摘 要:【目的】為進一步優(yōu)化供暖系統(tǒng)的運行模式,降低系統(tǒng)能耗,提高能源利用率?!痉椒ā坷檬彝鉁囟?、日期類型、歷史能耗等數(shù)據(jù)進行動態(tài)建模,分別建立了基于前饋(Back Propagation,BP)神經(jīng)網(wǎng)絡(luò)和長短期記憶(Long Short-Term Memory,LSTM)神經(jīng)網(wǎng)絡(luò)的能耗預(yù)測模型,對連續(xù)運行和間歇運行模式下的供暖系統(tǒng)的能耗進行預(yù)測?!窘Y(jié)果】將預(yù)測值與真實值進行對比,結(jié)果表明,在連續(xù)運行模式下,供暖系統(tǒng)的能耗預(yù)測精度總體高于間歇運行模式。在間歇供暖運行模式下,LSTM神經(jīng)網(wǎng)絡(luò)的預(yù)測結(jié)果更好。在連續(xù)供暖的運行模式下,BP神經(jīng)網(wǎng)絡(luò)能獲得更好的預(yù)測結(jié)果?!窘Y(jié)論】不同預(yù)測模型適合不同供暖模式,在對能耗進行預(yù)測時,需要選擇相匹配的預(yù)測模型,能提高能耗預(yù)測的精度。
關(guān)鍵詞:能耗預(yù)測;前饋神經(jīng)網(wǎng)絡(luò);長短期記憶神經(jīng)網(wǎng)絡(luò)
中圖分類號:TK01" " " 文獻標(biāo)志碼:A" " 文章編號:1003-5168(2023)21-0023-04
DOI:10.19968/j.cnki.hnkj.1003-5168.2023.21.005
Application of" Neural Network in Building Energy Consumption
Prediction under Different Heating Modes
WU Yunhe
( Zhengzhou Branch of China Railway Fifth" Survey and Design Institute Group Co., Ltd., Zhengzhou 450000,China)
Abstract: [Purposes] This paper aims to further optimize the operation mode of the heating system, reduce the energy consumption of the system and improve the energy utilization rate. [Methods] The outdoor temperature, date type, historical energy consumption and other data were used for dynamic modeling. The energy consumption prediction models based on Back Propagation ( BP ) neural network and Long Short-Term Memory ( LSTM ) neural network were established respectively to predict the energy consumption of heating systems under continuous operation and intermittent operation modes. [Findings] The predicted values were compared with the true values. The results showed that the energy consumption prediction accuracy of the heating system in the continuous operation mode was generally higher than that in the intermittent operation mode. In the intermittent heating operation mode, the prediction results of LSTM neural network are better. In the operation mode of continuous heating, BP neural network can obtain better prediction results. [Conclusions] Different prediction models are suitable for different heating modes. When predicting energy consumption, it is necessary to select a matching prediction model to improve the accuracy of energy consumption prediction.
