摘 要:【目的】為進(jìn)一步優(yōu)化供暖系統(tǒng)的運(yùn)行模式,降低系統(tǒng)能耗,提高能源利用率。【方法】利用室外溫度、日期類(lèi)型、歷史能耗等數(shù)據(jù)進(jìn)行動(dòng)態(tài)建模,分別建立了基于前饋(Back Propagation,BP)神經(jīng)網(wǎng)絡(luò)和長(zhǎng)短期記憶(Long Short-Term Memory,LSTM)神經(jīng)網(wǎng)絡(luò)的能耗預(yù)測(cè)模型,對(duì)連續(xù)運(yùn)行和間歇運(yùn)行模式下的供暖系統(tǒng)的能耗進(jìn)行預(yù)測(cè)?!窘Y(jié)果】將預(yù)測(cè)值與真實(shí)值進(jìn)行對(duì)比,結(jié)果表明,在連續(xù)運(yùn)行模式下,供暖系統(tǒng)的能耗預(yù)測(cè)精度總體高于間歇運(yùn)行模式。在間歇供暖運(yùn)行模式下,LSTM神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)結(jié)果更好。在連續(xù)供暖的運(yùn)行模式下,BP神經(jīng)網(wǎng)絡(luò)能獲得更好的預(yù)測(cè)結(jié)果。【結(jié)論】不同預(yù)測(cè)模型適合不同供暖模式,在對(duì)能耗進(jìn)行預(yù)測(cè)時(shí),需要選擇相匹配的預(yù)測(cè)模型,能提高能耗預(yù)測(cè)的精度。
關(guān)鍵詞:能耗預(yù)測(cè);前饋神經(jīng)網(wǎng)絡(luò);長(zhǎng)短期記憶神經(jīng)網(wǎng)絡(luò)
中圖分類(lèi)號(hào):TK01" " " 文獻(xiàn)標(biāo)志碼:A" " 文章編號(hào):1003-5168(2023)21-0023-04
DOI:10.19968/j.cnki.hnkj.1003-5168.2023.21.005
Application of" Neural Network in Building Energy Consumption
Prediction under Different Heating Modes
WU Yunhe
( Zhengzhou Branch of China Railway Fifth" Survey and Design Institute Group Co., Ltd., Zhengzhou 450000,China)
Abstract: [Purposes] This paper aims to further optimize the operation mode of the heating system, reduce the energy consumption of the system and improve the energy utilization rate. [Methods] The outdoor temperature, date type, historical energy consumption and other data were used for dynamic modeling. The energy consumption prediction models based on Back Propagation ( BP ) neural network and Long Short-Term Memory ( LSTM ) neural network were established respectively to predict the energy consumption of heating systems under continuous operation and intermittent operation modes. [Findings] The predicted values were compared with the true values. The results showed that the energy consumption prediction accuracy of the heating system in the continuous operation mode was generally higher than that in the intermittent operation mode. In the intermittent heating operation mode, the prediction results of LSTM neural network are better. In the operation mode of continuous heating, BP neural network can obtain better prediction results. [Conclusions] Different prediction models are suitable for different heating modes. When predicting energy consumption, it is necessary to select a matching prediction model to improve the accuracy of energy consumption prediction.
Keywords: energy consumption prediction; feedforward neural network; long short-term memory neural network
