite and other minerals. Combined with the petrographic characteristics, the Dachchuan alkalifeldspar granite is preliminarily considered as highly differentiated granite. The single zircon U-Pb isotopic age of coarsegrained biotite alkali feldspar granite is (120.8±1.6) Ma. The εHf(t) values of zircons are all negative (-10.7--5.2), and the corresponding Hf isotope secondorder model ages of the zircons are 2 587-2 090 Ma. Based on isotope and petrogeochemical data, the initial magma originated from partial melting of the Neoarchean and Paleoproterozoic continental crust, and the rock mass was the product of magma emplacement after magma crystallization differentiation in the homologous magma chamber. Mineral identification and whole rock trace elements show that with the evolution of magma, the quartz content gradually increased, the biotite content gradually decreased, and the total rare earth contents also gradually decreased. The rare earth elements are mainly enriched in coarsegrained biotite alkali feldspar granite phase.

        Key words:

        Tonghua area; element geochemistry; U-Pb isotopic dating; Hf isotope; petrogenesis; REE occurrence state

        0 引言

        花崗巖通??梢灾甘疽欢ǖ牡刭|(zhì)背景,其形成時(shí)代研究有助于建立構(gòu)造演化時(shí)空格架,其成因、源區(qū)、構(gòu)造背景研究對(duì)于重塑區(qū)域地質(zhì)演化過(guò)程、探討殼-幔物質(zhì)組成與相互作用過(guò)程及地球動(dòng)力學(xué)過(guò)程具有重要意義,因而一直受到地質(zhì)學(xué)界的關(guān)注。吉林南部通化地區(qū)位于華北克拉通北緣東段,地質(zhì)演化復(fù)雜,經(jīng)歷了太古宙克拉通化、古元古代裂谷及造山、中新元古代—古生代海盆收縮和興蒙造山、中生代揚(yáng)子板塊碰撞以及古太平洋俯沖等運(yùn)動(dòng),屬于復(fù)合構(gòu)造、巖漿成礦區(qū)。其復(fù)雜的地質(zhì)演化歷史與多期次發(fā)育的巖漿運(yùn)動(dòng),使得該區(qū)成為具備有色、貴金屬以及稀有稀土礦產(chǎn)成礦條件的優(yōu)勢(shì)地區(qū)之一,目前區(qū)域已經(jīng)發(fā)現(xiàn)和探明許多稀有金屬礦床、礦化點(diǎn),如:砂礦型稀土礦床(東清獨(dú)居石砂礦床)、斑巖型礦床(吉中地區(qū)鉬礦床中伴生鎵)。在全省鋅、金、鉬、銅、鉛、鎳、硫鐵、鐵、銀等礦產(chǎn)中,均不同程度伴生稀有稀土礦產(chǎn)資源。近期筆者在參加吉林省“三稀”元素成礦潛力調(diào)研過(guò)程中,發(fā)現(xiàn)通化地區(qū)大川堿長(zhǎng)花崗巖巖體具有相對(duì)高的稀土、稀有金屬含量,具有確定稀土礦的工業(yè)礦體可能性很大。為了揭示其巖體成因和REE賦存狀態(tài),本文開(kāi)展了巖相學(xué)、

        鋯石U-Pb同位素定年、Lu-Hf同位素與巖石地球化學(xué)研究與取證。

        1 區(qū)域地質(zhì)和研究區(qū)地質(zhì)概況

        吉南地區(qū)位于華北克拉通北緣東段,地處遼東(隆起)成礦帶的鐵嶺—靖宇(次級(jí)隆起)成礦帶,經(jīng)歷太古宙中高級(jí)變質(zhì)變形、元古宙—古生代海相-海陸交互相沉積和中生代太平洋板塊俯沖作用,為大陸邊緣復(fù)合構(gòu)造成巖成礦構(gòu)造區(qū)(圖1a)。區(qū)域上出露地層由老到新主要為太古宙表殼巖系、元古宙和古生代地層、中生代火山-陸源碎屑巖建造和新生代碎屑沉積物。侵入巖從侵位時(shí)代方面可分為4期,即:古元古代(2.2~1.85 Ga)、三疊紀(jì)(244~203 Ma)、侏羅紀(jì)(180~156 Ma)和早白堊世(134~117 Ma),其中,早白堊世侵入巖為研究區(qū)構(gòu)造的主體部分。巖石類(lèi)型方面,中酸性侵入巖為研究區(qū)巖石的主要類(lèi)型。構(gòu)造以線(xiàn)性斷裂為主,大致呈北西方向、北東方向及近東西方向3種組合形態(tài)。區(qū)域整體以發(fā)育大面積中生代花崗雜巖和晚侏羅世火山-沉積巖為特征,其次是古元古代、古生代地層以及第四紀(jì)碎屑沉積物;構(gòu)造演化至少經(jīng)歷了太古宙基底的形成階段、古元古代裂谷階段、新元古代和古生代蓋層沉積階段以及中新生代大陸邊緣活動(dòng)作用等幾個(gè)重要的地質(zhì)發(fā)展階段;受裂谷和渾江斷裂帶的控制,區(qū)內(nèi)構(gòu)造主要以近東西向、北東向的斷裂構(gòu)造為主,北西向的斷裂次之;其中東西向構(gòu)造屬多期活動(dòng)構(gòu)造,控制了中生代侵入巖的分布;從成礦地質(zhì)背景來(lái)看,大致經(jīng)歷太古宙、古元古代、中—新元古代、古生代和中生代5個(gè)成巖成礦期。

        研究區(qū)以大川巖體為中心,北東和南西兩側(cè)分布果松組,出露面積320 km2;東側(cè)發(fā)育三疊紀(jì)二長(zhǎng)花崗巖,出露面積80 km2;北西側(cè)為新太古代花崗質(zhì)片麻巖,出露面積240 km2(圖1b);發(fā)育近南北、北西向斷裂;整體呈現(xiàn)以大川巖體為中心的花崗穹窿式構(gòu)造格局。果松組為一套中性火山巖系,下部以礫巖、砂巖為主,產(chǎn)少量植物化石;上部為中性熔巖、安山巖、安山質(zhì)凝灰熔巖,局部地區(qū)出現(xiàn)少量流紋巖、流紋質(zhì)凝灰?guī)r。區(qū)內(nèi)果松組下部噴溢相以氣孔狀玄武巖類(lèi)為主,上部爆發(fā)相為安山質(zhì)晶屑凝灰?guī)r夾少量安山巖、角礫巖;大川復(fù)式巖體主要由黑云母堿長(zhǎng)花崗巖組成。

        2 巖相學(xué)特征

        野外地質(zhì)調(diào)查顯示,該巖體地表近似橢圓形,北西—南東方向延伸,長(zhǎng)約12 km,寬約10 km,出露地表面積120 km2??蓜澐旨?xì)粒黑云母堿長(zhǎng)花崗巖、中粒黑云母堿長(zhǎng)花崗巖、粗粒黑云母堿長(zhǎng)花崗巖和花崗偉晶巖巖相(圖1b)。

