肖如雁,謝紅蓮,宋佳林,何婉蓉,陳文輝,高佳偉,侯娟,楊賽
木犀草素對原發(fā)性硬化性膽管炎治療作用研究
肖如雁1,謝紅蓮1,宋佳林1,何婉蓉1,陳文輝1,高佳偉1,侯娟2,楊賽2
1.吉首大學醫(yī)學院臨床醫(yī)學系,湖南吉首 416000;2.吉首大學醫(yī)學院病原生物與免疫學教研室,湖南吉首 416000
探討木犀草素對3,5-二乙氧基羰基-1,4-二氫-2,4,6-三甲基吡啶(3,5-diethoxycarbonyl-1,4-dihydrocollidine,DDC)誘導的原發(fā)性硬化性膽管炎(primary sclerotic cholangitis,PSC)的治療作用及可能機制。將6~8周齡雄性C57BL/6J小鼠隨機均分成空白對照組、DDC組、DDC+木犀草素組和木犀草素組,每組各6只。DDC組和DDC+木犀草素組小鼠使用0.1% DDC飼料喂養(yǎng)2周,造模成功后改用正常飼料喂養(yǎng)。自第15天起,DDC+木犀草素組和木犀草素組小鼠給予木犀草素40mg/kg連續(xù)灌胃20d,每天一次。其余組在此期間正常飼料喂養(yǎng)。比較各組小鼠血清丙氨酸轉氨酶(alanine aminotransferase,ALT)、天冬氨酸轉氨酶(aspartate aminotransferase,AST)、總膽汁酸(total bile acid,TBA)、堿性磷酸酶(alkaline phosphatase,ALP)水平;蘇木精–伊紅染色(hematoxylin and eosin staining,HE染色)觀察肝組織病變程度;檢測小鼠肝組織炎癥因子[白細胞介素(interleukin,IL)-1β、IL-6、腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)]和纖維化相關因子[α-平滑肌肌動蛋白(α-smooth muscle actin,α-SMA)、Ⅰ型膠原蛋白(collagenⅠ)、基質金屬蛋白酶抑制劑1(matrix-metalloproteinase inhibitor 1,Timp1)]mRNA表達情況;蛋白質印跡法檢測p65和p-p65蛋白活化情況。DDC組小鼠的血清ALT、AST、TBA及ALP均顯著高于空白對照組(<0.05),DDC+木犀草素組小鼠的血清ALT、AST、TBA及ALP均顯著低于DDC組(<0.05)。HE染色病理切片可見,空白對照組小鼠的肝細胞排列規(guī)則,形態(tài)正常,無膽汁淤積及炎細胞浸潤;DDC組小鼠的肝細胞排列紊亂,膽管周圍出現炎癥浸潤,大量膽汁淤積并伴有小膽管增生;DDC+木犀草素組小鼠的肝組織相較于DDC組膽汁淤積程度減輕,炎癥浸潤面積減小,且小膽管增生情況得到抑制。DDC組小鼠的IL-1β、IL-6、TNF-ɑ、α-SMA、collagen Ⅰ、Timp1的mRNA表達均顯著高于空白對照組(<0.05),DDC+木犀草素組小鼠的IL-1β、IL-6、TNF-ɑ、α-SMA、collagen Ⅰ、Timp1的mRNA表達均顯著低于DDC組(<0.05)。DDC組小鼠的p-p65蛋白活化水平顯著高于空白對照組(=0.002),經木犀草素治療后,p-p65蛋白活化水平下降(=0.012)。木犀草素對DDC誘導的PSC有一定的治療作用,其作用機制可能與核因子-κB信號通路有關。
木犀草素;原發(fā)性硬化性膽管炎;抗炎;治療
