梁明亭,宮穎,商鯤鵬,賈國濤,龐英
·論 著·
HGF抑制細(xì)胞凋亡干預(yù)心肌損傷的研究
梁明亭1,宮穎1,商鯤鵬1,賈國濤2,龐英1
1.聊城市人民醫(yī)院心內(nèi)科,山東聊城 252000;2.聊城市人民醫(yī)院病理科,山東聊城 252000
通過構(gòu)建大鼠心肌缺血再灌注損傷(myocardial ischemia-reperfusion injury,MIRI)模型并應(yīng)用肝細(xì)胞生長因子(hepatocyte growth factor,HGF)干預(yù),觀察HGF對MIRI細(xì)胞凋亡的影響。24只雄性Wistar大鼠,采用隨機數(shù)字表法分為假手術(shù)組(=8)、MIRI組(=8)和HGF組(=8)。假手術(shù)組只穿線不結(jié)扎,MIRI組結(jié)扎大鼠左前降支30min再灌注180min,HGF組在結(jié)扎大鼠前降支同時給予尾靜脈注射HGF(1mg/kg)。檢測各組大鼠血清肌酸激酶同工酶(creatine kinase isoenzyme,CK-MB)水平,采用TUNEL法測定心肌細(xì)胞凋亡指數(shù),免疫組織化學(xué)法檢測胱天蛋白酶(Caspase)-3及Bax蛋白表達(dá),以及通過超聲心動圖檢查大鼠心功能。與假手術(shù)組相比,MIRI組大鼠血清CK-MB、心肌細(xì)胞凋亡指數(shù)、Caspase-3和Bax蛋白表達(dá)、左心室收縮末期內(nèi)徑(left ventricular end systolic diameter,LVESD)、左心室舒張末期內(nèi)徑(left ventricular end diastolic diameter,LVEDD)、左心室舒張末期容積(left ventricular end diastolic volume,LVEDV)、左心室收縮末期容積(left ventricular end systolic volume,LVESV)、左心室質(zhì)量指數(shù)(left ventricular mass index,LVMI)均顯著升高(<0.05),左心室射血分?jǐn)?shù)(left ventricular ejection fraction,LVEF)顯著降低(<0.05)。與MIRI組比較,HGF組的血清CK-MB、心肌細(xì)胞凋亡指數(shù)、Caspase-3和Bax蛋白表達(dá)、LVESD、LVEDD、LVEDV、LVESV及LVMI均顯著降低(<0.05),LVEF顯著升高(<0.05)。HGF可通過抑制心肌細(xì)胞凋亡減輕MIRI,改善大鼠心功能。
肝細(xì)胞生長因子;心肌缺血再灌注損傷;細(xì)胞凋亡
冠狀動脈粥樣硬化性心臟病是危害人類健康的重要疾病,除藥物治療外,心肌再灌注治療可提高急性心肌梗死的救治成功率,但是不可逆的心肌損傷已經(jīng)發(fā)生,導(dǎo)致心肌壞死,進(jìn)而引起心肌舒縮功能障礙和各種心律失常。在整個過程中,心肌缺血再灌注損傷(myocardial ischemia-reperfusion injury,MIRI)扮演了重要的角色[1]。既往研究證實,不管是鼠、兔還是人類心肌細(xì)胞,在經(jīng)歷一定時間的缺血后進(jìn)行再灌注,均顯示出明顯的凋亡現(xiàn)象,可導(dǎo)致工作心肌細(xì)胞減少,心功能惡化[2]。肝細(xì)胞生長因子(hepatocyte growth factor,HGF)是一種間充質(zhì)來源的多功能性細(xì)胞因子,HGF及其受體可由多種細(xì)胞產(chǎn)生,組織分布廣泛,HGF可通過多種信號通路發(fā)揮生物學(xué)效應(yīng)[3]。有研究建立過氧化氫損傷大鼠心臟的模型,應(yīng)用HGF進(jìn)行干預(yù),結(jié)果顯示大鼠心肌損傷程度明顯減輕,細(xì)胞凋亡減少,Bcl-xL表達(dá)增加,提示了HGF的抗心肌細(xì)胞凋亡作用[4]。但目前關(guān)于HGF對MIRI心肌細(xì)胞凋亡的保護(hù)作用未見報道,本研究主要觀察了HGF對大鼠缺血再灌注損傷心肌細(xì)胞的抗凋亡作用。