        細(xì)粒黑云母堿長(zhǎng)花崗巖(GS-4) 該巖相巖石風(fēng)化面呈淺肉紅色,新鮮面呈肉紅色,細(xì)?;◢徑Y(jié)構(gòu),塊狀構(gòu)造。主要礦物為堿性長(zhǎng)石、石英、斜長(zhǎng)石以及少量黑云母,副礦物有磁鐵礦、鋯石和磷灰石等。其中,堿性長(zhǎng)石為正長(zhǎng)石,多呈自形—半自形板狀,粒徑大小為0.5~2.0 mm,體積分?jǐn)?shù)為70%~75%;石英,無(wú)色透明,粒徑大小為0.5~1.0 mm,體積分?jǐn)?shù)為15%~20%;斜長(zhǎng)石呈自形—半自形板狀,體積分?jǐn)?shù)為5%~8%;黑云母,半自形—他形片狀,體積分?jǐn)?shù)低于3%(圖2a、b)。

        中粒黑云母堿長(zhǎng)花崗巖(GS-10、GS-28、GS-29) 為大川巖體的主體巖相,其風(fēng)化面呈淺肉紅色,新鮮面呈肉紅色,中?;◢徑Y(jié)構(gòu),塊狀構(gòu)造。主要礦物有堿性長(zhǎng)石、石英、斜長(zhǎng)石和少量黑云母等暗色礦物,副礦物有鋯石、獨(dú)居石、磁鐵礦和磷灰石等。其中,堿性長(zhǎng)石主要為正長(zhǎng)石,多為半自形板狀,粒徑大小為1.0~4.0 mm, 體積分?jǐn)?shù)為60%;

        石英,為無(wú)色透明,他形,粒徑為0.5~2.0 mm, 體積分?jǐn)?shù)為25%;

        斜長(zhǎng)石,為灰白色,呈自形—半自形板狀,粒徑為2.0~3.0 mm, 體積分?jǐn)?shù)為6%;

        黑云母,呈半自形板片狀,粒徑為0.5~1.0 mm,體積分?jǐn)?shù)為8%;含有很少的副礦物,體積分?jǐn)?shù)為1%左右(圖2c、d)。

        粗粒黑云母堿長(zhǎng)花崗巖(GS-34、GS-35) 該巖相發(fā)育在巖體內(nèi)部,呈巖柱狀產(chǎn)出(圖1b),巖石呈粗?;◢徑Y(jié)構(gòu),塊狀構(gòu)造。主要礦物為堿性長(zhǎng)石、石英、斜長(zhǎng)石和黑云母,副礦物有磁鐵礦、榍石、鋯石和磷灰石等。其中:堿性長(zhǎng)石主要為正長(zhǎng)石和條紋長(zhǎng)石,多呈半自形板狀,二者礦物粒徑主要集中在4.0~6.0 mm,體積分?jǐn)?shù)為45%~50%;石英呈半自形—他形粒狀或不規(guī)則狀,礦物粒徑主要集中在2.0~4.0 mm,體積分?jǐn)?shù)為20%~25%;斜長(zhǎng)石與堿性長(zhǎng)石共生,多呈半自形板柱狀,體積分?jǐn)?shù)為25%~30%;黑云母呈半自形板片狀,粒徑3.0~5.0 mm,體積分?jǐn)?shù)為6~8%;另外零星分布細(xì)小白云母,體積分?jǐn)?shù)為1%左右(圖2e、f)。

        花崗偉晶巖(GS-3) 該巖相分布在大川巖體西部,呈脈狀產(chǎn)出,巖石呈現(xiàn)肉紅色,呈花崗偉晶結(jié)構(gòu),塊狀構(gòu)造。主要礦物為堿性長(zhǎng)石、石英,含極少的白云母和副礦物磁鐵礦、鋯石和磷灰石等。其中:堿性長(zhǎng)石體積分?jǐn)?shù)為55~60%,呈半自形板狀,偶見(jiàn)石英細(xì)脈插入正長(zhǎng)石礦物內(nèi)部,粒徑為1.0~2.0 cm;石英呈他形不規(guī)則狀或細(xì)粒狀或細(xì)脈狀,體積分?jǐn)?shù)為40%~45%。副礦物中,磁鐵礦體積分?jǐn)?shù)為1%~3%,呈細(xì)粒狀分布在長(zhǎng)石和石英礦物間隙。(圖2g、h)。

        3 分析方法

        3.1 鋯石U-Pb同位素定年與原位Lu-Hf同位素分析

        鋯石單礦物分離采用常規(guī)方法,即首先進(jìn)行碎樣和分選,在雙目顯微鏡下挑純;然后將分選后的鋯石和標(biāo)準(zhǔn)鋯石參考樣(TEM)放在玻璃板上,用環(huán)氧樹(shù)脂固定、拋光;最后利用反射光和透射光顯微照片,在陰極發(fā)光掃描電鏡下進(jìn)行圖像分析,檢查鋯石的內(nèi)部結(jié)構(gòu)。實(shí)驗(yàn)樣品制備靶、反射光和透射光照相在河北省區(qū)域地質(zhì)調(diào)查大隊(duì)地質(zhì)實(shí)驗(yàn)室完成。LA-ICP-MS鋯石U-Pb定年測(cè)試分析在吉林大學(xué)東北亞礦產(chǎn)資源評(píng)價(jià)自然資源部重點(diǎn)實(shí)驗(yàn)室完成,所用激光設(shè)備為德國(guó)相干公司COMPExPro型ArF準(zhǔn)分子激光器(激光波長(zhǎng)193 nm,激光束斑32 μm),質(zhì)譜儀為美國(guó)安捷倫公司7900型四極桿等離子質(zhì)譜。采用電感耦合等離子體質(zhì)譜儀(LA-ICP-MS)對(duì)鋯石進(jìn)行了U-Pb同位素分析。測(cè)定過(guò)程中激光束斑直徑為63 μm,激光脈沖寬度為15 ns,采用He作為剝蝕物質(zhì)載氣,鋯石年齡標(biāo)準(zhǔn)物質(zhì)為國(guó)際標(biāo)準(zhǔn)鋯石91500(1 062 Ma)作為外標(biāo)和NIST610硅酸鹽玻璃進(jìn)行優(yōu)化,詳細(xì)的實(shí)驗(yàn)和分析過(guò)程詳見(jiàn)文獻(xiàn)。實(shí)驗(yàn)數(shù)據(jù)結(jié)果見(jiàn)表1。

        在測(cè)年基礎(chǔ)上,開(kāi)展了原位Hf同位素測(cè)試,分析在天津地質(zhì)礦產(chǎn)研究所同位素實(shí)驗(yàn)室完成。Lu-Hf同位素測(cè)試分析實(shí)驗(yàn)采用193 nm激光的Neptune多接電感耦合等離子體質(zhì)譜(LA-MC-ICP-MS)進(jìn)行,激光束直徑為50 μm,激光脈沖頻率為11 Hz,100 mJ的激光強(qiáng)度,使用氦氣作為燒蝕氣溶膠的載氣。

        樣品的176Lu/177Hf和176Hf/177Hf采用176Lu/175Lu(0.026 55)和176Yb/172Yb(0.585 45)進(jìn)行同質(zhì)異位的干擾校正。外標(biāo)為標(biāo)準(zhǔn)鋯石GJ-1,推薦標(biāo)準(zhǔn)值為0.282 006±0.000 24。鋯石εHf(t)值的計(jì)算采用176Lu衰變常數(shù)=1.867×10-11a-1,球粒隕石的176Hf/177Hf=0.282772,176Lu/177Hf=0.0332,Hf虧損地幔二階段模式年齡(TDMC)的計(jì)算采用平均陸殼的176Lu/177Hf值0.015。具體Hf同位素?cái)?shù)據(jù)結(jié)果見(jiàn)表2。