0 引言
Kawashima等[1]利用人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)預(yù)測(cè)出中央空調(diào)系統(tǒng)的能耗,并將預(yù)測(cè)結(jié)果應(yīng)用于空調(diào)系統(tǒng)的運(yùn)行控制中,結(jié)果表明,由ANN預(yù)測(cè)控制的系統(tǒng)能耗減少6.9%、運(yùn)行費(fèi)用降低13.5%。Deb等[2]利用ANN神經(jīng)網(wǎng)絡(luò)建立了能耗預(yù)測(cè)模型,并預(yù)測(cè)了某辦公建筑的空調(diào)能耗,平均絕對(duì)誤差為14.8%。Nivethitha等[3]利用卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)對(duì)能耗產(chǎn)生影響的非線性交互特征進(jìn)行分析,并建立基于KCNN-LSTM的深度學(xué)習(xí)模型。Safa等[4]建立了基于多元線性回歸及ANN模型,預(yù)測(cè)出新西蘭地區(qū)某建筑能耗,通過(guò)ANN模型預(yù)測(cè)來(lái)降低該建筑能耗,并提高系統(tǒng)運(yùn)行的穩(wěn)定性。Qing等[5]利用天氣預(yù)報(bào)數(shù)據(jù)對(duì)日前照度進(jìn)行預(yù)報(bào),用LSTM算法預(yù)測(cè)時(shí)的均方根誤差比BP神經(jīng)網(wǎng)絡(luò)降低42.9%。
上述研究多是對(duì)單一運(yùn)行模式下的能耗進(jìn)行計(jì)算的,但不同模式下的建筑能耗存在較大差異,模型的預(yù)測(cè)結(jié)果也不盡相同。本研究分別采用基于傳統(tǒng)BP神經(jīng)網(wǎng)絡(luò)和LSTM神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)模型對(duì)連續(xù)供暖和間歇供暖的系統(tǒng)能耗進(jìn)行預(yù)測(cè)分析。
1 供暖能耗預(yù)測(cè)分析
1.1 供暖模式對(duì)建筑能耗影響分析
不同建筑的供暖模式存在差異,小區(qū)住宅等建筑多采用連續(xù)供暖模式,商場(chǎng)、辦公樓等公共建筑多采用間歇供暖模式。相同建筑的供暖模式不同,會(huì)導(dǎo)致建筑能耗相差較大。當(dāng)建筑采用連續(xù)供暖時(shí),供暖期間建筑能耗數(shù)值整體較為平穩(wěn)。當(dāng)建筑采用間歇供暖時(shí),在開(kāi)始供暖和結(jié)束供暖時(shí)建筑能耗存在突變。對(duì)不同供暖模式的建筑選擇便于預(yù)測(cè)分析的神經(jīng)網(wǎng)絡(luò)模型,有利于提高能耗預(yù)測(cè)的精度。
1.2 輸入變量分析
預(yù)測(cè)模型的輸入變量并非越多越好,當(dāng)輸入變量對(duì)供暖能耗的影響程度較低時(shí),不僅不利于提高預(yù)測(cè)精度,還有可能會(huì)增加預(yù)測(cè)時(shí)間??紤]到建筑能耗的特點(diǎn),選取室外溫度、日期類(lèi)型、建筑歷史能耗作為神經(jīng)網(wǎng)絡(luò)的輸入變量。
2 能耗預(yù)測(cè)模型
2.1 BP神經(jīng)網(wǎng)絡(luò)
BP神經(jīng)網(wǎng)絡(luò)是一種按誤差反向傳遞訓(xùn)練的多層前饋神經(jīng)網(wǎng)絡(luò),目標(biāo)函數(shù)為網(wǎng)絡(luò)的誤差平方,尋找最小的誤差平方。BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)如圖1所示[6],包含輸入層、隱含層、輸出層。
輸入層、隱含層、輸出層的映射關(guān)系見(jiàn)式(1)、式(2)。
si=f[ω1(xi)+b1]" "" "" " " " " " " " " "(1)
yi=g[ω2(si)+b2]" " " " " " " nbsp; " " " " (2)
式中:f(x)、g(x)分別為隱含層、輸出層的傳遞函數(shù);b1、b2分別為隱含層、輸出層的閾值。
本研究建立單隱含層的神經(jīng)網(wǎng)絡(luò),輸入變量為室外溫度、日期類(lèi)型、預(yù)測(cè)日前兩天逐時(shí)能耗,輸出參數(shù)為未來(lái)24 h能耗。
2.2 LSTM神經(jīng)網(wǎng)絡(luò)
LSTM屬循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,RNN),在隱含層內(nèi)部增加遺忘門(mén)、輸入門(mén)和輸出門(mén)[7-9],使LSTM神經(jīng)網(wǎng)絡(luò)具有較好的長(zhǎng)短期記憶功能。LSTM隱含層內(nèi)部結(jié)構(gòu)如圖 2所示。
遺忘門(mén)用于控制是否遺忘,通過(guò)本序列數(shù)據(jù)xt、上一序列隱藏狀態(tài)ht-1、激活函數(shù)σ得到遺忘門(mén)的輸出ft,ft為遺忘上層隱藏細(xì)胞狀態(tài)的概率,見(jiàn)式(3)。
ft=σ(Wf?t?1+Ufxt+bf)" " " " " " " " (3)
式中:Wf、Uf、bf為線性關(guān)系的系數(shù)和偏倚;σ為sigmoid激活函數(shù)。
輸入門(mén)負(fù)責(zé)處理當(dāng)前序列位置的輸入,數(shù)學(xué)表達(dá)見(jiàn)式(4)、式(5)。