原發(fā)性硬化性膽管炎(primary sclerotic cholangitis,PSC)是一種慢性膽汁淤積性肝病,表現為整個膽管的彌漫性炎癥和纖維化;PSC患者存在患膽管癌和結直腸癌的高風險,具有高并發(fā)癥發(fā)生率和高死亡率[1-2]。PSC的發(fā)病機制尚不清楚,且尚無有效藥物能夠改變疾病的自然發(fā)病過程,大多數患者最終需要肝移植,且疾病易復發(fā)[3-4]。木犀草素是一種黃酮類化合物,因分離于草本植物木犀草而得名,多以糖苷的形式存在于藥材和蔬菜果實中[5]。長期以來,傳統(tǒng)醫(yī)學一直使用高木犀草素含量的植物治療炎癥相關疾病[6]。多項研究表明木犀草素對肝損傷具有保護作用,包括酒精性肝損傷、急性肝損傷、免疫性肝損傷等[7-9]。針對PSC的彌漫性炎癥和纖維化,木犀草素不僅有強大的抗炎作用,且具有明顯抗肝纖維化的作用[10-11]。核因子-κB(nuclear factor-κB,NF-κB)是關鍵的炎癥反應調節(jié)因子,其在肝臟穩(wěn)態(tài)中發(fā)揮核心作用[12]。本研究旨在探究木犀草素對PSC的治療作用及其可能的機制,以期為臨床治療PSC提供新思路。
24只6~8周齡SPF級C57BL/6J雄性小鼠,體質量(22.0±2.0)g,購自湖南斯萊克景達實驗動物有限公司[許可證號:SCXK(湘)2019-0004],飼養(yǎng)于吉首大學醫(yī)學院實驗動物房,動物研究方案及操作流程由吉首大學動物實驗倫理委員會批準(倫理審批號:JSDX-2022-0001)。
試劑:3,5-二乙氧基羰基-1,4-二氫-2,4,6-三甲基吡啶(3,5-diethoxycarbonyl-1,4-dihydrocollidine,DDC)(Sigma公司)、木犀草素、DMSO(大連美侖生物技術有限公司)、血清丙氨酸轉氨酶(alanine aminotransferase,ALT)、天冬氨酸轉氨酶(aspartate aminotransferase,AST)、總膽汁酸(total bile acid,TBA)、堿性磷酸酶(alkaline phosphatase,ALP)檢測試劑盒(南京建成生物工程研究所有限公司);RNA easy動物RNA抽提試劑盒(離心柱式)、BeyoFast SYBR Green One-step qRT-PCR kit、NF-κB p65兔單抗、辣根過氧化物酶標記山羊抗兔、Phospho-NF-κB p65(ser536)、GAPDH 鼠單抗(上海碧云天生物技術有限公司);儀器:酶標儀、聚合酶鏈反應(polymerase chain reaction,PCR)檢測儀、電泳儀等。
1.3.1 實驗動物分組與模型的建立 將實驗小鼠隨機分為空白對照組、DDC組、DDC+木犀草素組、木犀草素組,每組各6只。各組小鼠適應環(huán)境1周后,DDC組及DDC+木犀草素組小鼠給予0.1%DDC飼料喂養(yǎng)2周,其余兩組正常喂養(yǎng)。第15天起,DDC+木犀草素組和木犀草素組給予40mg/kg木犀草素灌胃,1次/d,連續(xù)20d,其余兩組正常喂養(yǎng)。
1.3.2 血清指標檢測 在木犀草素灌胃20d后,取小鼠眼球血,2500轉/min,離心15min分離血清,檢測小鼠血清ALT、AST、TBA及ALP水平。
1.3.3 蘇木精-伊紅染色 小鼠肝組織于75%酒精中固定約48h后脫水、石蠟包埋制成組織石蠟切片,蘇木精-伊紅染色(hematoxylin and eosin staining,HE染色),此步驟由湘西自治州人民醫(yī)院病理科協助完成。光學顯微鏡下觀察病變情況并分析。