        3.2 全巖主量、微量、稀土元素分析

        全巖地球化學(xué)數(shù)據(jù)(主量元素和微量元素)測(cè)試實(shí)驗(yàn)在吉林省有色金屬地質(zhì)勘查局研究所完成。在去除蝕變表面后,選取新鮮的樣品,經(jīng)過(guò)蒸餾水清洗,在瑪瑙磨樣機(jī)研磨制成粉末(直徑200目)進(jìn)行分析。干燥后測(cè)量主量元素的氧化物和微量元素,包括稀土元素(REE)。主量元素采用X熒光光譜(XRF)玻璃熔片法分析,分析精度優(yōu)于±1%。微量和稀土元素分析采用電感耦合等離子體質(zhì)譜法(ICP-MS)進(jìn)行,采用BHVO-1、AVG-1、G-2等國(guó)際標(biāo)準(zhǔn)物質(zhì)進(jìn)行質(zhì)量監(jiān)控,并作空白樣進(jìn)行質(zhì)量監(jiān)控,分析精確度優(yōu)于±2%。本次實(shí)驗(yàn)數(shù)據(jù)列于表3。

        4 分析結(jié)果

        4.1 鋯石U-Pb年代學(xué)

        從CL圖像和分析結(jié)果可知:粗粒黑云母花崗巖樣品(GS-35)單顆粒鋯石普遍為灰白色自形—半自形結(jié)構(gòu),長(zhǎng)柱狀晶體居多,部分為短柱狀、粒狀,長(zhǎng)軸長(zhǎng)度介于120 ~ 200 μm之間,長(zhǎng)短軸之比為2∶1~3∶1(圖3a)。15個(gè)測(cè)試分析點(diǎn)數(shù)據(jù)具有良好的諧和性,206Pb/238U表面年齡變化范圍介于125~117 Ma之間,232Th/238U值范圍介于0.98~2.29 之間(表1),均大于0.1,且大部分鋯石具有明顯振蕩環(huán)帶結(jié)構(gòu),為典型的巖漿成因鋯石;從諧和年齡和鋯石圖像特征來(lái)看(圖3b),加權(quán)平均年齡(120.8±1.6)Ma。

        4.2 Hf同位素

        本次獲得大川粗粒黑云母堿長(zhǎng)花崗巖(Gs-35)鋯石的Hf同位素表明:Lu-Hf同位素特征是176Yb/177Hf為0.025 08~0.049 15,176Lu/177Hf為0.000 916~0.001 740 ,176Hf/177Hf為0.282 405~0.282 551,對(duì)應(yīng)的εHf(t)值變化范圍為-10.7~-5.2、TDM為1 230~1 010 Ma、TDM2為2 587~2 090 Ma和fLu/Hf為-0.97~-0.95(表2)。

        4.3 主量、稀土和微量元素

        從表3和圖4可知,大川花崗質(zhì)復(fù)式巖體的各巖相具有高硅(w(SiO2)=72.56%~84.09%)、低鋁(w(Al2O3)=8.15%~14.76%)、準(zhǔn)鋁—強(qiáng)過(guò)鋁質(zhì)(A/CNK=0.98~1.60,A/NK=0.98~1.63)的特征,在TAS圖解(圖4a)

        中樣品都落入花崗巖區(qū)域;富堿(w(Na2O+K2O)=5.93% ~ 9.55%)、富鉀(Na2O/K2O=0.80~2.98),屬于高鉀鈣堿性系列(圖4b、c),富Fe、貧Mg(w(Fe2O3)=1.27%~3.95%,w(MgO)=0.01%~0.12%),低P、Ti、Ca(

        w(P2O5)=0.01%~0.03%,

        w(TiO2)=0.06%~0.23%,w(CaO)=0.04%~0.44%)。

        稀土和微量元素分析結(jié)果顯示(表3):稀土總量較高(w(ΣREE)=(88.53×10-6~839.95×10-6),(La/Yb)N=2.30~41.24,輕稀土元素富集,而重稀土元素出現(xiàn)虧損,稀土配分模式為右傾型,δEu值為0.05~0.60,Eu負(fù)異常比較明顯(圖5a、b)。具有較高的Rb/Sr(1.04~26.78)以及Zr/Hf(21.76~43.31)值,富集Rb、La、Ce、Nd、Hf等元素,相對(duì)虧損Nb、Sr、Ti、P等元素(圖5c、d)。通過(guò)對(duì)比,粗粒黑云母堿長(zhǎng)花崗巖稀土元素質(zhì)量分?jǐn)?shù)高于區(qū)域上花崗巖的稀土元素質(zhì)量分?jǐn)?shù),也高于普通高分異花崗巖中稀土質(zhì)量分?jǐn)?shù),具有一定的成礦潛力。

        5 討論

        5.1 大川巖體花崗質(zhì)復(fù)式巖體就位時(shí)代

        關(guān)于吉林南部通化地區(qū)花崗質(zhì)巖石形成時(shí)代的確定,前人通常依據(jù)其侵入中生代地層而將其確定為中生代,而缺乏精確的同位素年代學(xué)證據(jù)。大川巖體主要由細(xì)粒黑云母堿長(zhǎng)花崗巖、中粒黑云母堿長(zhǎng)花崗巖、粗粒黑云母堿長(zhǎng)花崗巖和花崗偉晶巖組成,為一套花崗質(zhì)雜巖體系。LA-ICP-MS單顆粒鋯石U-Pb同位素定年數(shù)據(jù)顯示,所測(cè)鋯石大多數(shù)自形程度較好,發(fā)育韻律環(huán)帶結(jié)構(gòu),Th/U值gt;0.1等,各方面均表現(xiàn)出巖漿鋯石的特征,所以206Pb/238U表面年齡統(tǒng)計(jì)加權(quán)平均值可以代表巖漿侵位結(jié)晶的時(shí)代,即大川巖體的成巖時(shí)代為(120.8±1.6)Ma(MSWD=0.88),表明大川巖體為早白堊世巖漿活動(dòng)的產(chǎn)物。

        區(qū)域早白堊世巖體可劃分為吉南南部和吉南北部,其中:吉南南部的早白堊世巖體主要包括榆林巖體(正長(zhǎng)花崗巖(118.3±2.0)Ma)、綠江村巖體(二長(zhǎng)花崗巖(119±2)Ma)、鎮(zhèn)江巖體(花崗閃長(zhǎng)巖(129±3) Ma)、上綠水橋巖體(鉀長(zhǎng)花崗巖(121.4±0.8) Ma)、高臺(tái)子巖體(鉀長(zhǎng)花崗巖(124.1±0.9) Ma)、石湖巖體和集安巖體(正長(zhǎng)花崗巖和花崗斑巖127~120 Ma)等;北部早白堊世巖體主要包括仙人橋巖體(二長(zhǎng)巖和石英二長(zhǎng)巖129~128" Ma)、老嶺巖體(花崗斑巖(122.5±1.0) Ma)、六道溝巖體(二長(zhǎng)花崗巖(125±1.0) Ma)、頭道溝巖體(正長(zhǎng)花崗巖(125.2±1.5) Ma)和幸福山巖體(花崗閃長(zhǎng)巖(128±2) Ma)等。吉林南部早白堊世巖體成巖年代為129~118 Ma,可見(jiàn)本文大川巖體巖漿事件與吉南地區(qū)早白堊世巖漿作用期次相一致。

