摘要綜述腸道菌群在心力衰竭中的作用。心力衰竭作為各種心臟疾病發(fā)展的最終階段,致殘率和死亡率較高,目前的治療側(cè)重于改善臨床癥狀和生活質(zhì)量,預(yù)防或逆轉(zhuǎn)心臟重構(gòu)。人體腸道菌群種類(lèi)繁雜、數(shù)量龐大,產(chǎn)生的多種代謝產(chǎn)物在炎癥、代謝、免疫等方面深刻影響著人體健康,多項(xiàng)研究證實(shí)腸道菌群及其代謝產(chǎn)物參與了心力衰竭的整個(gè)進(jìn)程。因此,探究心力衰竭病人的腸道菌群及其代謝產(chǎn)物的動(dòng)態(tài)變化和作用途徑,已成為目前心力衰竭領(lǐng)域的一大研究熱點(diǎn),也為心力衰竭的治療帶來(lái)了新的希望。隨著代謝組學(xué)和宏基因組學(xué)的發(fā)展,這些研究將為心力衰竭的預(yù)防、診斷和治療提供新視角和新思路。
關(guān)鍵詞心力衰竭;腸道菌群;短鏈脂肪酸;炎癥;綜述
doi:10.12102/j.issn.1672-1349.2023.23.015
心力衰竭(heart failure,HF)是由于心臟功能和(或)結(jié)構(gòu)發(fā)生變化,導(dǎo)致全心排血量減少,組織器官發(fā)生缺血缺氧引起的一系列綜合征。目前,我國(guó)35歲以上成年人心力衰竭的患病率約為1.3%,全國(guó)大約有2 000萬(wàn)例心力衰竭病人,其中,多數(shù)為65歲以上的老年人,而75歲以上的老年人心力衰竭的患病率達(dá)4.1%[1-2]。據(jù)報(bào)道,心力衰竭病人的5年存活率為50%,并且隨病程的延長(zhǎng),生存率降低[3]。心力衰竭病人由于心功能不全,心排血量減少,導(dǎo)致腸道缺血及灌注量降低,繼而發(fā)生腸黏膜缺血或水腫[4]。腸道缺血可引發(fā)腸道通透性增加和腸道屏障功能障礙,刺激菌群易位,導(dǎo)致其代謝產(chǎn)物短鏈脂肪酸(short chain fatty acid,SCFAs)、脂多糖(lipopolysaccharide,LPS)、氧化三甲胺(trimetlylamine oxide,TMAO)、膽汁酸(bile acid,BA)和部分氨基酸的失衡[5]。這些物質(zhì)經(jīng)腸道上皮吸收,通過(guò)門(mén)靜脈入血,又會(huì)最終加速心血管疾病的發(fā)展,造成心血管和腸道之間的惡性循環(huán)[6]。本研究對(duì)腸道菌群在心力衰竭中的作用進(jìn)行綜述。
1腸道菌群及代謝產(chǎn)物
1.1代謝產(chǎn)物SCFAs
SCFAs是由膳食纖維經(jīng)腸道菌群厭氧發(fā)酵產(chǎn)生,主要包括乙酸、丙酸和丁酸[7]。Cui等[8]利用宏基因組和代謝組學(xué)分析顯示,與正常對(duì)照人群比較,心力衰竭病人腸道菌群中參與產(chǎn)生乙酸、丙酸和丁酸等SCFAs的細(xì)菌數(shù)量減少,其中以普拉梭菌(faecalibacterium prausnitzii)減少為基本特征[8-9]。普拉梭菌是丁酸的主要產(chǎn)生者之一,同時(shí)也是一種重要的抗炎共生菌[10-11],腸道中普拉梭菌的缺失可能導(dǎo)致其抗炎功能的降低,加重慢性炎癥[12]。輔酶a轉(zhuǎn)移酶是合成丁酸的關(guān)鍵酶,研究表明,心力衰竭病人腸道菌群中產(chǎn)生丁酸鹽丁酸-乙酰乙酸輔酶a轉(zhuǎn)移酶的微生物基因顯著減少[8]。Sun等[13]研究顯示,主要代謝產(chǎn)物為SCFAs的戴阿利斯特桿菌屬(dialister)的減少是慢性心力衰竭病人的腸道菌群的變化特征之一。
1.1.1抗炎
在炎癥方面,SCFAs可通過(guò)激活G蛋白偶聯(lián)受體(G-protein-coupled receptors,GPRs)減少炎性因子的產(chǎn)生,如乙酸可減少白細(xì)胞介素-6(interleukin-6,IL-6)和白細(xì)胞介素-8(interleukin-8,IL-8)的產(chǎn)生;丙酸和丁酸可減少I(mǎi)L-6的產(chǎn)生;丁酸鹽通過(guò)激活G蛋白偶聯(lián)受體43(G protein-coupled receptor43,GPR43)誘導(dǎo)調(diào)節(jié)性T細(xì)胞(regulatory T cells,Treg)增殖,抑制輔助性T細(xì)胞17(T helper cell 17,Th17)生成發(fā)揮抗炎作用,從而抑制炎癥反應(yīng)和心力衰竭進(jìn)展[10-12,14-17]。