1.3.4 炎癥和纖維化相關因子檢測 提取各組肝組織中的總RNA,再將mRNA逆轉錄為cDNA進行PCR擴增反應,以GAPDH為內參,采用2–△△Ct相對定量法計算白細胞介素(interleukin,IL)-1β、IL-6、腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)、α-平滑肌肌動蛋白(α-smooth muscle actin,α-SMA)、Ⅰ型膠原蛋白(collagen Ⅰ)、基質金屬蛋白酶抑制劑1(matrix-metalloproteinase inhibitor 1,Timp1)基因的相對轉錄水平。引物序列見表1。
1.3.5 蛋白質印跡法檢測小鼠肝組織p-p65、p65蛋白表達水平 提取各組肝組織總蛋白,酶標儀繪制蛋白標準曲線,進行電泳、轉膜、封閉液封閉0.5h,加入p65、p-p65一抗4℃搖床孵育過夜,洗滌,二抗室溫孵育2h,洗滌20min,加顯影液后進行顯影,重復實驗3次,用image軟件分析結果。
采用Graphpad Prim7軟件對數據進行統(tǒng)計學處理,各血清指標、基因表達、蛋白水平比較采用One-wayANOVA分析。<0.05為差異有統(tǒng)計學意義。
DDC組小鼠的血清ALT、AST、TBA及ALP均顯著高于空白對照組(<0.05),DDC+木犀草素組小鼠的血清ALT、AST、TBA及ALP均顯著低于DDC組(<0.05),木犀草素組和空白對照組小鼠的血清ALT、AST、TBA及ALP比較差異均無統(tǒng)計學意義(>0.05),見圖1。
表1 引物序列
注:*<0.001
HE染色病理切片可見,空白對照組小鼠的肝細胞排列規(guī)則,形態(tài)正常,無膽汁淤積及炎細胞浸潤。DDC組小鼠的肝細胞排列紊亂,膽管周圍出現炎癥浸潤,大量膽汁淤積并伴有小膽管增生。DDC+木犀草素組小鼠的肝組織相較于DDC組膽汁淤積程度減輕,炎癥浸潤面積減小,且小膽管增生情況得到抑制,見圖2。
DDC組小鼠的IL-1β、IL-6、TNF-ɑ、α-SMA、collagen Ⅰ、Timp1的mRNA表達均顯著高于空白對照組(<0.05),DDC+木犀草素組小鼠的IL-1β、IL-6、TNF-ɑ、α-SMA、collagen Ⅰ、Timp1的mRNA表達均顯著低于DDC組(<0.05)。木犀草素組與空白對照組小鼠的上述指標比較差異均無統(tǒng)計學意義(>0.05),見圖3。
DDC組小鼠的p-p65蛋白活化水平顯著高于空白對照組(=0.002),經木犀草素治療后,p-p65蛋白活化水平下降(=0.012),木犀草素組小鼠的p-p65蛋白活化水平與空白對照組比較差異無統(tǒng)計學意義(>0.05)。各組小鼠的p65蛋白表達比較差異無統(tǒng)計學意義(>0.05),見圖4。
圖2 木犀草素對PSC小鼠肝組織病理形態(tài)學的影響(HE染色)
圖3 木犀草素降低PSC小鼠肝組織中炎癥因子和纖維化相關因子的mRNA表達水平
注:*<0.05
圖4 木犀草素對PSC小鼠NF-κB通路的影響
A.蛋白電泳條帶圖;B.各組小鼠p-p65蛋白水平比較
注:*<0.05
PSC是一種慢性膽汁淤積性肝病,其特征為肝內外膽管炎癥和纖維化,進而導致多灶性膽管狹窄[13]。DDC為PSC模型的工具藥,既往研究肯定DDC誘導PSC模型的可行性[14]。本研究利用DDC進行PSC造模,造模結果與其他實驗結果一致,DDC組小鼠的ALP、ALT、AST、TBA水平較空白對照組均升高,且出現組織病理變化,說明造模成功。