        5.2 巖石成因與形成機(jī)理

        5.2.1 巖石成因類(lèi)型

        大川花崗巖體具有高Si,富K,富堿,低Ti,少

        Ca、Mg,貧P等特征,表明其可能經(jīng)歷了分異演化。另外以下證據(jù)還表明其很有可能屬于高分異花崗巖類(lèi):1)花崗巖體與偉晶巖共生,花崗巖中出現(xiàn)少量白云母、榍石和獨(dú)居石,個(gè)別樣品鋁飽和指數(shù)高(A/CNK最高值至1.60)(圖4d);2)礦物組成接近低共結(jié)組分(石英+鉀長(zhǎng)石+斜長(zhǎng)石);3)斜長(zhǎng)石牌號(hào)(0.68~5.47)<15,高分異指數(shù)(ID=86.72~97.69),低固結(jié)指數(shù)(IS=0.16~1.13),高硅(w(SiO2)=72.56%~84.09%),富堿(w(K2O+Na2O)=5.93%~9.55%),相對(duì)低鈣鎂(w(CaO)=0.04%~0.44%、w(MgO)=0.01%~0.12%);4)隨分異系數(shù)增大,Rb/Sr值顯著升高,δEu、K/Rb、Zr/Hf、La/Yb和Nb/Ta值顯著變小 (圖6 ),稀土出現(xiàn)四分組效應(yīng)。此外,在分異指數(shù)與元素比值的相關(guān)性圖解(圖6)中,大川堿長(zhǎng)花崗巖體也表現(xiàn)出明顯的分異結(jié)晶趨勢(shì)。因此,筆者認(rèn)為大川堿長(zhǎng)花崗巖體為高分異花崗巖。

        由于經(jīng)歷了較強(qiáng)的分異結(jié)晶,花崗巖的礦物和化學(xué)組成趨近于低共結(jié)花崗巖,很難將高分異的I型、S型和A型花崗巖相區(qū)分。5個(gè)樣品屬準(zhǔn)鋁質(zhì)—弱過(guò)鋁質(zhì),2個(gè)樣品為強(qiáng)過(guò)鋁質(zhì)(圖4d),7個(gè)樣品的A/CNK平均值為1.13;過(guò)鋁質(zhì)巖漿體系中,磷灰石為優(yōu)先結(jié)晶礦物,SiO2與P2O5質(zhì)量分?jǐn)?shù)負(fù)相關(guān),而過(guò)鋁質(zhì)S型花崗巖的SiO2與P2O5質(zhì)量分?jǐn)?shù)呈正相關(guān),

        且大多數(shù)P2O5質(zhì)量分?jǐn)?shù)大于0.1%。本文獲得的花崗巖SiO2與P2O5質(zhì)量分?jǐn)?shù)呈微弱負(fù)相關(guān),且P2O5質(zhì)量分?jǐn)?shù)極低(0.01%~0.03%),不符合S型花崗巖分異演化趨勢(shì)。利用常用的Whalen等系列圖解很難將高分異I型花崗巖與高分異A型花崗巖(也稱(chēng)鋁質(zhì)A型花崗巖)相區(qū)分。前人研究表明,相對(duì)于高分異I型花崗巖,鋁質(zhì)A型花崗巖是一種高溫花崗巖,根據(jù)Waston等實(shí)驗(yàn)所得的鋯石飽和溫度計(jì),計(jì)算得到大川花崗巖的巖漿溫度為804.70~985.80 ℃(表3),高于通常判別為未分異I型和S型花崗巖的形成溫度(一般低于800.00 ℃,經(jīng)歷結(jié)晶分異后則更低)。并且該估算溫度代表了巖漿經(jīng)歷高度分異后殘余熔體的結(jié)晶溫度,而非巖漿初始形成溫度,意味著巖漿的形成溫度要高得多。此外,高分異I型花崗巖的TFeO質(zhì)量分?jǐn)?shù)通常小于1.00%,而大川堿長(zhǎng)花崗巖的TFeO質(zhì)量分?jǐn)?shù)為1.27%~3.95%,因此,筆者傾向于本文花崗巖為A型的觀(guān)點(diǎn),但是由于經(jīng)歷了強(qiáng)烈的分異結(jié)晶,暫無(wú)法絕對(duì)排除高分異I型花崗巖的可能。

        5.2.2 巖漿源區(qū)、演化機(jī)理

        花崗巖的成因模式主要有以下幾種可能:酸性、基性巖漿混合作用,玄武質(zhì)巖漿分離結(jié)晶作用,以及下部陸殼物質(zhì)發(fā)生部分熔融。本文認(rèn)為大川花崗巖巖體形成于下部陸殼物質(zhì)的部分熔融,證據(jù)在于:1)通化市大川地區(qū)出露巖性為中酸性巖石,排除了玄武質(zhì)巖漿分離結(jié)晶的可能性;2)花崗巖中未發(fā)現(xiàn)暗色包體并且鋯石同位素成分較為均一,排除了酸性、基性巖漿混合作用;3)大川花崗巖巖體具有高硅(w(SiO2)=72.56%~84.09%),富堿(w(K2O+Na2O)=5.93%~9.55%),相對(duì)低鈣鎂磷(w(CaO)

        =0.04%~0.44%、w(MgO)=0.01%~0.12%、w(P2O5)=0.01%~0.03%)的特征,微量元素顯示出輕稀土富集的“右傾”配分模式,富集大離子親石元素Rb、Sm、U、K等,虧損高場(chǎng)強(qiáng)元素Nb、Ta、Ti、P等。綜上所述,大川花崗巖巖體形成于下部陸殼物質(zhì)的部分熔融。

        鋯石Hf同位素對(duì)于巖漿源區(qū)的示蹤具有重要意義,若εHf(t)值為正值,說(shuō)明來(lái)源于虧損地?;蜉^多幔源物質(zhì)參與新生地殼部分熔融;當(dāng)εHf(t)值為負(fù)值時(shí),證明源區(qū)存在古老地殼物質(zhì)。本文獲得大川巖體單顆粒鋯石的εHf(t)值全部為負(fù)值(-10.7~-5.2)(表2、圖7a、b),并且在εHf (t)-t圖解(圖7a)上,樣品點(diǎn)全部落在球粒隕石演化線(xiàn)之下,結(jié)合對(duì)應(yīng)的二階段模式年齡(TDM2為2 587~2 090 Ma),暗示其巖漿具有殼源巖漿的性質(zhì)。fLu/Hf(-0.97~-0.95)變化范圍較小,證明巖漿成分均一,指示花崗巖巖漿來(lái)源于古老地殼物質(zhì)的部分熔融,源巖為新太古代—古元古代古老地殼物質(zhì)。