1.1.2腸黏膜完整性
丁酸鹽和丙酸鹽可以通過(guò)影響腸上皮細(xì)胞的局部氧氣消耗,誘導(dǎo)缺氧誘導(dǎo)因子趨于穩(wěn)定,從而促進(jìn)缺氧誘導(dǎo)因子在維持屏障完整性方面的重要作用[18]。
1.1.3心肌細(xì)胞供能
在代謝方面,SCFAs不僅可以通過(guò)激活GPRs和AMP依賴(lài)的蛋白激酶(AMP-activated protein kinase,AMPK)提高胰島素敏感性,調(diào)節(jié)碳水化合物的代謝,也可以增加生酮氨基酸和酮體的產(chǎn)量,其被認(rèn)為是衰竭心肌的能量來(lái)源之一[19]。
1.2代謝產(chǎn)物TMAO
三甲胺(trimethylamine,TMA)是由腸道菌群經(jīng)過(guò)TMA裂解酶對(duì)含有TMA部分(如膽堿、磷脂酰膽堿和左旋肉堿)的膳食營(yíng)養(yǎng)物質(zhì)代謝后產(chǎn)生的有機(jī)化合物。TMA通過(guò)門(mén)靜脈循環(huán)運(yùn)輸?shù)礁闻K,經(jīng)肝臟中的黃素單加氧酶(flavin-containing monooxygenase 3,F(xiàn)MO3)氧化形成TMAO[20]。Romano等[21]采用超高壓液相色譜-串聯(lián)質(zhì)譜發(fā)現(xiàn),厚壁菌門(mén)和變形菌門(mén)中的8個(gè)屬能將膽堿轉(zhuǎn)化為T(mén)MA,即氫化厭氧菌(anaerococcus hydrogenalis)、天冬酰胺梭菌(clostridium asparagiforme)、哈氏梭菌(clostridium hathewayi)、生孢梭菌(clostridium sporogenes)、弗氏埃希氏菌(escherichia fergusonii)、彭氏變形桿菌(proteus penneri)、雷氏普羅威登斯菌(providencia rettgeri)和遲緩愛(ài)德華氏菌(edwardsiella tarda)。在另一項(xiàng)基于代謝組學(xué)的研究中,心力衰竭病人血漿中的TMAO水平升高,同時(shí)心力衰竭的死亡風(fēng)險(xiǎn)也增加了3.4倍[22]。有研究還采用宏基因組學(xué)技術(shù)分析,發(fā)現(xiàn)慢性心力衰竭病人產(chǎn)生TMAO的關(guān)鍵酶TMA裂解酶的微生物基因豐度顯著上調(diào)[23]。TMAO對(duì)于心力衰竭的作用利弊均有,但目前大多數(shù)研究認(rèn)為T(mén)MAO可以通過(guò)誘導(dǎo)心肌的肥厚和纖維化、血管內(nèi)皮細(xì)胞的炎癥以及心臟線粒體功能障礙等方面加速心力衰竭的發(fā)展。
1.2.1心肌肥厚和纖維化
研究發(fā)現(xiàn),TMAO在體外和體內(nèi)均可直接刺激心臟肥厚和纖維化,并可能通過(guò)SMAD3信號(hào)通路刺激心肌肥厚[20]。另外,TMAO可以通過(guò)直接激活核轉(zhuǎn)錄因子-κB(nuclear factor-κ-gene binding,NF-κB)炎癥通路和間接激活NLRP3(NOD-like receptor thermal protein domain associated protein 3)炎性小體來(lái)誘導(dǎo)血管炎癥,進(jìn)一步加重心力衰竭[24]。TMAO也可能通過(guò)升高腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)水平和降低白細(xì)胞介素-10(interleukin-10,IL-10)水平誘導(dǎo)心肌炎癥,促進(jìn)心肌纖維化[25]。