清潔級雄性Wistar大鼠24只(170~220g),由山東大學(xué)實驗動物中心提供[實驗動物許可證號:SCXK(魯)2016002],均單獨飼養(yǎng),室溫20~25℃,相對濕度45%~65%,自由攝食和飲水。所有大鼠給予標(biāo)準(zhǔn)大鼠飼料喂養(yǎng),并進(jìn)行7d的適應(yīng)性飼養(yǎng)。
肝細(xì)胞生長因子(F3097),購自上海西唐生物科技有限公司;細(xì)胞凋亡原位檢測試劑盒,購自美國羅氏公司;胱天蛋白酶(Caspase)-3免疫組織化學(xué)檢測試劑盒(LOP 1010)、Bax免疫組織化學(xué)檢測試劑盒(LOP 1002),均購自上海工碩生物技術(shù)有限公司;DAB顯色試劑盒(AB201),購自上海拜力生物科技有限公司。
采用隨機數(shù)字表法將24只大鼠分為假手術(shù)組(=8)、MIRI組(=8)和HGF組(=8)。假手術(shù)組只穿線不結(jié)扎,MIRI組結(jié)扎大鼠左前降支30min再灌注180min,HGF組在結(jié)扎大鼠前降支同時給予尾靜脈注射HGF(1mg/kg)[5]。
用10%的水合氯醛麻醉大鼠,氣管插管后連接動物呼吸機(潮氣量6ml),呼吸頻率60次/min,呼吸比1∶1.5,沿胸骨中線從胸鎖關(guān)節(jié)平線至劍突上方切開皮膚,在胸骨左緣處剪斷大鼠的第2~4肋骨,暴露心臟。持小圓彎針于肺動脈圓錐與左心耳夾角下l~2mm處進(jìn)針,進(jìn)針深度為0.2~0.4mm,以4-0無創(chuàng)縫合線穿過,在肺動脈圓錐旁出針。其中MIRI組及HGF組用帶凹槽乳膠管墊于即將結(jié)扎部位,以備再灌注使用。結(jié)扎冠狀動脈后,心電圖ST段明顯抬高或壓低提示造模成功,結(jié)扎30min后松解結(jié)扎線,再灌注180min,心肌再灌注時局部心肌出現(xiàn)組織充血,ST段回落為再灌注成功表現(xiàn)。假手術(shù)組大鼠只穿線不結(jié)扎。
于再灌注180min后取大鼠腹主動脈血1.5ml,分離血清,應(yīng)用自動生化分析儀檢測CK-MB濃度。
取結(jié)扎線下1~2mm左心室游離壁相同部位心肌組織制成蠟塊,連續(xù)切片,厚度為4μm。正常心肌細(xì)胞核呈藍(lán)色,凋亡陽性心肌細(xì)胞核呈不同深淺的黃色。每張切片在高倍鏡(400倍)下,分別在缺血中心區(qū)及周圍區(qū)隨機計數(shù)10個不同視野的心肌凋亡細(xì)胞數(shù)及心肌細(xì)胞總數(shù),凋亡指數(shù)=凋亡陽性心肌細(xì)胞核數(shù)目/總心肌細(xì)胞核數(shù)目×100%,求均值計算凋亡指數(shù)。
使用蘇木精–伊紅(hematoxylin-eosin staining,HE)染色法,觀察顯微鏡下各組心肌的病理變化,包括心肌結(jié)構(gòu)、心肌纖維排列、炎細(xì)胞浸潤及心肌細(xì)胞壞死情況等。
用Image-Pro Plus病理顯微圖像分析系統(tǒng),定量檢測Caspase-3及Bax蛋白的表達(dá)。Caspase-3及Bax蛋白免疫組化染色陽性表達(dá)判定(DAB顯色):蛋白陽性反應(yīng)為黃色至棕褐色顆粒散在或彌漫狀分布,主要定位于細(xì)胞質(zhì)。每個切片在400倍高倍鏡下,隨機選擇10個相同面積無重疊視野,計算每個視野下兩種蛋白的吸光度(absorbance,)均值。
剪去大鼠胸部被毛,用飛利浦IE33彩色超聲診斷儀,電子相控陣探頭,頻率14MHz進(jìn)行測定。大鼠軀體左傾30°,將超聲探頭置于大鼠胸骨左側(cè),與胸骨中線呈10°~30°角。超聲測定的指標(biāo)包括左心室收縮末期內(nèi)徑(left ventricular end systolic diameter,LVESD)、左心室舒張末期內(nèi)徑(left ventricular end diastolic diameter,LVEDD)、左心室舒張末期容積(left ventricular end diastolic volume,LVEDV)、左心室收縮末期容積(left ventricular end systolic volume,LVESV)、左心室質(zhì)量指數(shù)(left ventricular mass index,LVMI)、左心室射血分?jǐn)?shù)(left ventricular ejection fraction,LVEF)。