        在巖漿演化過(guò)程中,隨著分異作用的增強(qiáng),地球化學(xué)性質(zhì)相似元素的比值會(huì)呈現(xiàn)規(guī)律性變化。大川花崗巖的分異指數(shù)特征與元素比值的相關(guān)性研究顯示(圖6),K/Rb、La/Yb、Nb/Ta和 δEu的值均隨分異程度增強(qiáng)而減小,Rb/Sr 的值均隨分異程度增強(qiáng)而增大,符合分異作用加強(qiáng)的特征,表明大川花崗巖體很有可能是由同源巖漿分離結(jié)晶形成的。在結(jié)晶分異作用過(guò)程中,Sr、Eu 的負(fù)異常主要受斜長(zhǎng)石分離結(jié)晶影響,在配分模式圖和蛛網(wǎng)圖解(圖5)中,大川花崗巖顯示出不同程度的負(fù) Eu 異常和 Sr 虧損,表明巖漿可能經(jīng)歷了鉀長(zhǎng)石和斜長(zhǎng)石的分離結(jié)晶。Ti的虧損表明在巖漿演化過(guò)程中鈦鐵礦、榍石等含鈦礦物發(fā)生分離結(jié)晶作用,P的虧損是磷灰石引起的。隨著分異指數(shù)的升高Zr/Hf值逐漸降低,暗示其存在鋯石的分離結(jié)晶(圖6d)。

        5.3 構(gòu)造環(huán)境

        早白堊世,研究區(qū)整體為環(huán)太平洋構(gòu)造域演化體系,全區(qū)在伸展構(gòu)造背景下,發(fā)生劇烈構(gòu)造巖漿活動(dòng)。隨著古太平洋向西南方向的俯沖作用,中國(guó)東部盆地拉張?jiān)斐蓭r石圈的減薄并發(fā)生減壓熔融(140~125 Ma);俯沖持續(xù)到約125 Ma,太平洋板塊漂移方向大幅度轉(zhuǎn)折,巖石圈停止減薄并逐漸增厚,出現(xiàn)了巖漿寧?kù)o期;到約110 Ma俯沖板塊開(kāi)始后撤,出現(xiàn)東西向伸展的拉分盆地,形成弧后陸內(nèi)拉張構(gòu)造環(huán)境,地幔巖漿上涌底侵下地殼,下地殼發(fā)生高溫變質(zhì)作用以及部分熔融,致使中國(guó)東北早白堊世發(fā)生劇烈構(gòu)造巖漿活動(dòng)。

        本文測(cè)得大川花崗巖體具有高分異花崗巖的地球化學(xué)屬性,在Nb-Y-Ce圖解(圖8a)中投點(diǎn)落入A1非造山花崗巖區(qū)域,在Rb/10-Hf-3Ta三角圖解和w(Nb) -w(Y)、w(Rb)-w(Y+Nb)構(gòu)造環(huán)境判別圖解(圖8b、c、d)中數(shù)據(jù)投點(diǎn)大多落入板內(nèi)花崗巖區(qū)域,反映該花崗巖為板內(nèi)構(gòu)造背景下的巖漿作用產(chǎn)物。前人研究發(fā)現(xiàn),150~140 Ma華北板塊東部開(kāi)始從擠壓構(gòu)造逐漸向伸展構(gòu)造轉(zhuǎn)變,110~100 Ma結(jié)束;本文測(cè)得大川巖體的成巖時(shí)代為早白堊世((120.8±1.6)Ma),處于非造山伸展構(gòu)造背景下,與本文投圖結(jié)果一致。在伸展的構(gòu)造環(huán)境下,壓力的降低有利于巖石的熔融,同時(shí),地殼的拉張減薄還伴隨著深部軟流圈地幔的上涌和幔源巖漿的底侵作用,使下地殼加熱進(jìn)一步發(fā)生部分熔融形成花崗巖,而上涌的軟流圈地幔和幔源巖漿也為大川花崗巖體的形成提供了高溫環(huán)境。綜上所述,認(rèn)為大川花崗巖巖體形成于古太平洋板片俯沖作用下的陸內(nèi)伸展環(huán)境,是下部陸殼物質(zhì)發(fā)生部分熔融形成的花崗巖類(lèi)。

        5.4 REE富集狀態(tài)

        通過(guò)全巖微量分析數(shù)據(jù)可以看出,粗粒黑云母堿長(zhǎng)花崗巖全巖稀土總量較高(w(∑REE)=

        A1. 非造山型花崗巖;A2. 造山型花崗巖;

        VAG. 火山弧花崗巖;ORG. 洋中脊花崗巖;WPG. 板內(nèi)花崗巖;synCOLG. 同碰撞花崗巖。

        750.36×10-6和839.95×10-6,平均為795.15×10-6),中粒黑云母堿長(zhǎng)花崗巖全巖稀土總量w(∑REE)=106.99×10-6~339.64×10-6,細(xì)粒黑云母堿長(zhǎng)花崗巖全巖稀土總量w(∑REE)=239.27×10-6,花崗偉晶巖全巖稀土總量最低(w(∑REE)=88.53×10-6);隨著巖漿的演化,石英含量逐漸升高,黑云母含量逐漸降低,稀土總含量也逐漸降低,稀土元素主要富集在粗粒黑云母堿長(zhǎng)花崗巖巖相中,并伴生高場(chǎng)強(qiáng)元素(如:Nb、Ta、Zr)等的輕微富集。

        6 結(jié)論

        1)LA-ICP-MS鋯石U-Pb年齡測(cè)定結(jié)果表明,大川花崗雜巖體成巖年齡為(120.8±1.6)Ma,代表其侵位時(shí)代為中生代早白堊世。

        2)鋯石Hf同位素地球化學(xué)特征揭示,其巖漿起源于新太古代—古元古代陸殼物質(zhì)的重熔作用,形成于古太平洋板片俯沖作用下的陸內(nèi)伸展環(huán)境。

        3)元素地球化學(xué)特征表明,粗粒黑云母堿長(zhǎng)花崗巖巖相明顯富集稀土元素,大川巖體整體具高分異花崗巖的性質(zhì)。

        參考文獻(xiàn)(References):

        路孝平,吳福元,張艷斌,等. 吉林南部通化地區(qū)古元古代遼吉花崗巖的侵位年代與形成構(gòu)造背景.巖石學(xué)報(bào),2004,20(3):381-392.

        Lu Xiaoping, Wu Fuyuan, Zhang Yanbin, et al. Emplacement Age and Tectonic Setting of the Paleoproterozoic Liaoji Granites in Tonghua Area, Southern Jilin Province. Acta Petrologica Sinica, 2004, 20(3): 381-392.

        毛景文,謝桂青,張作衡,等. 中國(guó)北方中生代大規(guī)模成礦作用的期次及其地球動(dòng)力學(xué)背景.巖石學(xué)報(bào),2005,21(1):169-188.

        Mao Jingwen, Xie Guiqing, Zhang Zuoheng, et al. Mesozoic LargeScale Metallogenic Pulses in North China and Corresponding Geodynamic Settings. Acta Petrologica Sinica, 2005, 21(1): 169-188.

        孫景貴,邢樹(shù)文,鄭慶道. 中國(guó)東北陸緣有色、貴金屬礦床的地質(zhì)特征、地球化學(xué).長(zhǎng)春:吉林大學(xué)出版社,2006.

        Sun Jinggui, Xing Shuwen, Zheng Qingdao. Geodynamic and Geochemistry of Norferrous and Noble Deposits, Northeastern China. Changchun: Jilin University Press, 2006.

        楊鳳超. 遼寧青城子礦集區(qū)金多金屬礦床成礦特征、礦床成因、成礦模式與成礦規(guī)律研究.長(zhǎng)春:吉林大學(xué),2019.