1.2.2血管內(nèi)皮炎癥
Ma等[26]研究證實(shí),TMAO通過(guò)激活蛋白激酶C(protein kinase C,PKC)和NF-κB上調(diào)血管細(xì)胞黏附分子-1的表達(dá),導(dǎo)致血管內(nèi)皮自愈能力降低和單核細(xì)胞黏附增加,誘導(dǎo)血管內(nèi)皮炎癥,最終導(dǎo)致動(dòng)脈粥樣硬化的發(fā)生。
1.2.3線粒體功能障礙
Makrecka-Kuka等[27]研究發(fā)現(xiàn),小鼠血漿中升高的TMAO通過(guò)影響丙酮酸和脂肪酸氧化影響心臟能量代謝和線粒體功能,最終導(dǎo)致心室重塑和心力衰竭發(fā)展。Savi等[28]指出TMAO誘導(dǎo)線粒體功能障礙導(dǎo)致細(xì)胞的能量產(chǎn)生減少,并損傷心肌細(xì)胞的收縮功能和細(xì)胞內(nèi)鈣處理。
1.2.4利尿
心力衰竭的一個(gè)關(guān)鍵特征是液體滯留,因此利尿和利鈉是心力衰竭治療的關(guān)鍵,TMAO的有益作用之一則是可以促進(jìn)利尿和利鈉。利用大鼠進(jìn)行的急慢性實(shí)驗(yàn)均表明TMAO的利尿和利鈉作用屬于滲透性利尿,且TMAO的利尿作用明顯強(qiáng)于尿素[29]。
1.3代謝產(chǎn)物膽汁酸
膽汁酸是由膽固醇在肝細(xì)胞中產(chǎn)生,并由膽管排入小腸,經(jīng)腸道菌群的化學(xué)修飾形成次級(jí)膽汁酸,其中大部分被回腸重新吸收并返回肝臟,這個(gè)過(guò)程被稱(chēng)為腸肝循環(huán)[30]。當(dāng)小部分未被吸收的膽汁酸進(jìn)入末端回腸、盲腸和結(jié)腸時(shí),腸道菌群主要通過(guò)3種途徑對(duì)其進(jìn)行分子修飾,即去連接、脫氫和去羥基反應(yīng)[31]。初級(jí)膽汁酸通過(guò)膽鹽水解酶(bile salt hydrolase,BSH)迅速解除連接轉(zhuǎn)化為游離膽汁酸,從而在腸道菌群中廣泛存在[32]。而在這3種作用中,BSH對(duì)膽汁酸的去連接作用最為重要。經(jīng)宏基因組篩選發(fā)現(xiàn),產(chǎn)生BSHs主要有厚壁菌門(mén)(30.0%)、擬桿菌門(mén)(14.4%)和放線菌門(mén)(8.9%)[33]。與此相一致的是,有研究顯示,心力衰竭病人腸道中厚壁菌門(mén)的數(shù)量顯著減少[13]。
1.3.1細(xì)菌殺傷作用
膽汁酸對(duì)細(xì)菌的作用主要體現(xiàn)為其對(duì)細(xì)胞膜的損傷,膽汁酸可以直接與細(xì)菌細(xì)胞膜上的磷脂結(jié)合,破壞細(xì)胞膜結(jié)構(gòu),最終導(dǎo)致細(xì)菌的死亡[34]。另外,膽汁酸可以造成DNA損傷,并激活細(xì)菌和哺乳動(dòng)物細(xì)胞中參與DNA修復(fù)的酶。膽汁的洗滌作用可能導(dǎo)致蛋白質(zhì)發(fā)生錯(cuò)誤折疊或變性[35]。
1.3.2抗炎
膽汁酸與脂質(zhì)、膽固醇、葡萄糖代謝也密切相關(guān),研究表明,其可以通過(guò)激活法尼醇X受體(farnesoid X receptor,F(xiàn)XR)或膽汁酸膜受體5(takeda G protein-coupled receptor 5,TGR5,又稱(chēng)GPBAR1)受體作為信號(hào)分子[34]。在小鼠實(shí)驗(yàn)中,F(xiàn)XR激活可以降低炎癥生物標(biāo)志物,如IL-1β、IL-6和CD11b在主動(dòng)脈表達(dá),從而阻止小鼠的主動(dòng)脈硬化[32]。此外,F(xiàn)XR和TGR5都可以降低腸上皮的通透性,并維持其的完整性[36-38]。心力衰竭中厚壁菌門(mén)減少和擬桿菌門(mén)增加將導(dǎo)致TGR5和FXR活性降低,并可能成為影響心力衰竭的重要原因。膽汁酸可通過(guò)PKA(TGR5-cAMP Protein kinase A)軸抑制NLRP3炎癥小體激活,從而改善心力衰竭的全身炎癥[30]。同時(shí)TGR5可以直接抑制NF-κB,降低巨噬細(xì)胞脂質(zhì)堆積和斑塊內(nèi)炎癥反應(yīng)進(jìn)而預(yù)防動(dòng)脈粥樣硬化[32]。另外,膽汁酸激活FXR受體誘導(dǎo)FMO3的表達(dá),表明腸道菌群代謝產(chǎn)物之間有密切的相互作用[20]。