Keywords: energy consumption prediction; feedforward neural network; long short-term memory neural network
0 引言
Kawashima等[1]利用人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)預(yù)測出中央空調(diào)系統(tǒng)的能耗,并將預(yù)測結(jié)果應(yīng)用于空調(diào)系統(tǒng)的運行控制中,結(jié)果表明,由ANN預(yù)測控制的系統(tǒng)能耗減少6.9%、運行費用降低13.5%。Deb等[2]利用ANN神經(jīng)網(wǎng)絡(luò)建立了能耗預(yù)測模型,并預(yù)測了某辦公建筑的空調(diào)能耗,平均絕對誤差為14.8%。Nivethitha等[3]利用卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)對能耗產(chǎn)生影響的非線性交互特征進行分析,并建立基于KCNN-LSTM的深度學(xué)習(xí)模型。Safa等[4]建立了基于多元線性回歸及ANN模型,預(yù)測出新西蘭地區(qū)某建筑能耗,通過ANN模型預(yù)測來降低該建筑能耗,并提高系統(tǒng)運行的穩(wěn)定性。Qing等[5]利用天氣預(yù)報數(shù)據(jù)對日前照度進行預(yù)報,用LSTM算法預(yù)測時的均方根誤差比BP神經(jīng)網(wǎng)絡(luò)降低42.9%。
上述研究多是對單一運行模式下的能耗進行計算的,但不同模式下的建筑能耗存在較大差異,模型的預(yù)測結(jié)果也不盡相同。本研究分別采用基于傳統(tǒng)BP神經(jīng)網(wǎng)絡(luò)和LSTM神經(jīng)網(wǎng)絡(luò)的預(yù)測模型對連續(xù)供暖和間歇供暖的系統(tǒng)能耗進行預(yù)測分析。
1 供暖能耗預(yù)測分析
1.1 供暖模式對建筑能耗影響分析
不同建筑的供暖模式存在差異,小區(qū)住宅等建筑多采用連續(xù)供暖模式,商場、辦公樓等公共建筑多采用間歇供暖模式。相同建筑的供暖模式不同,會導(dǎo)致建筑能耗相差較大。當(dāng)建筑采用連續(xù)供暖時,供暖期間建筑能耗數(shù)值整體較為平穩(wěn)。當(dāng)建筑采用間歇供暖時,在開始供暖和結(jié)束供暖時建筑能耗存在突變。對不同供暖模式的建筑選擇便于預(yù)測分析的神經(jīng)網(wǎng)絡(luò)模型,有利于提高能耗預(yù)測的精度。
1.2 輸入變量分析
預(yù)測模型的輸入變量并非越多越好,當(dāng)輸入變量對供暖能耗的影響程度較低時,不僅不利于提高預(yù)測精度,還有可能會增加預(yù)測時間??紤]到建筑能耗的特點,選取室外溫度、日期類型、建筑歷史能耗作為神經(jīng)網(wǎng)絡(luò)的輸入變量。
2 能耗預(yù)測模型
2.1 BP神經(jīng)網(wǎng)絡(luò)
BP神經(jīng)網(wǎng)絡(luò)是一種按誤差反向傳遞訓(xùn)練的多層前饋神經(jīng)網(wǎng)絡(luò),目標(biāo)函數(shù)為網(wǎng)絡(luò)的誤差平方,尋找最小的誤差平方。BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)如圖1所示[6],包含輸入層、隱含層、輸出層。
輸入層、隱含層、輸出層的映射關(guān)系見式(1)、式(2)。
si=f[ω1(xi)+b1]" "" "" " " " " " " " " "(1)
yi=g[ω2(si)+b2]" " " " " " " nbsp; " " " " (2)
式中:f(x)、g(x)分別為隱含層、輸出層的傳遞函數(shù);b1、b2分別為隱含層、輸出層的閾值。
本研究建立單隱含層的神經(jīng)網(wǎng)絡(luò),輸入變量為室外溫度、日期類型、預(yù)測日前兩天逐時能耗,輸出參數(shù)為未來24 h能耗。
2.2 LSTM神經(jīng)網(wǎng)絡(luò)
LSTM屬循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,RNN),在隱含層內(nèi)部增加遺忘門、輸入門和輸出門[7-9],使LSTM神經(jīng)網(wǎng)絡(luò)具有較好的長短期記憶功能。LSTM隱含層內(nèi)部結(jié)構(gòu)如圖 2所示。
遺忘門用于控制是否遺忘,通過本序列數(shù)據(jù)xt、上一序列隱藏狀態(tài)ht-1、激活函數(shù)σ得到遺忘門的輸出ft,ft為遺忘上層隱藏細胞狀態(tài)的概率,見式(3)。
ft=σ(Wf?t?1+Ufxt+bf)" " " " " " " " (3)
式中:Wf、Uf、bf為線性關(guān)系的系數(shù)和偏倚;σ為sigmoid激活函數(shù)。