假手術(shù)組大鼠心肌結(jié)構(gòu)完整,心肌纖維排列規(guī)則,心肌組織無明顯炎細(xì)胞浸潤。MIRI組大鼠心肌纖維排列紊亂,細(xì)胞變性壞死,細(xì)胞結(jié)構(gòu)破壞,心肌纖維大量溶解。HGF組大鼠心肌結(jié)構(gòu)破壞較MIRI組比較明顯減輕,細(xì)胞少量變性壞死,間質(zhì)水腫減輕,心肌纖維溶解減少,見圖1。
與假手術(shù)組比較,MIRI組大鼠血清CK-MB、心肌細(xì)胞凋亡指數(shù)、Caspase-3和Bax蛋白表達(dá)均顯著升高(<0.05)。與MIRI組比較,HGF組的血清CK-MB、心肌細(xì)胞凋亡指數(shù)、Caspase-3和Bax蛋白表達(dá)均顯著降低(<0.05),見表1,圖2、3。
圖1 各組大鼠心肌HE染色觀察(×400)
A.假手術(shù)組;B.MIRI組;C.HGF組
表1 各組大鼠血清CK-MB、心肌細(xì)胞凋亡指數(shù)、Caspase-3和Bax蛋白表達(dá)比較()
注:與假手術(shù)組比較,*<0.05;與MIRI組比較,#<0.05
圖2 各組大鼠Caspase3蛋白免疫組化表達(dá)(×400)
A.假手術(shù)組未見蛋白染色表達(dá);B.MIRI組可見蛋白胞質(zhì)染色為深褐色,強陽性表達(dá);C.HGF組蛋白表達(dá)明顯減少,少量胞質(zhì)染色為淺褐色
圖3 各組大鼠Bax蛋白免疫組化表達(dá)(×400)
A.假手術(shù)組未見蛋白染色表達(dá);B.MIRI組可見蛋白胞質(zhì)染色為深褐色,強陽性表達(dá);C.HGF組蛋白表達(dá)明顯減少,少量胞質(zhì)染色為淺褐色
與假手術(shù)組比較,MIRI組LVESD、LVEDD、LVEDV、LVESV及LVMI均顯著增加(<0.05),但LVEF顯著降低(<0.05);與MIRI組比較,HGF組LVESD、LVEDD、LVEDV、LVESV及LVMI均顯著降低(<0.05),LVEF顯著升高(<0.05),見表2。
表2 各組心臟超聲指標(biāo)比較()
注:與假手術(shù)組比較,*<0.05;與MIRI組比較,#<0.05
MIRI是心血管疾病治療中常見的病理生理現(xiàn)象,其機制涉及氧自由基的變化、內(nèi)皮細(xì)胞功能障礙、鈣超載及炎癥反應(yīng)等多個環(huán)節(jié)。同時,細(xì)胞凋亡也是重要機制之一[6]。有研究建立MIRI犬模型,心肌缺血7h細(xì)胞凋亡并不明顯,而缺血1h,再灌注6h則細(xì)胞凋亡顯著,提示在心肌再灌注時更容易發(fā)生細(xì)胞凋亡[7]。
Caspase家族蛋白酶常以無活性形式存在,在某些凋亡信號刺激后才活化發(fā)揮作用,是細(xì)胞凋亡重要的通路之一[8]。心肌細(xì)胞凋亡信號轉(zhuǎn)導(dǎo)通路主要通過線粒體/Caspase-9和死亡受體/Caspase-8兩條途徑,Caspase-3則是兩條通路下游的共同效應(yīng)酶[9]。B淋巴細(xì)胞瘤-2(B-cell lymphoma-2,Bcl-2)是一種原癌基因,對于缺血再灌注損傷有抗細(xì)胞凋亡作用[10]。有研究建立了大鼠MIRI模型,分別檢測再灌注區(qū)和非灌注區(qū)Bcl-2和Bax的表達(dá)水平,結(jié)果顯示在心肌再灌注區(qū)Bax表達(dá)增加、Bcl-2無表達(dá),在非灌注區(qū)結(jié)果相反,提示了Bax促細(xì)胞凋亡可加重心肌損傷的作用[11]。本研究結(jié)果顯示,MIRI組大鼠心肌Caspase-3及Bax水平均明顯升高,心肌細(xì)胞凋亡指數(shù)升高,證實了兩個關(guān)鍵凋亡相關(guān)因子Caspase-3及Bax均參與了MIRI的發(fā)生。