        Yang Fengchao. Metallogenic Characteristics, Deposit Genesis, Metallogenic Mode and Regularity of the Gold Polymetallic Deposit in Qingchengzi DepositConcentrated Area, Liaoning . Changchun: Jilin University, 2019.

        Wu F Y, Yang J H, Lo C H, et al. The Heilongjiang Group: A Jurassic Accretionary Complex in the Jiamusi Massif at the Western Pacific Margin of Northeastern China. Island Arc, 2007, 16(1): 156-172.

        吳福元,楊進(jìn)輝,柳小明. 遼東半島中生代花崗質(zhì)巖漿作用的年代學(xué)格架.高校地質(zhì)學(xué)報(bào),2005,11(3):305-317.

        Wu Fuyuan, Yang Jinhui, Liu Xiaoming. Geochronological Framework of the Mesozoic Granitic Magmatism in the Liaodong Peninsula, Northeast China. Geological Journal of China Universities, 2005, 11(3): 305-317.

        Yang J H, Wu F Y, Wilde S A, et al. Petrogenesis of Late Triassic Granitoids and Their Enclaves with Implications for PostCollisional Lithospheric Thinning of the Liaodong Peninsula, North China Craton. Chemical Geology, 2007, 242(1/2): 155-175.

        Yang J H, Wu F Y, Chung S L, et al. Rapid Exhumation and Cooling of the Liaonan Metamorphic Core Complex: Inferences from 40Ar/39Ar Thermochronology and Implications for Late Mesozoic Extension in the Eastern North China Craton. Geological Society of America Bulletin, 2007, 119(11/12): 1405-1414.

        路孝平,吳福元,趙成弼,等. 通化地區(qū)印支期花崗巖鋯石U-Pb年齡及其與大別—蘇魯超高壓帶碰撞造山作用之間的關(guān)系.科學(xué)通報(bào),2003,48(8):843-849.

        Lu Xiaoping, Wu Fuyuan, Zhao Chengbi, et al. Ziron U-Pb Ages of the Indosinian Granites in the Tonghua Region, and the Response of LiaoJi Region to the DabieSulu UltrahighPressure Collisional Orogenesis. Chinese Science Bulletin, 2003, 48(8): 843-849.

        趙來(lái)社,楊復(fù)頂,張勇. 通化大川地區(qū)稀有稀土礦找礦方向研究.吉林地質(zhì),2015,34(2):71-75.

        Zhao Laishe,Yang Fuding,Zhang Yong. Study on the Prospecting Direction of Rare Metal and Rare Earth Deposits Mine in the Dachuan Area of Tonghua City. Geology of Jilin Province,2015,34(2):71-75.

        Bai C L, Sun J G, Zhao C T, et al. The Multiple Mineralizations and Geodynamic Settings of the Laozuoshan Cu-Au Deposit in the Jiamusi Massif, NE China: Zircon U-Pb Geochronological, Elemental and Hf Isotopic Geochemical Evidence. Ore Geology Reviews, 2021, 137: 104291.

        Peccerillo A, Taylor S R. Geochemistry of Eocene CalcAlkaline Volcanic Rocks from the Kastamonu Area,Northern Turkey. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81.

        Maniar P D, Piccoli P M. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 1989, 101(5): 635-643.

        袁洪林,吳福元,高山,等. 東北地區(qū)新生代侵入體的鋯石激光探針U-Pb年齡測(cè)定與稀土元素成分分析.科學(xué)通報(bào),2003,48(14):1511-1520.

        Yuan Honglin, Wu Fuyuan, Gao Shan, et al. Precise Determinations of U-Pb Age and Trace and Rare Earth Element Concentrations of Zircons by Excimer LA-ICP-MS Using a TwoStage Ablation Strategy. Chinese Science Bulletin, 2003, 48(14): 1511-1520.

        Jackson S E, Pearson N J, Griffin" W L, et al. The Application of Laser AblationInductively Coupled PlasmaMass Spectrometry to in Situ U-Pb Zircon Geochronology. Chemical Geology, 2004, 211(1/2): 47-69.

        Ludwig K R. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Special Publication, 2003:1-70.

        Blichert T J, Albarède F. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the MantleCrust System. Earth and Planetary Science Letters, 1997, 148(1/2): 243-258.

        Griffin W L, Pearson N J, Belousova E, et al. The Hf Isotope Composition of Cratonic Mantle: LA-MC-ICP-MS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147.

        陳會(huì)軍,付俊彧,錢(qián)程,等.東北地區(qū)前中生代花崗巖類(lèi)年齡與時(shí)空分布.地質(zhì)通報(bào),2021,40(6):827-844.

        Chen Huijun, Fu Junyu, Qian Cheng, et al. Chronology and Spatiotemporal Sistribution of PreMesozoic Granites in Northeast China. Geological Bulletin of China, 2021,40(6):827-844.

        裴福萍. 吉南地區(qū)中生代火山巖的巖石學(xué)和地球化學(xué)特征.長(zhǎng)春:吉林大學(xué),2005.

        Pei Fuping. Petrology and Geochemistry of Mesozoic Volcanic Rocks in Southern Jilin Province. Changchun: Jilin University, 2015.

        裴福萍. 遼南—吉南中生代侵入巖鋯石U-Pb年代學(xué)和地球化學(xué):對(duì)華北克拉通破壞時(shí)空范圍的制約.長(zhǎng)春:吉林大學(xué),2008.

        Pei Fuping. Zircon U-Pb Chronology and Geochemistry of Mesozoic Intrusive Rocks in Southern Liaoning and Jilin Provinces: Constraints on the SpatialTemporal Extent of the North China Craton Destruction. Changchun: Jilin University, 2008.

        吳元保,鄭永飛. 鋯石成因礦物學(xué)研究及其對(duì)U-Pb年齡解釋的制約.科學(xué)通報(bào),2004,49(16):1589-1604.

        Wu Yuanbao, Zheng Yongfei. Study on Genetic Mineralogy of Zircon and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 2004, 49(16): 1589-1604.

        Wu F Y, Li X H, Yang J H, et al. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 2007, 23(6): 1217-1238.

        Chu N C, Taylor R N, Chavagnac V, et al. Hf Isotope Ratio Analysis Using MultiCollector Inductively Coupled Plasma Mass Spectrometry: An Evaluation of Isobaric Interference Corrections. Journal of Analytical Atomic Spectrometry, 2002, 17(12): 1567-1574.

        裴福萍,許文良,于洋,等. 吉林南部晚三疊世螞蟻河巖體的成因:鋯石U-Pb年代學(xué)和地球化學(xué)證據(jù).吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2008,38(3):351-362.

        Pei Fuping, Xu Wenliang, Yu Yang, et al. Petrogenesis of the Late Triassic Matihe Pluton in Southern Jilin Province: Evidence from Zircon U-Pb Geochronology and Geochemistry. Journal of Jilin University(Earth Science Edition), 2008, 38(3): 351-362.

        楊明春,陳斌,閆聰. 吉南地區(qū)古元古代雙岔巨斑狀花崗巖成因及其構(gòu)造意義:巖石學(xué)、年代學(xué)、地球化學(xué)和Sr-Nd-Hf同位素證據(jù).巖石學(xué)報(bào),2015,31(6):1573-1588.