it=σ(Wi?t?1+Uixt+bi)" " " " " " " (4)
at=tanh (Wa?t?1+Uaxt+ba)" " " " " " (5)
式中:Wi、Ui、Wa、Ua為函數(shù)的系數(shù);bi、ba為函數(shù)的偏倚;σ為sigmoid激活函數(shù)。
細(xì)胞狀態(tài)Ct由上層細(xì)胞狀態(tài)Ct-1和遺忘門(mén)輸出ft的乘積、輸入門(mén)it和at的乘積組成,見(jiàn)式(6)。
Ct=Ct?1×ft+it×at" " " " " " " " " "(6)
當(dāng)細(xì)胞狀態(tài)更新后,即可完成細(xì)胞輸出。
輸出門(mén)中ht的更新包含ot、隱藏狀態(tài)Ct和tanh激活函數(shù),見(jiàn)式(7)、式(8)。
ot=σ(Wo?t?1+U0xt+b0)" " " " " " " "(7)
?t=ot×tanh (Ct)" " " " " " " " " " " "(8)
本研究搭建了一個(gè)含三個(gè)隱含層和一個(gè)輸出層的LSTM神經(jīng)網(wǎng)絡(luò),輸入層的激活函數(shù)見(jiàn)式(7)、式(8),輸出層使用線性激活函數(shù),采用Adam優(yōu)化算法,輸入?yún)?shù)為室外溫度、日期類(lèi)型、預(yù)測(cè)日前兩天建筑能耗,輸出參數(shù)為未來(lái)24 h能耗。
3 算例分析
3.1 數(shù)據(jù)來(lái)源
3.1.1 間歇供暖。間歇供暖的數(shù)據(jù)來(lái)自青島市某游泳館2019年供暖能耗監(jiān)測(cè)數(shù)據(jù),該游泳館周一、周二停止?fàn)I業(yè),供暖系統(tǒng)每天早上5點(diǎn)開(kāi)啟,下午4點(diǎn)關(guān)閉。每隔1 h采集一次數(shù)據(jù),共采集到1 584組數(shù)據(jù)。
3.1.2 連續(xù)供暖。利用DeST軟件對(duì)某個(gè)建筑進(jìn)行建模,計(jì)算建筑在供暖季的負(fù)荷,根據(jù)模擬要求選取額定制熱量為9 kW、額定COP為3.4 kW的空氣源熱泵機(jī)組。通過(guò)熱泵機(jī)組在不同環(huán)境下的樣本參數(shù)對(duì)機(jī)組COP和室外溫度的關(guān)系進(jìn)行擬合,見(jiàn)式(9)。
COP=0.066 65Tk+2.736 26" " " " " " (9)
式中: TK為環(huán)境溫度,℃。
模擬得到建筑負(fù)荷和機(jī)組COP計(jì)算建筑能耗,建筑供暖季的能耗如圖3所示。
3.2 數(shù)據(jù)預(yù)處理
3.2.1 異常值處理。采集到的能耗數(shù)據(jù)存在兩種異常情況。一是缺失數(shù)據(jù)。由于缺失數(shù)據(jù)較少,可采用直接剔除法。二是突變數(shù)據(jù)。該類(lèi)型數(shù)據(jù)可采取平均值填充法進(jìn)行處理。
3.2.2 數(shù)據(jù)歸一化處理。為減小不同數(shù)量級(jí)和量綱對(duì)預(yù)測(cè)結(jié)果的影響,對(duì)輸入變量進(jìn)行預(yù)處理??紤]到游泳館周一、周二停止?fàn)I業(yè),在對(duì)日期類(lèi)型進(jìn)行量化時(shí),周一周二取0.5、周六周日取1、其他時(shí)間取0.7。為了將室外溫度和建筑能耗映射到[-1,1],采用歸一化處理,見(jiàn)式(10)。
3.4 預(yù)測(cè)仿真
對(duì)數(shù)據(jù)進(jìn)行相同的預(yù)處理,分別用LSTM神經(jīng)網(wǎng)絡(luò)模型、BP神經(jīng)網(wǎng)絡(luò)模型對(duì)兩供暖系統(tǒng)未來(lái)24 h的短期能耗進(jìn)行預(yù)測(cè)。
3.4.1 間歇供暖。間歇供暖系統(tǒng)的能耗預(yù)測(cè)結(jié)果如圖 4所示。采用LSTM神經(jīng)網(wǎng)絡(luò)對(duì)間歇供暖系統(tǒng)能耗進(jìn)行預(yù)測(cè)時(shí),預(yù)測(cè)結(jié)果的MSE值為9.6%。采用BP神經(jīng)網(wǎng)絡(luò)對(duì)間歇供暖系統(tǒng)能耗進(jìn)行預(yù)測(cè)時(shí),預(yù)測(cè)結(jié)果的MSE值為18.3%。LSTM神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)誤差比BP神經(jīng)網(wǎng)絡(luò)低了47.5%。這是因?yàn)椴捎瞄g歇供暖時(shí),建筑能耗具有較強(qiáng)的時(shí)序關(guān)聯(lián)特征,LSTM擁有良好的長(zhǎng)短期記憶功能,能更好地考慮數(shù)據(jù)時(shí)序性,提高預(yù)測(cè)精度。
3.4.2 連續(xù)供暖。連續(xù)供暖系統(tǒng)的能耗結(jié)果如圖 5所示。采用LSTM 神經(jīng)網(wǎng)絡(luò)對(duì)連續(xù)供暖系統(tǒng)進(jìn)行能耗預(yù)測(cè)時(shí),系統(tǒng)能耗的MSE值為6.5%;采用BP神經(jīng)網(wǎng)絡(luò)對(duì)連續(xù)供暖系統(tǒng)能耗進(jìn)行預(yù)測(cè)時(shí),系統(tǒng)能耗的MSE值為4.1%。BP神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)誤差比LSTM神經(jīng)網(wǎng)絡(luò)低了36.9%,預(yù)測(cè)效果更好。連續(xù)供暖系統(tǒng)的預(yù)測(cè)精度高于間歇供暖,這是因?yàn)檫B續(xù)供暖時(shí)系統(tǒng)的能耗穩(wěn)定,模型擬合較好。