1.4代謝產(chǎn)物L(fēng)PS
LPS是革蘭陰性菌外膜的主要成分,其結(jié)構(gòu)由脂質(zhì)和糖類(lèi)組成。由于人類(lèi)胃腸道中存在幾百萬(wàn)億種細(xì)菌,腸道菌群可能是血液LPS的主要來(lái)源。對(duì)健康正常人來(lái)說(shuō),腸道-血液屏障會(huì)阻止LPS進(jìn)入循環(huán)血液。然而,心力衰竭病人腸道菌群失調(diào)導(dǎo)致的腸漏使LPS更容易進(jìn)入血液,從而誘導(dǎo)全身炎癥。除了腸道菌群外,食物也是LPS的天然來(lái)源[39]。
1.4.1動(dòng)脈粥樣硬化
在一項(xiàng)臨床研究中,冠心病病人腸道菌群中B.vulgatus和B.dorei菌相對(duì)減少,實(shí)驗(yàn)發(fā)現(xiàn),口服B.vulgatus和B.dorei可以降低糞便和血漿LPS濃度,保護(hù)小鼠抗動(dòng)脈粥樣硬化[40]。動(dòng)脈粥樣硬化是冠心病的主要病因,LPS可以誘導(dǎo)巨噬細(xì)胞攝取氧化修飾低密度脂蛋白并促進(jìn)泡沫細(xì)胞形成,表明LPS是致動(dòng)脈粥樣硬化的誘發(fā)因素[41]。研究表明,活擬桿菌灌胃可以誘導(dǎo)血漿LPS濃度降低,抑制與動(dòng)脈粥樣硬化發(fā)病機(jī)制相關(guān)的全身固有免疫細(xì)胞激活和TH1細(xì)胞(T helper cell 1)驅(qū)動(dòng)的炎癥反應(yīng)[40]。
1.4.2促炎
LPS與腸道菌群的另一代謝產(chǎn)物SCFAs關(guān)系密切。Dou等[42]通過(guò)向腹腔注射LPS和灌胃丁酸鈉(NaB),發(fā)現(xiàn)NaB可減輕LPS引起的腸絨毛損傷和炎癥浸潤(rùn),緩解LPS誘導(dǎo)的核萎縮、細(xì)胞凋亡、線粒體損傷和破裂,還可以調(diào)節(jié)腸道屏障改善LPS誘導(dǎo)的炎癥反應(yīng)。16S rRNA測(cè)序結(jié)果顯示,LPS增加了有害菌擬桿菌的豐度,而減少了有益細(xì)菌的豐度。而當(dāng)心力衰竭病人腸道中產(chǎn)生丁酸的細(xì)菌丟失可能導(dǎo)致腸道黏膜屏障功能障礙,促進(jìn)LPS等微生物毒素入血,從而引發(fā)炎癥[43]。
1.5代謝產(chǎn)物色氨酸和苯丙氨酸
1.5.1心肌肥厚
慢性心力衰竭病人腸道菌群中有關(guān)色氨酸的微生物基因升高[44]。色氨酸是人體不能自我合成的一種氨基酸,當(dāng)食物中的蛋白質(zhì)進(jìn)入人體腸道,蛋白質(zhì)水解產(chǎn)生的色氨酸經(jīng)腸道和菌群的雙重作用生成吲哚類(lèi)物質(zhì),吲哚硫酸酚(indoxyl sulfate,IS)就是其中一種。Tumur等[45-46]研究發(fā)現(xiàn),IS通過(guò)激活絲裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)和NF-κB介導(dǎo)的通路對(duì)培養(yǎng)的心肌細(xì)胞具有促肥厚作用。Yang等[47]研究表明,IS可引起小鼠心室壁厚度明顯增加,心臟相對(duì)體重升高,左室內(nèi)徑舒張期減少,左室后壁厚度舒張期增加,出現(xiàn)類(lèi)似心力衰竭的癥狀。
1.5.2預(yù)測(cè)心力衰竭
作為腸道菌群的代謝產(chǎn)物,苯丙氨酸與心力衰竭的關(guān)系更為密切。Delles等[48]利用代謝組學(xué)進(jìn)行數(shù)據(jù)分析顯示,苯丙氨酸可以預(yù)測(cè)心力衰竭的發(fā)生,即苯丙氨酸水平升高可以直接預(yù)測(cè)心力衰竭病人的死亡,獨(dú)立于與炎癥和免疫因素[49]。