        Yang Mingchun, Chen Bin, Yan Cong. Petrological, Geochronological, Geochemical and Sr-Nd-Hf Isotopic Constraints on the Petrogenesis of the Shuangcha Paleoproterozoic Megaporphyritic Granite in the Southern Jilin Province: Tectonic Implications. Acta Petrologica Sinica, 2015, 31(6): 1573-1588.

        孫九達(dá),孫豐月,任利明,等. 吉林臨江地區(qū)草山花崗巖體中黑云母成分特征及其成巖成礦意義.世界地質(zhì),2018,37(2):458-465,476.

        Sun Jiuda, Sun Fengyue, Ren Liming, et al. Compositional Characteristics and Petrogenetic and Metallogenic Significance of Biotites from Caoshan Granite Rock Mass in Linjiang Area, Jilin Province. Global Geology, 2018, 37(2): 458-465, 476.

        秦亞. 吉南老嶺地區(qū)中生代花崗巖形成的構(gòu)造環(huán)境研究.長(zhǎng)春:吉林大學(xué),2010.

        Qin Ya. A Study on the Tectonic Environment of the Mesozoic Granitiod in Laoling Area, Southern Jilin Province. Changchun: Jilin University, 2010.

        秦亞,梁一鴻,胡兆初,等. 吉林南部荒溝山地區(qū)侏羅紀(jì)花崗巖地球化學(xué)特征及構(gòu)造意義.成都理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,40(1):97-105.

        Qin Ya, Liang Yihong, Hu Zhaochu, et al. Geochemical Characteristics and Tectonic Significance of Jurassic Granites in Huanggoushan Area, South of Jilin, China. Journal of Chengdu University of Technology(Scienceamp;Technology Edition), 2003, 40(1): 97-105.

        張宇婷,孫豐月,李予晉,等.吉南中侏羅世花崗閃長(zhǎng)巖的鋯石U-Pb年齡、地球化學(xué)及Hf同位素組成.吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2022,52(5):1675-1687.

        Zhang Yuting, Sun Fengyue, Li Yujin, et al. Zircon U-Pb Geochronology, Geochemistry and Hf Isotopic Composition of the Middle Jurassic Granodiorite in South Jilin China. Journal of Jilin University(Earth Science Edition),2022,52(5):1675-1687.

        吳福元,劉小馳,紀(jì)偉強(qiáng),等. 高分異花崗巖的識(shí)別與研究.中國(guó)科學(xué):地球科學(xué),2017,47(7):745-765.

        Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, et al. Highly Fractio Nated Granites: Recongnition and Research. Science China:Earth Sciences, 2017, 47(7): 745-765.

        馮尚杰,陳衛(wèi)鋒,王洪作,等. 贛中地區(qū)晚中生代高分異A型花崗巖的厘定及其成因研究.地質(zhì)學(xué)報(bào),2020,94(4):1227-1247.

        Feng Shangjie, Chen Weifeng, Wang Hongzuo, et al. Identification and Pctrogenesis of a Highly Differentiated A-Type Granite Formed in the Late Mesozoic, Central Jiangxi Province. Acte Geologica Sinica, 2020, 94(4): 1227-1247.

        張旗,潘國(guó)強(qiáng),李承東,等. 花崗巖結(jié)晶分離作用問(wèn)題:關(guān)于花崗巖研究的思考之二.巖石學(xué)報(bào),2007,23(6):1239-1251.

        Zhang Qi, Pan Guoqiang, Li Chengdong, et al. Does Fractional Crystallization Occur in Granitic Magma? Some Crucial Questions on Granite Study(2). Acta Petrologica Sinica, 2007, 23(6): 1239-1251.

        Whalen J B, Kenneth L C, Bruce W C. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419.

        Watson E B, Harrison T M. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and PlaneTary Science Letter, 1983, 64(2): 295-304.

        周皓,裴福萍,焦驥,等. 吉林通化赤柏松地區(qū)早白堊世花崗質(zhì)巖脈(株)的成因:鋯石U-Pb年代學(xué)、Hf同位素和地球化學(xué)證據(jù).地球科學(xué),2020,45(2):519-533.

        Zhou Hao, Pei Fuping, Jiao Ji, et al. Petrogenesis of Early Cretaceous Chibaisong Granitoid Dyke (Stock) from Tonghua Area, Jilin Province: Evidences from Zircon U-Pb Geochronology, Hf Isotope and WholeRock Geochemistry. Earth Science, 2020, 45(2): 519-533.

        牛漫蘭,文鳳玲,閆臻,等. 南祁連拉脊山構(gòu)造帶早古生代巖漿混合作用:以馬場(chǎng)巖體為例.巖石學(xué)報(bào),2021,37(8):2364-2384.

        Niu Manlan, Wen Fengling, Yan Zhen, et al. Early Paleozoic Magma Mixing in the Lajishan Tectonic Belt of South Qilian: An Example from the Machang Pluton. Acta Petrologica Sinica, 2021, 37(8): 2364-2384.

        馬昌前. 結(jié)晶分異作用的巖漿動(dòng)力學(xué)條件.地球科學(xué):中國(guó)地質(zhì)大學(xué)學(xué)報(bào),1989,14(3):245-252.

        Ma Changqian. MagmaDynamical Conditions on Crystallization Differentiation. Earth Science:Journal of China University of Geosciences, 1989, 14(3): 245-252.

        Batchelor R A, Bowden P. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 1985, 48(1/2/3/4): 43-55.

        Chappell B W, White A J R. I and SType Granites in the Lachlan Fold Belt. Geological Society of America Special Papers, 1992, 272: 1-26.

        張旗,王焰,潘國(guó)強(qiáng),等. 花崗巖源巖問(wèn)題:關(guān)于花崗巖研究的思考之四.巖石學(xué)報(bào),2008,24(6):1193-1204.

        Zhang Qi, Wang Yan, Pan Guoqiang, et al. Sources of Granites: Some Crucial Questions on Granite Study(4). Acta Petrologica Sinica, 2008, 24(6): 1193-1204.

        吳福元,李獻(xiàn)華,鄭永飛,等. Lu-Hf同位素體系及其巖石學(xué)應(yīng)用.巖石學(xué)報(bào),2007,23(2):185-220.

        Wu Fuyuan, Li Xianhua, Zeng Yongfei, et al. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 2007, 23(2): 185-220.

        Sderlund U, Patchett J P, Vervoort J D, et al. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 2004, 219(3/4): 311-324.

        Sun W D, Ding X, Hu Y H, et al. The Golden Transfor Mation of the Cretaceous Plate Subduction in the West Pacific. Earth and Planetary Science Letters, 2007, 262(3/4): 533-542.

        孫景貴,門(mén)蘭靜,趙俊康,等. 延邊小西南岔大型富金銅礦床礦區(qū)內(nèi)暗色脈巖的鋯石年代學(xué)及其地質(zhì)意義.地質(zhì)學(xué)報(bào),2008,82 (4):517-527.

        Sun Jinggui, Men Lanjing, Zhao Junkang, et al. Zircon Chronology of Melanocratic Dykes in the District of the Xiaoxinancha AuRich Cu Deposit in Yanbian and Its Geological Implication. Acta Geologica Sinica, 2008,82(4): 517-527.

        劉志超,吳福元,劉小馳,等. 喜馬拉雅淡色花崗巖結(jié)晶分異機(jī)制概述.巖石學(xué)報(bào),2020,36(12):3551-3571.