HGF是一種多效性生長因子,可以刺激各種上皮細(xì)胞的生長,同時與組織損傷、細(xì)胞凋亡等密切相關(guān)[12]。將HGF作用于經(jīng)凋亡誘導(dǎo)劑足葉乙苷處理后的慢性髓細(xì)胞性白血病K562細(xì)胞,觀察細(xì)胞凋亡情況,結(jié)果顯示HGF組Bax mRNA、Caspase-3 mRNA及Caspase-9 mRNA均低于模型組,證實HGF可通過與c-Met受體結(jié)合抑制K562細(xì)胞凋亡[13]。有研究通過建立自發(fā)性高血壓大鼠模型,用攜帶腺病毒的HGF干預(yù),檢測Bcl-2、Bax蛋白水平及心肌凋亡指數(shù),結(jié)果顯示HGF組Bcl-2表達(dá)升高,而Bax明顯降低,心肌凋亡指數(shù)下降,提示HGF可減輕高血壓導(dǎo)致的左心室細(xì)胞凋亡[14]。
有研究用HGF干預(yù)大腦缺血再灌注損傷大鼠模型,結(jié)果顯示HGF組凋亡細(xì)胞數(shù)明顯減少,Caspase-3及Bax水平降低,提示HGF可抑制腦缺血再灌注損傷神經(jīng)元的凋亡[15]。在大鼠心臟移植模型中應(yīng)用HGF干預(yù),結(jié)果顯示HGF組心肌酶下降,心肌細(xì)胞凋亡減少,證實HGF可通過抗細(xì)胞凋亡減輕大鼠心臟移植的再灌注損傷[16]。本研究結(jié)果顯示,HGF干預(yù)后Caspase-3及Bax蛋白均低于MIRI組,心肌細(xì)胞凋亡指數(shù)下降,心肌組織損傷減輕,大鼠心功能指標(biāo)改善,說明HGF通過降低Caspase-3及Bax蛋白水平抑制細(xì)胞凋亡,從而減輕MIRI并改善心功能。
HGF抗細(xì)胞凋亡的機制尚不完全明確。磷酸肌醇3-激酶(phosphatidylinositide 3-kinase,PI3K)是HGF發(fā)揮各種生物學(xué)活性重要的信號傳遞分子,包括調(diào)節(jié)細(xì)胞的分裂、分化、凋亡等作用,PI3K是由調(diào)節(jié)亞基(p85)和酶促亞基(p110)組成的二聚體,其配體磷酸激酶B(protein kinases B,Akt)是一種與PKA及PKC均有很高同源性的蛋白絲/蘇氨酸激酶[17]。PI3K調(diào)節(jié)亞基通過Src同源結(jié)構(gòu)域與HGF受體上磷酸化的酪氨酸殘基結(jié)合,從而使其磷酸化而激活PI3K,進(jìn)而促使細(xì)胞膜中的磷脂酰肌醇-4,5-二磷酸生成磷脂酰肌醇-3,4,5-二磷酸,再結(jié)合到Akt的PH結(jié)構(gòu)域上,使Akt轉(zhuǎn)移到質(zhì)膜內(nèi)側(cè),進(jìn)而磷酸化多種蛋白,發(fā)揮調(diào)節(jié)細(xì)胞代謝等多種效應(yīng)[18]。
綜上所述,HGF干預(yù)MIRI大鼠后,血清CK-MB明顯降低,同時心肌細(xì)胞凋亡指數(shù)、Caspase-3及Bax蛋白水平均明顯降低,大鼠心功能指標(biāo)得到改善,提示HGF可通過抑制細(xì)胞凋亡減輕MIRI,其具體機制需要通過更多的試驗進(jìn)一步探討。
[1] JIANG W, YIN Y, GU X, et al. Opportunities and challenges of pain-related myocardial ischemia-reperfusion injury[J]. Front Physiol, 2022, 13: 900664.
[2] RABINOVICH-NIKITIN I, KIRSHENBAUM L A. Circadian regulated control of myocardial ischemia- reperfusion injury[J]. Trends Cardiovasc Med, 2022, S1050-1738(22)00120-7.