2小結(jié)與展望
近年來(lái),隨著腸道菌群研究的發(fā)展,很多人發(fā)現(xiàn)其在心力衰竭治療中可能發(fā)揮巨大的作用,對(duì)心力衰竭的炎癥、免疫等有直接影響。但是目前的研究還存在諸多問(wèn)題,人類(lèi)腸道菌群數(shù)目龐雜,菌群的分類(lèi)又極其復(fù)雜,因此怎樣確定心力衰竭中的特定菌群的變化以及找到治療心力衰竭的靶向菌群會(huì)是未來(lái)研究的一大重點(diǎn)。此外,臨床試驗(yàn)中不同的人種、地理環(huán)境、飲食及鼠類(lèi)試驗(yàn)動(dòng)物與人類(lèi)的腸菌變化是否一致,都是需要解決的問(wèn)題。現(xiàn)階段,研究人員通過(guò)宏基因組分析和代謝組學(xué)等方法,希望找到心力衰竭中腸道菌群及其代謝產(chǎn)物的變化,更加深刻地認(rèn)識(shí)心血管疾病和腸道菌群之間的聯(lián)系,從而通過(guò)改變腸道菌群及其代謝產(chǎn)物,預(yù)防心力衰竭或延緩心力衰竭的進(jìn)程。
參考文獻(xiàn):
[1]HAO G,WANG X,CHEN Z,et al.Prevalence of heart failure and left ventricular dysfunction in China:the China hypertension survey,2012-2015[J].European Journal of Heart Failure,2019,21(11):1329-1337.
[2]王華,李瑩瑩,柴坷,等.中國(guó)住院心力衰竭患者流行病學(xué)及治療現(xiàn)狀[J].中華心血管病雜志,2019,47(11):865-874.
[3]GROENEWEGEN A,RUTTEN F H,MOSTERD A,et al.Epidemiology of heart failure[J].European Journal of Heart Failure,2020,22(8):1342-1356.
[4]KATSIMICHAS T,OHTANI T,MOTOOKA D,et al.Non-ischemic heart failure with reduced ejection fraction is associated with altered intestinal microbiota[J].Circulation Journal,2018,82(6):1640-1650.
[5]WANG S C,ZHANG J Q,WANG Y L,et al.NLRP3 inflammasome as a novel therapeutic target for heart failure[J].Anatolian Journal of Cardiology,2022,26(1):15-22.
[6]NAGATOMO Y,WILSON TANG W H.Intersections between microbiome and heart failure:revisiting the gut hypothesis[J].Journal of Cardiac Failure,2015,21(12):973-980.
[7]BADEJOGBIN C,AREOLA D E,OLANIYI K S,et al.Sodium butyrate recovers high-fat diet-fed female wistar rats from glucose dysmetabolism and uric acid-associated cardiac tissue damage[J].Naunyn-Schmiedeberg′s Archives of Pharmacology,2019,392(11):1411-1419.
[8]CUI X,YE L,LI J,et al.Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients[J].Scientific Reports,2018,8(1):635.