木犀草素是一種天然的黃酮類化合物,存在于多種植物中,經口進入機體后被腸道吸收運送至全身,肝臟是木犀草素作用的主要靶器官之一,其在抗炎、抑制肝纖維化方面具有顯著療效[15-16]。ALT和AST是肝臟健康的常用生物標志物,兩者水平升高是肝臟疾病或損傷的標志[17-18]。在PSC患者中最常見的生化異常是ALP水平升高。TBA是膽固醇經肝臟代謝的重要產物,當肝臟病變時,肝細胞對TBA的攝取減少而發(fā)生代謝障礙,引起血漿TBA含量增加[19]。本研究結果顯示經木犀草素治療后,ALP、ALT、AST、TBA水平均不同程度下降,同時,HE染色觀察到DDC+木犀草素組小鼠膽汁淤積及炎癥浸潤程度明顯減輕。通過檢測炎癥因子IL-1β、IL-6、TNF-α和纖維化相關因子α-SMA、collagen Ⅰ、Timp1的mRNA表達水平,發(fā)現經木犀草素治療可改善由DDC導致的炎癥及纖維化相關因子升高情況。同時木犀草素組小鼠的肝組織各項指標與空白對照組小鼠比較差異均無統(tǒng)計學意義。Fu等[20]研究表明木犀草素劑量高達100mg/(kg·d)也較為安全。表明木犀草素可減輕DDC誘導的小鼠肝臟損傷、炎癥浸潤及纖維化程度,且安全性較高。
NF-κB是典型的促炎信號傳導途徑之一,p65是NF-κB最常見的亞基組成形式[21]。通常情況下,NF-κB以NF-κB p65/p50二聚體的形式存在于細胞質中,與NF-κB抑制蛋白ⅠκB結合以無活性的形式存在。當細胞受刺激時,NF-κB磷酸化,一部分參與炎癥反應,另一部分進入細胞核,刺激纖維化的產生[22]。激活的NF-κB調控IL-1、IL-2、IL-6、IL-8和TNF-ɑ等細胞因子轉錄、翻譯、表達、分泌,從而促進炎癥反應的發(fā)生,同時NF-κB調控的信號通路活性增強可抑制多種細胞凋亡,加重肝纖維化程度[23]。有研究證實,NF-κB信號通路在炎癥反應觸發(fā)的肝損傷、肝纖維化及肝癌的發(fā)展過程中起重要調節(jié)作用[24]。為進一步研究木犀草素對DDC誘導的PSC治療作用的機制,利用蛋白質印跡技術檢測小鼠肝組織p-p65、p65蛋白活化水平,發(fā)現DDC組小鼠肝組織p-p65蛋白活化水平明顯增高,說明在DDC誘導的PSC狀態(tài)下,小鼠肝組織NF-κB信號通路激活,這與周倩揚等[25]研究一致。同時本研究結果中IL-1β、IL-6、TNF-α等mRNA表達水平明顯增高也提示小鼠肝組織NF-κB信號通路激活。而對比DDC組,DDC+木犀草素組小鼠肝組織的p-p65蛋白活化水平明顯下降,IL-1β、IL-6、TNF-α等mRNA表達水平也明顯下降,表明木犀草素可抑制NF-κB p65的磷酸化,這與Ahmad等[26]研究一致。說明木犀草素可通過NF-κB信號通路抑制炎癥反應及肝纖維化,從而對DDC誘導的PSC產生一定治療作用,但具體機制仍有待繼續(xù)研究。
綜上,木犀草素對DDC誘導的PSC具有一定治療作用,可為今后PSC的治療提供實驗基礎。
[1] Sarcognato S, Sacchi D, Grillo F, et al. Autoimmune biliary diseases: Primary biliary cholangitis and primary sclerosing cholangitis[J]. Pathologica, 2021, 113(3): 170–184.
[2] Williamson K D, Chapman R W. Primary sclerosing cholangitis[J]. Dig Dis, 2014, 32(4): 438–445.
[3] 鄭士宏. 芹菜素對DDC誘導的膽汁淤積性肝病的保護作用[D]. 合肥: 合肥工業(yè)大學, 2021.
[4] Karlsen T H, Folseraas T, Thorburn D, et al. Primary sclerosing cholangitis - A comprehensive review[J]. J Hepatol, 2017, 67(6): 1298-1323.