[3] WANG L S, WANG H, ZHANG Q L et al. Hepatocyte growth factor gene therapy for ischemic diseases[J]. Hum Gene Ther, 2018, 29(4): 413–423.
[4] PINTADO M C, MACEDA L, TRASCASA M, et al. Prognostic tools at hospital arrival in acute myocardial infarction: copeptin and hepatocyte growth factor[J]. Egypt Heart J, 2022, 4(1): 35.
[5] ZHANG Z, LONG C, GUAN Y, et al. Hepatocyte growth factor intervention to reduce myocardial injury and improve cardiac function on diabetic myocardial infarction rats[J]. Eur J Histochem, 2020, 64(s2): 3142.
[6] ALGOET M, JANSSENS S, HIMMELREICH U, et al. Myocardial ischemia-reperfusion injury and the influence of inflammation[J]. Trends Cardiovasc Med, 2022, S1050-1738(22)00029-9.
[7] PARK B W, JUNG S H, DAS S, et al. In vivo priming of human mesenchymal stem cells with hepatocyte growth factor-engineered mesenchymal stem cells promotes therapeutic potential for cardiac repair[J]. Sci Adv, 2020, 6(13): eaay6994.
[8] KUNINAKA Y, ISHIDA Y, NOSAKA M et al. Forensic significance of intracardiac heme oxygenase-1 expression in acute myocardial ischemia[J]. Sci Rep, 2021, 11(1): 21828.
[9] ARAYA L E, SONI I V, HARDY J A, et al. Deorphanizing Caspase-3 and Caspase-9 substrates in and out of apoptosis with deep substrate profiling[J]. ACS Chem Biol, 2021, 16(11): 2280–2296.
[10] YUAN Z, DEWSON G, CZABOTAR P E, et al. VDAC2 and the BCL-2 family of proteins[J]. Biochem Soc Trans, 2021, 9(6): 2787–2795.
[11] SULTAN F, KAUR R, TARFAIN N U, et al. Protective effect of rosuvastatin pretreatment against acute myocardial injury by regulating Nrf2, Bcl-2/Bax, iNOS, and TNF-α expressions affecting oxidative/nitrosative stress and inflammation[J]. Hum Exp Toxicol, 2022, 41: 9603271211066065.
[12] CZYZ M. HGF/c-MET signaling in melanocytes and melanoma[J]. Int J Mol Sci, 2018, 19(12): 3844.