[9]LUEDDE M,WINKLER T,HEINSEN F A,et al.Heart failure is associated with depletion of core intestinal microbiota[J].ESC Heart Failure,2017,4(3):282-290.
[10]LI M,VAN ESCH B C A M,HENRICKS P A J,et al.The anti-inflammatory effects of short chain fatty acids on lipopolysaccharide-or tumor necrosis factor α-stimulated endothelial cells via activation of GPR41/43 and inhibition of HDACs[J].Frontiers in Pharmacology,2018,9:533.
[11]WEBER G J,F(xiàn)OSTER J,PUSHPAKUMAR S B,et al.Altered microRNA regulation of short chain fatty acid receptors in the hypertensive kidney is normalized with hydrogen sulfide supplementation[J].Pharmacological Research,2018,134:157-165.
[12]TANG W H W,LI D Y,HAZEN S L.Dietary metabolism,the gut microbiome,and heart failure[J].Nature Reviews Cardiology,2019,16(3):137-154.
[13]SUN W J,DU D B,F(xiàn)U T Z,et al.Alterations of the gut microbiota in patients with severe chronic heart failure[J].Frontiers in Microbiology,2022,12:813289.
[14]SAH S K,KIM B H,PARK G T,et al.Novel isonahocol E3 exhibits anti-inflammatory and anti-angiogenic effects in endothelin-1-stimulated human keratinocytes[J].European Journal of Pharmacology,2013,720(1/2/3):205-211.
[15]ESQUIVEL-RENDN E,VARGAS-MIRELES J,CUEVAS-OLGUN R,et al.Interleukin 6 dependent synaptic plasticity in a social defeat-susceptible prefrontal cortex circuit[J].Neuroscience,2019,414:280-296.
[16]SIVAPRAKASAM S,PRASAD P D,SINGH N.Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis[J].Pharmacology amp; Therapeutics,2016,164:144-151.
[17]BHASKARAN N,QUIGLEY C,PAW C,et al.Role of short chain fatty acids in controlling tregs and immunopathology during mucosal infection[J].Frontiers in Microbiology,2018,9:1995.
[18]KELLY C J,ZHENG L,CAMPBELL E L,et al.Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function[J].Cell Host amp; Microbe,2015,17(5):662-671.
[19]CHALLA A A,LEWANDOWSKI E D.Short-chain carbon sources:exploiting pleiotropic effects for heart failure therapy[J].JACC Basic to Translational Science,2022,7(7):730-742.
[20]CHIONCEL O,AMBROSY A P.Trimethylamine N-oxide and risk of heart failure progression:marker or mediator of disease[J].European Journal of Heart Failure,2019,21(7):887-890.
[21]ROMANO K A,VIVAS E I,AMADOR-NOGUEZ D,et al.Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide[J].mBio,2015,6(2):e02481.
[22]TANG W H,WANG Z N,F(xiàn)AN Y Y,et al.Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure:refining the gut hypothesis[J].Journal of the American College of Cardiology,2014,64(18):1908-1914.
[23]DRAPALA A,SZUDZIK M,CHABOWSKI D,et al.Heart failure disturbs gut-blood barrier and increases plasma trimethylamine,a toxic bacterial metabolite[J].International Journal of Molecular Sciences,2020,21(17):6161.
[24]CHEN M L,ZHU X H,RAN L,et al.Trimethylamine-N-oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway[J].Journal of the American Heart Association,2017,6(9):e006347.
[25]ZHANG H Q,MENG J,YU H Y.Trimethylamine N-oxide supplementation abolishes the cardioprotective effects of voluntary exercise in mice fed a western diet[J].Frontiers in Physiology,2017,8:944.
[26]MA G H,PAN B,CHEN Y,et al.Trimethylamine N-oxide in atherogenesis:impairing endothelial self-repair capacity and enhancing monocyte adhesion[J].Bioscience Reports,2017,37(2):BSR20160244.
[27]MAKRECKA-KUKA M,VOLSKA K,ANTONE U,et al.Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria[J].Toxicology Letters,2017,267:32-38.
[28]SAVI M,BOCCHI L,BRESCIANI L,et al.Trimethylamine-N-oxide (TMAO)-induced impairment of cardiomyocyte function and the protective role of urolithin B-glucuronide[J].Molecules,2018,23(3):549.