[5] 王琪, 李坤偉, 周長征. 木犀草素的藥理作用及制劑研究進展[J]. 北京聯合大學學報(自然科學版), 2022, 36(1): 59–63.
[6] Kim J H, Park T J, Park J S, et al. Luteolin-3’- O-phosphate inhibits lipopolysaccharide-induced inflammatoryresponses by regulating NF-κB/MAPK cascade signaling in RAW 264.7 cells[J]. Molecules, 2021, 26(23): 7393.
[7] 張琦. 木犀草素對急性免疫性肝損傷小鼠的保護作用[J].上海交通大學學報(醫(yī)學版), 2014, 34(3): 329–332.
[8] 楊霄敏, 張開宇, 汪洋, 等. 木犀草素通過降低CYP2E1表達對重癥急性胰腺炎大鼠相關急性肝損傷的保護作用研究[J]. 新中醫(yī), 2020, 52(16): 4–7.
[9] 鄭瑞, 扶雄, 趙振剛, 等. 木犀草素肝保護作用的研究[J]. 現代食品科技, 2017, 33(11): 16–22.
[10] 李星霞, 李婕, 王紹展, 等. 木犀草素對肝纖維化進程中肝細胞上皮間質轉化的抑制作用[J]. 中國藥房, 2014, 25(19): 1729–1732.
[11] 李林林, 龔國清, 馮貽東, 等. 木犀草素對四氯化碳致大鼠肝纖維化的保護作用及其機制研究[J]. 中國生化藥物雜志, 2010, 31(6): 377–380.
[12] LUEDDE T, SCHWABE R F. NF-κB in the liver-- Linking injury, fibrosis and hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2011, 8(2): 108–118.
[13] Eaton J E, Talwalkar J A, Lazaridis K N, et al. Pathogenesis of primary sclerosing cholangitis and advances in diagnosis and management[J]. Gastroenterology, 2013, 145(3): 521–536.
[14] 羅怡爽, 林韓特, 代曼云, 等. 非諾貝特對DDC誘導小鼠原發(fā)性硬化性膽管炎的治療作用與機制[J]. 中西醫(yī)結合肝病雜志, 2019, 29(6): 526–528, 532, 后插6.
[15] 楊大千. 木犀草素對無機汞誘導的小鼠急性肝損傷的干預作用研究[D]. 哈爾濱: 東北農業(yè)大學, 2018.
[16] 胡澤香, 佟雷, 耿艷萌, 等. 木犀草素的藥理活性及其制劑研究進展[J]. 中醫(yī)臨床研究, 2022, 14(10): 141–145.
[17] Rabiee A, Silveira M G. Primary sclerosing cholangitis[J]. Transl Gastroenterol Hepatol, 2021, 6: 29.
[18] Gao C, Marcketta A, Backman J D, et al. Genome-wide association analysis of serum alanine and aspartate aminotransferase, and the modifying effects of BMI in 388k European individuals[J]. Genet Epidemiol, 2021, 45(6): 664–681.
[19] 宋少娟, 蘇國華. 血清總膽汁酸、膽堿酯酶和前白蛋白檢測在肝病診斷中應用探析[J]. 醫(yī)學信息, 2021, 34(23): 9–11.
[20] FU J, SUN H, ZHANG Y, et al. Neuroprotective effects of luteolin against spinal cord ischemia-reperfusion injury by attenuation of oxidative stress, inflammation, and apoptosis[J]. J Med Food, 2018, 21(1): 13–20.
[21] Lawrence T. The nuclear factor NF-kappaB pathway in inflammation[J]. Cold Spring Harb Perspect Biol, 2009, 1(6): a001651.
[22] 左雁. 健脾軟肝方對肝纖維化大鼠肝組織NF-κB/ TGF-β/Smads信號通路的干預作用[D]. 昆明: 云南中醫(yī)學院, 2017.
[23] 陳新宇. 益肝膠囊對免疫性肝損傷小鼠TLR4/NF-κB信號通路調控機制[D]. 哈爾濱: 黑龍江中醫(yī)藥大學, 2018.