輸入門負責(zé)處理當(dāng)前序列位置的輸入,數(shù)學(xué)表達見式(4)、式(5)。
it=σ(Wi?t?1+Uixt+bi)" " " " " " " (4)
at=tanh (Wa?t?1+Uaxt+ba)" " " " " " (5)
式中:Wi、Ui、Wa、Ua為函數(shù)的系數(shù);bi、ba為函數(shù)的偏倚;σ為sigmoid激活函數(shù)。
細胞狀態(tài)Ct由上層細胞狀態(tài)Ct-1和遺忘門輸出ft的乘積、輸入門it和at的乘積組成,見式(6)。
Ct=Ct?1×ft+it×at" " " " " " " " " "(6)
當(dāng)細胞狀態(tài)更新后,即可完成細胞輸出。
輸出門中ht的更新包含ot、隱藏狀態(tài)Ct和tanh激活函數(shù),見式(7)、式(8)。
ot=σ(Wo?t?1+U0xt+b0)" " " " " " " "(7)
?t=ot×tanh (Ct)" " " " " " " " " " " "(8)
本研究搭建了一個含三個隱含層和一個輸出層的LSTM神經(jīng)網(wǎng)絡(luò),輸入層的激活函數(shù)見式(7)、式(8),輸出層使用線性激活函數(shù),采用Adam優(yōu)化算法,輸入?yún)?shù)為室外溫度、日期類型、預(yù)測日前兩天建筑能耗,輸出參數(shù)為未來24 h能耗。
3 算例分析
3.1 數(shù)據(jù)來源
3.1.1 間歇供暖。間歇供暖的數(shù)據(jù)來自青島市某游泳館2019年供暖能耗監(jiān)測數(shù)據(jù),該游泳館周一、周二停止?fàn)I業(yè),供暖系統(tǒng)每天早上5點開啟,下午4點關(guān)閉。每隔1 h采集一次數(shù)據(jù),共采集到1 584組數(shù)據(jù)。
3.1.2 連續(xù)供暖。利用DeST軟件對某個建筑進行建模,計算建筑在供暖季的負荷,根據(jù)模擬要求選取額定制熱量為9 kW、額定COP為3.4 kW的空氣源熱泵機組。通過熱泵機組在不同環(huán)境下的樣本參數(shù)對機組COP和室外溫度的關(guān)系進行擬合,見式(9)。
COP=0.066 65Tk+2.736 26" " " " " " (9)
式中: TK為環(huán)境溫度,℃。
模擬得到建筑負荷和機組COP計算建筑能耗,建筑供暖季的能耗如圖3所示。
3.2 數(shù)據(jù)預(yù)處理
3.2.1 異常值處理。采集到的能耗數(shù)據(jù)存在兩種異常情況。一是缺失數(shù)據(jù)。由于缺失數(shù)據(jù)較少,可采用直接剔除法。二是突變數(shù)據(jù)。該類型數(shù)據(jù)可采取平均值填充法進行處理。
3.2.2 數(shù)據(jù)歸一化處理。為減小不同數(shù)量級和量綱對預(yù)測結(jié)果的影響,對輸入變量進行預(yù)處理??紤]到游泳館周一、周二停止?fàn)I業(yè),在對日期類型進行量化時,周一周二取0.5、周六周日取1、其他時間取0.7。為了將室外溫度和建筑能耗映射到[-1,1],采用歸一化處理,見式(10)。
3.4 預(yù)測仿真
對數(shù)據(jù)進行相同的預(yù)處理,分別用LSTM神經(jīng)網(wǎng)絡(luò)模型、BP神經(jīng)網(wǎng)絡(luò)模型對兩供暖系統(tǒng)未來24 h的短期能耗進行預(yù)測。
3.4.1 間歇供暖。間歇供暖系統(tǒng)的能耗預(yù)測結(jié)果如圖 4所示。采用LSTM神經(jīng)網(wǎng)絡(luò)對間歇供暖系統(tǒng)能耗進行預(yù)測時,預(yù)測結(jié)果的MSE值為9.6%。采用BP神經(jīng)網(wǎng)絡(luò)對間歇供暖系統(tǒng)能耗進行預(yù)測時,預(yù)測結(jié)果的MSE值為18.3%。LSTM神經(jīng)網(wǎng)絡(luò)的預(yù)測誤差比BP神經(jīng)網(wǎng)絡(luò)低了47.5%。這是因為采用間歇供暖時,建筑能耗具有較強的時序關(guān)聯(lián)特征,LSTM擁有良好的長短期記憶功能,能更好地考慮數(shù)據(jù)時序性,提高預(yù)測精度。
3.4.2 連續(xù)供暖。連續(xù)供暖系統(tǒng)的能耗結(jié)果如圖 5所示。采用LSTM 神經(jīng)網(wǎng)絡(luò)對連續(xù)供暖系統(tǒng)進行能耗預(yù)測時,系統(tǒng)能耗的MSE值為6.5%;采用BP神經(jīng)網(wǎng)絡(luò)對連續(xù)供暖系統(tǒng)能耗進行預(yù)測時,系統(tǒng)能耗的MSE值為4.1%。BP神經(jīng)網(wǎng)絡(luò)的預(yù)測誤差比LSTM神經(jīng)網(wǎng)絡(luò)低了36.9%,預(yù)測效果更好。連續(xù)供暖系統(tǒng)的預(yù)測精度高于間歇供暖,這是因為連續(xù)供暖時系統(tǒng)的能耗穩(wěn)定,模型擬合較好。