3.5 預(yù)測(cè)結(jié)果分析
在對(duì)建筑短期能耗進(jìn)行預(yù)測(cè)時(shí),對(duì)不同供暖模式的數(shù)據(jù)進(jìn)行相同預(yù)處理,使用同一神經(jīng)網(wǎng)絡(luò)模型得到的精度并不相同,連續(xù)供暖模式的預(yù)測(cè)精度要優(yōu)于間歇供暖。這是因?yàn)樵谶B續(xù)供暖模式下,建筑能耗較為平緩,而間歇供暖模式下的建筑能耗波動(dòng)較大。當(dāng)供暖模式相同時(shí),不同神經(jīng)網(wǎng)絡(luò)模型的預(yù)測(cè)精度不同。系統(tǒng)間歇供暖時(shí),LSTM神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)精度要優(yōu)于BP神經(jīng)網(wǎng)絡(luò);系統(tǒng)連續(xù)供暖時(shí),BP神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)精度要優(yōu)于LSTM神經(jīng)網(wǎng)絡(luò)。
4 結(jié)語(yǔ)
本研究基于LSTM神經(jīng)網(wǎng)絡(luò)和BP神經(jīng)網(wǎng)絡(luò),對(duì)連續(xù)供暖和間歇供暖系統(tǒng)進(jìn)行短期能耗預(yù)測(cè),預(yù)測(cè)結(jié)果表明:在間歇供暖模式下,建筑能耗存在突變,LSTM神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型更加穩(wěn)定,能從歷史數(shù)據(jù)中提取到更多的有用信息,預(yù)測(cè)誤差小于BP神經(jīng)網(wǎng)絡(luò);在連續(xù)供暖模式下,兩種神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)結(jié)果均優(yōu)于間歇供暖系統(tǒng),且BP神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)精度要高于LSTM神經(jīng)網(wǎng)絡(luò)。
參考文獻(xiàn):
[1]KAWASHIMA M,DORGAN C E,MITCHELL J W.Optimizing systems control with load prediction by neural networks for an ice storage system[J].ASHRAE Transactions,1996(1):1169-1178.
[2]DEB C,LEE S E,SANTAMOURIS M.Using artificial neural networks to assess HVAC related energy saving in retrofitted office buildings[J].Solar Energy,2018,163:32-44.
[3]NIVETHITHA S,RAMAN M R G,RAMAMRITHAM K.A deep learning framework for building energy consumption forecast[J].Renewable and Sustainable Energy Reviews,2021,137:110591.
[4]SAFA M,SAFA M,ALLEN J,et al.Improving sustainable office building operation by using historical data and linear models to predict energy usage[J].Sustainable Cities and Society,2017,29:107-117.
[5]QING X Y,NIU YU G.Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM[J].Energy,2018,148:461-468.
[6]NIELSEN M.Neural networks and deep learning[M].Determination Press,2015.
[7]SALAH B,ALI F,ALI O,et al.Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm:comparison with machine learning approaches[J].Energies,2018(7):1636.
[8]MA X L,TAO Z M,WANG Y H,et al.Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J].Transportation Research Part C,2015,54:187-197.
[9]BENGIO Y,SIMARD P,F(xiàn)RASCONI P.Learning long-term dependencies with gradient descent is difficult[J].IEEE Transactions on Neural Netw,1994(2):157-166.
收稿日期:2023-04-17
作者簡(jiǎn)介:吳云鶴(1995—),女,碩士,助理工程師,研究方向:室內(nèi)熱舒適研究。