[24] 伍振輝, 孟嫻, 胡佳偉, 等. TLR4-MyD88-NF-kB信號通路與肝炎–肝纖維化–肝癌軸相關性研究進展[J]. 國際藥學研究雜志, 2017, 44(5): 396–401.
[25] 周倩揚, 楊慧敏, 李靜, 等. 雷帕霉素對DDC誘導小鼠原發(fā)性硬化性膽管炎的治療效果研究[J]. 中國比較醫(yī)學雜志, 2021, 31(6): 9–15.
[26] AHMAD S, JO M H, IKRAM M, et al. Deciphering the potential neuroprotective effects of luteolin against aβ1- 42-induced Alzheimer’s disease[J]. Int J Mol Sci, 2021, 22(17): 9583.
Study on therapeutic effect of luteolin on primary sclerotic cholangitis
XIAO Ruyan, XIE Honglian, SONG Jialin, HE Wanrong, CHEN Wenhui, GAO Jiawei, HOU Juan, YANG Sai
1.Department of Clinical Medicine, Jishou University School of Medicine, Jishou 416000, Hunan, China; 2.Department of Pathogen Biology and Immunology, Jishou University School of Medicine, Jishou 416000, Hunan, China
To explore the therapeutic effect and possible mechanism of luteolin on primary sclerotic cholangitis (PSC) induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC).Male C57BL/6J mice aged 6 to 8 weeks were randomly divided into blank control group, DDC group, DDC+luteolin group and luteolin group, with 6 mice in each group. Mice in DDC group and DDC+luteolin group were fed 0.1% DDC diet for 2 weeks, and were fed normal diet after successful modeling. Since the 15th day, mice in DDC+luteolin group and luteolin group were given 40mg/kg of luteolin once a day by continuous gavage for 20 days. The remaining groups were fed normal diet during this period. The levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bile acid (TBA) and alkaline phosphatase (ALP) in each group were compared. Hematoxylin and eosin (HE) staining was used to observe the degree of liver lesions. The mRNA expression of inflammatory factors [interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α)] and fibrosis related factors [α-smooth muscle actin (α-SMA), collagenⅠ, matrix-metalloproteinase inhibitor 1 (Timp1)] in mouse liver tissue was detected. The activation of p65 and p-p65 proteins was detected by Western blotting.Serum ALT, AST, TBA and ALP in DDC group were significantly higher than those in blank control group (<0.05). The serum ALT, AST, TBA and ALP in DDC+luteolin group were significantly lower than those in DDC group (<0.05). HE staining pathological sections showed that the liver cells in blank control group were arranged regularly, with normal morphology and no cholestasis or inflammatory cell infiltration. In DDC group, hepatocytes were disordered, inflammatory infiltration occurred around bile duct, and cholestasis was abundant accompanied by small bile duct hyperplasia. Compared with DDC group, DDC+luteolin group reduced the degree of cholestasis, decreased the area of inflammatory infiltration, and inhibited the proliferation of small bile duct. The mRNA expressions of IL-1β, IL-6, TNF-α, α-SMA, collagen Ⅰ and Timp1 in DDC group were significantly higher than those in blank control group (<0.05). The mRNA expressions of IL-1β, IL-6, TNF-α, α-SMA, collagen Ⅰ and Timp1 in DDC+luteolin group were significantly lower than those in DDC group (<0.05). The activation level of p-p65 protein in DDC group was significantly higher than that in blank control group (=0.002), after luteolin treatment, the activation level of p-p65 protein decreased (=0.012).Luteolin has a certain therapeutic effect on DDC induced PSC, and its mechanism may be related to nuclear factor-κB signaling pathway.
Luteolin; Primary sclerotic cholangitis; Anti-inflammatory; Treatment
R575
A
10.3969/j.issn.1673-9701.2023.31.017
國家級大學生創(chuàng)新創(chuàng)業(yè)訓練計劃項目(202110531016);吉首大學教師校級科研項目(Jd20001)
侯娟,電子信箱:154110305@qq.com
(2023–03–12)
(2023–10–09)