3.5 預(yù)測結(jié)果分析
在對建筑短期能耗進行預(yù)測時,對不同供暖模式的數(shù)據(jù)進行相同預(yù)處理,使用同一神經(jīng)網(wǎng)絡(luò)模型得到的精度并不相同,連續(xù)供暖模式的預(yù)測精度要優(yōu)于間歇供暖。這是因為在連續(xù)供暖模式下,建筑能耗較為平緩,而間歇供暖模式下的建筑能耗波動較大。當(dāng)供暖模式相同時,不同神經(jīng)網(wǎng)絡(luò)模型的預(yù)測精度不同。系統(tǒng)間歇供暖時,LSTM神經(jīng)網(wǎng)絡(luò)的預(yù)測精度要優(yōu)于BP神經(jīng)網(wǎng)絡(luò);系統(tǒng)連續(xù)供暖時,BP神經(jīng)網(wǎng)絡(luò)的預(yù)測精度要優(yōu)于LSTM神經(jīng)網(wǎng)絡(luò)。
4 結(jié)語
本研究基于LSTM神經(jīng)網(wǎng)絡(luò)和BP神經(jīng)網(wǎng)絡(luò),對連續(xù)供暖和間歇供暖系統(tǒng)進行短期能耗預(yù)測,預(yù)測結(jié)果表明:在間歇供暖模式下,建筑能耗存在突變,LSTM神經(jīng)網(wǎng)絡(luò)預(yù)測模型更加穩(wěn)定,能從歷史數(shù)據(jù)中提取到更多的有用信息,預(yù)測誤差小于BP神經(jīng)網(wǎng)絡(luò);在連續(xù)供暖模式下,兩種神經(jīng)網(wǎng)絡(luò)的預(yù)測結(jié)果均優(yōu)于間歇供暖系統(tǒng),且BP神經(jīng)網(wǎng)絡(luò)的預(yù)測精度要高于LSTM神經(jīng)網(wǎng)絡(luò)。
參考文獻:
[1]KAWASHIMA M,DORGAN C E,MITCHELL J W.Optimizing systems control with load prediction by neural networks for an ice storage system[J].ASHRAE Transactions,1996(1):1169-1178.
[2]DEB C,LEE S E,SANTAMOURIS M.Using artificial neural networks to assess HVAC related energy saving in retrofitted office buildings[J].Solar Energy,2018,163:32-44.
[3]NIVETHITHA S,RAMAN M R G,RAMAMRITHAM K.A deep learning framework for building energy consumption forecast[J].Renewable and Sustainable Energy Reviews,2021,137:110591.
[4]SAFA M,SAFA M,ALLEN J,et al.Improving sustainable office building operation by using historical data and linear models to predict energy usage[J].Sustainable Cities and Society,2017,29:107-117.
[5]QING X Y,NIU YU G.Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM[J].Energy,2018,148:461-468.
[6]NIELSEN M.Neural networks and deep learning[M].Determination Press,2015.
[7]SALAH B,ALI F,ALI O,et al.Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm:comparison with machine learning approaches[J].Energies,2018(7):1636.
[8]MA X L,TAO Z M,WANG Y H,et al.Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J].Transportation Research Part C,2015,54:187-197.
[9]BENGIO Y,SIMARD P,F(xiàn)RASCONI P.Learning long-term dependencies with gradient descent is difficult[J].IEEE Transactions on Neural Netw,1994(2):157-166.
收稿日期:2023-04-17
作者簡介:吳云鶴(1995—),女,碩士,助理工程師,研究方向:室內(nèi)熱舒適研究。