        Liu Zhichao, Wu Fuyuan, Liu Xiaochi, et al. The Mechanisms of Fractional Crystallization for the Himalayan Leucogranites. Acta Petrologica Sinica, 2020, 36(12): 3551-3571.

        侯增謙. 大陸碰撞成礦論.地質(zhì)學(xué)報(bào),2010,84(1):30-58.

        Hou Zengqian. Metallogensis of Continental Collision. Acta Geologica Sinica, 2010, 84(1): 30-58.

        裴福萍,許文良,楊德彬,等. 華北克拉通東北緣巖石圈深部物質(zhì)組成的不均一性:來(lái)自吉林南部中生代火山巖元素及Sr-Nd同位素地球化學(xué)的證據(jù).巖石學(xué)報(bào),2009,25(8):1962-1974.

        Pei Fuping, Xu Wenliang, Yang Debin, et al. Heterogeneity of Late Mesozoic Deep Lithosphere Beneath the Northeastern North China Craton: Evidence from Elemental and Sr-Nd Isotopic Geochemistry of Mesozoic Volcanic Rocks in the Southern Jilin Province, China. Acta Petrologica Sinica, 2009, 25(8): 1962-1974.

        王世成,楊仲杰,楊菊等.遼東石廟溝巖體巖石地球化學(xué)特征、鋯石U-Pb年齡、Hf同位素及其地質(zhì)意義.吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2021,51(2):429-441.

        Wang Shicheng, Yang Zhongjie, Yang Ju,et al. Geochemical, Zircon U-Pb Age, Hf Isotope and Geological Significance of Early Cretaceous GranitePorphyry in Shimiaogou Area, Eastern Part of Liaoning Province. Journal of Jilin University(Earth Science Edition), 2021, 51(2): 429-441.

        玄雨菲,董曉杰,王長(zhǎng)兵等.吉南白山地區(qū)早白堊世巖漿巖U-Pb年代學(xué)、巖石地球化學(xué)、Hf同位素證據(jù):對(duì)華北克拉通破壞的制約.巖石學(xué)報(bào),2022,38(8):2442-2466.

        Xuan Yufei, Dong Xiaojie, Wang Changbing, et al. Evidences from Zircon U-Pb Geochronology, WholeRock Geochemistry and Hf Isotope of Early Cretaceous Magmatic Rocks in Baishan Area, Southern Jilin Province: Constraints on Destruction of the North China Craton. Acta Petrologica Sinica, 2022,38(8): 2442-2466.

        Yang J H, Chung S L, Zhai M G, et al. Geochemical and Sr-Nd-Pb Isotopic Compositions of Mafic Dikes from the Jiaodong Peninsula, China: Evidence for VeinPlusPeridotite Melting in the Lithospheric Mantle. Lithos, 2004, 73: 145-160.

        趙振華. 微量元素地球化學(xué)原理.2版.北京:科學(xué)出版社,2016:278.

        Zhao Zhenhua. Trace Element Geochemistry. 2nd ed. Beijing: Science Press, 2016: 278.

        孫衛(wèi)東,凌明星,汪方躍,等. 太平洋板塊俯沖與中國(guó)東部中生代地質(zhì)事件.礦物巖石地球化學(xué)通報(bào),2008,27(3):218-225.

        Sun Weidong, Ling Mingxing, Wang Fangyue, et al. Pacific Plate Subduction and Mesozoic Geological Event in Eastern China. Bulletin of Mineralogy, Petrology and Geochemistry, 2008,27(3): 218-225.

        王琳琳,霍亮,王瑩.吉林延邊小西南岔銅(金)礦床早白堊世中—酸性巖漿巖年代學(xué)、地球化學(xué)及其成因探討.吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2022,52(5):1658-1674.

        Wang Linlin, Huo Liang, Wang Ying. Geochrononlgy,Geochemistry and Genesis of Early Cretaceous IntermediateAcidic Magmatic Rocks in Xiaoxinancha Copper(Gold) Deposit,Yanbian Area,Jilin Province. Journal of Jilin University(Earth Science Edition) ,2022,52(5):1658-1674.

        宋維民,王建恒,楊佳林,等.蒙古—鄂霍茨克洋閉合時(shí)限:來(lái)自大興安嶺突泉地區(qū)下白堊統(tǒng)與下伏地質(zhì)體之間角度不整合關(guān)系的約束.地質(zhì)通報(bào),2022,41(7):1202-1213.

        Song Weimin, Wang Jianheng, Yang Jialin, et al. Closure Time of the MongolOkhotsk Ocean: Constraints from the Angular Unconformity Between the Lower Cretaceous and the Lower Geological Body in Tuquan Area of the Greater Hingan Mountains. Geological Bulletin of China,2022,41(7):1202-1213.

        蘭麗雪,張彥龍,高妍,等.大興安嶺南段烏蘭毛都地區(qū)早白堊世花崗閃長(zhǎng)巖的巖石成因及構(gòu)造背景.世界地質(zhì),2021,40(3):537-546.

        Lan Lixue, Zhang Yanlong, Gao Yan, et al. Petrogenesis and Tectonic Setting of Early Cretaceous Granodiorite in Wulan Maodu Area of Southern Great Xing’an Range. World Geology,2021,40(3):537-546.

        李猛興.大興安嶺南段滿(mǎn)都地區(qū)早白堊世二長(zhǎng)花崗巖地球化學(xué)特征及成因.地質(zhì)通報(bào),2020,39(增刊1):224-233.

        Li Mengxing. Geochemical Characteristics and Petrogenesis of Early Cretaceous Monzonitic Granite in the Mandu Area,Southern Da Hinggan Mountains. Geological Bulletin of China,2020,39(Sup.1):224-233.

        国产思思久99久精品| 久久久国产精品123| 国产自拍在线视频91| 又紧又大又爽精品一区二区| 18禁成人黄网站免费观看| 久久精品无码一区二区三区免费 | 六月婷婷亚洲性色av蜜桃| 亚洲av不卡免费在线| 亚洲国产av玩弄放荡人妇系列 | 国产一区二区三区涩涩涩| 国产另类av一区二区三区| 男吃奶玩乳尖高潮视频| 中文字幕乱伦视频| 亚洲黄色电影| 欧美日韩精品乱国产| 久久久久久久综合日本| 中文字幕亚洲乱码熟女在线| 一区二区三区四区中文字幕av| 中文字幕乱码无码人妻系列蜜桃| 亚洲日韩av无码中文字幕美国| 日韩精品一区二区亚洲av| 久久青草亚洲AV无码麻豆| 用力草我小逼视频在线播放| 丝袜美腿国产一区精品| 久久精品国产亚洲av麻豆长发| 美女av一区二区三区| 国产亚洲欧美成人久久片| 精品一区二区中文字幕| 蜜桃av中文字幕在线观看| 男人扒开女人双腿猛进视频| 99久久精品国产成人综合| 加勒比无码专区中文字幕| 国产成人一区二区三区影院免费| 亚洲一区二区三区最新视频| 青青草好吊色在线观看| 婷婷色综合视频在线观看| 又大又紧又粉嫩18p少妇| 亚洲欧美日韩中文无线码| 特级毛片全部免费播放a一级| 少妇高潮精品在线观看| 中文字幕久久久人妻无码|