[13] LI B, SUN B, ZHU J, et al. Expression of RKIP in chronic myelogenous leukemia K562 cell and inhibits cell proliferation by regulating the ERK/MAPK pathway[J]. Tumour Biol, 2014, 35(10): 10057–10066.
[14] LEE H, KIM K C, HONG Y M. Changes of Bax, Bcl-2, CCR-2, MCP-1, and TGF-β1 genes in the left ventricle of spontaneously hypertensive rat after losartan treatment[J]. Korean J Pediatr, 2019, 62(3): 95–101.
[15] SAHAN O B, GUNEL-OZCAN A. Hepatocyte growth factor and insulin-like growth factor-1 based cellular therapies for oxidative stress injury[J]. Curr Stem Cell Res Ther, 2021, 16(7): 771–791.
[16] VASCO M, BENINCASA G, FILRITO C, et al. Clinical epigenetics and acute/chronic rejection in solid organ transplantation: an update[J]. Transplant Rev (Orlando), 2021, 35(2): 100609.
[17] JIA J Y, ZANG E H, LV L J, et al. Flavonoids in myocardial ischemia-reperfusion injury: therapeutic effects and mechanisms[J]. Chin Herb Med, 2020, 28, 13(1): 49–63.
[18] ZHANG P, GUO Z F, XU Y M, et al. N-Butylphthalide (NBP) ameliorated cerebral ischemia reperfusion- induced brain injury via HGF-regulated TLR4/NF-κB signaling pathway[J]. Biomed Pharmacother, 2016, 83: 658–666.
Effect of HGF on myocardial injury by inhibiting apoptosis
LIANG Mingting, GONG Ying, SHANG Kunpeng, JIA Guotao, PANG Ying
1.Department of Cardiology, Liaocheng People’s Hospital, Liaocheng 252000, Shandong, China; 2.Department of Pathology, Liaocheng People’s Hospital, Liaocheng 252000, Shandong, China
To observe the effect of hepatocyte growth factor (HGF) on apoptosis of myocardial ischemia-reperfusion injury (MIRI) in rats by constructing a model of MIRI with HGF intervention.A total of 24 male Wistar rats were divided into sham-operated group (=8), MIRI group (=8) and HGF group (=8) according to the random number table method. The sham-operation group was only threaded without ligation, the MIRI group ligated the left anterior descending branch of rats for 30 minutes and then perfused for 180 minutes, and the HGF group was given a tail vein injection of HGF (1mg/kg) at the same time as ligating the anterior descending branch of rats. The serum creatine kinase isoenzyme (CK-MB) level was measured in each group, the apoptotic index of cardiomyocytes was determined by TUNEL method, the expression of Caspase-3 and Bax protein was detected by immunohistochemistry, and the cardiac function of rats was examined by echocardiography.Compared with the sham-operated group, serum CK-MB, cardiomyocyte apoptotic index, Caspase-3 and Bax protein expression, left ventricular end systolic diameter (LVESD), left ventricular end diastolic diameter (LVEDD), left ventricular end diastolic volume (LVEDV), left ventricular end systolic volume (LVESV), left ventricular mass index (LVMI), and left ventricular mass index (LVMI). were significantly higher (<0.05), and left ventricular ejection fraction (LVEF) was significantly lower in the MIRI group (<0.05). Compared with the MIRI group, serum CK-MB, cardiomyocyte apoptotic index, Caspase-3 and Bax protein expression, LVESD, LVEDD, LVEDV, LVESV and LVMI were significantly lower (<0.05), and LVEF was significantly higher in the HGF group (<0.05).HGF can reduce myocardial ischemia reperfusion injury and improve cardiac function of rats by inhibiting cardiomyocyte apoptosis.
Hepatocyte growth factor; Myocardial ischemia-reperfusion injury; Apoptosis
R542.2
A
10.3969/j.issn.1673-9701.2023.23.012
龐英,電子信箱:piaoyang523@163.com
(2023–02–23)
(2023–03–20)