[29]GAWRYS-KOPCZYNSKA M,KONOP M,MAKSYMIUK K,et al.TMAO,a seafood-derived molecule,produces diuresis and reduces mortality in heart failure rats[J].eLife,2020,9:e57028.
[30]CAI J,SUN L L,GONZALEZ F J.Gut microbiota-derived bile acids in intestinal immunity,inflammation,and tumorigenesis[J].Cell Host amp; Microbe,2022,30(3):289-300.
[31]LI T G,CHIANG J Y L.Bile acid signaling in metabolic disease and drug therapy[J].Pharmacological Reviews,2014,66(4):948-983.
[32]RYAN P M,STANTON C,CAPLICE N M.Bile acids at the cross-roads of gut microbiome-host cardiometabolic interactions[J].Diabetology amp; Metabolic Syndrome,2017,9:102.
[33]WINSTON J A,THERIOT C M.Diversification of host bile acids by members of the gut microbiota[J].Gut Microbes,2020,11(2):158-171.
[34]GRARD P.Metabolism of cholesterol and bile acids by the gut microbiota[J].Pathogens,2013,3(1):14-24.
[35]BEGLEY M,GAHAN C G M,HILL C.The interaction between bacteria and bile[J].FEMS Microbiology Reviews,2005,29(4):625-651.
[36]BRANCHEREAU M,BURCELIN R,HEYMES C.The gut microbiome and heart failure:a better gut for a better heart[J].Reviews in Endocrine amp; Metabolic Disorders,2019,20(4):407-414.
[37]GUO X H,OKPARA E S,HU W T,et al.Interactive relationships between intestinal flora and bile acids[J].International Journal of Molecular Sciences,2022,23(15):8343.
[38]CIPRIANI S,MENCARELLI A,CHINI M G,et al.The bile acid receptor GPBAR-1(TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis[J].PLoS One,2011,6(10):e25637.
[39]YAMASHITA T,YOSHIDA N,EMOTO T,et al.Two gut microbiota-derived toxins are closely associated with cardiovascular diseases:a review[J].Toxins,2021,13(5):297.
[40]YOSHIDA N,EMOTO T,YAMASHITA T,et al.Bacteroides vulgatus and bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis[J].Circulation,2018,138(22):2486-2498.
[41]AN D,HAO F,HU C,et al.JNK1 mediates lipopolysaccharide-induced CD14 and SR-AI expression and macrophage foam cell formation[J].Frontiers in Physiology,2018,8:1075.
[42]DOU X J,MA Z W,YAN D,et al.Sodium butyrate alleviates intestinal injury and microbial flora disturbance induced by lipopolysaccharides in rats[J].Food amp; Function,2022,13(3):1360-1369.
[43]MTAB C,GYA D,KB E,et al.The gut microbiome in coronary artery disease and heart failure:current knowledge and future directions[J].EBioMedicine,2020.DOI:10.1016/j.ebiom.2020.102649.
[44]LUO Q,HU Y L,CHEN X,et al.Effects of gut microbiota and metabolites on heart failure and its risk factors:a two-sample mendelian randomization study[J].Frontiers in Nutrition,2022,9:899746.
[45]TUMUR Z,NIWA T.Indoxyl sulfate inhibits nitric oxide production and cell viability by inducing oxidative stress in vascular endothelial cells[J].American Journal of Nephrology,2009,29(6):551-557.
[46]TUMUR Z,SHIMIZU H,ENOMOTO A,et al.Indoxyl sulfate upregulates expression of ICAM-1 and MCP-1 by oxidative stress-induced NF-kappaB activation[J].American Journal of Nephrology,2010,31(5):435-441.
[47]YANG K,WANG C,NIE L,et al.Klotho protects against indoxyl sulphate-induced myocardial hypertrophy[J].Journal of the American Society of Nephrology,2015,26(10):2434-2446.
[48]DELLES C,RANKIN N J,BOACHIE C,et al.Nuclear magnetic resonance-based metabolomics identifies phenylalanine as a novel predictor of incident heart failure hospitalisation:results from PROSPER and FINRISK 1997.[J].Wiley,2018.DOI:10.1002/EJHF.1076.
[49]CHEN W S,WANG C H,CHENG C W,et al.Elevated plasma phenylalanine predicts mortality in critical patients with heart failure[J].ESC Heart Failure,2020,7(5):2884-2893.
(收稿日期:2022-10-10)
(本文編輯鄒麗)