亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        與函數(shù)零點(diǎn)相關(guān)的參數(shù)范圍求解問(wèn)題的策略分析

        2022-12-19 07:56:46葉啟海范習(xí)昱
        數(shù)理化解題研究 2022年34期
        關(guān)鍵詞:交點(diǎn)零點(diǎn)圖象

        葉啟海 范習(xí)昱

        (江蘇省鎮(zhèn)江市丹徒高級(jí)中學(xué) 212143)

        函數(shù)零點(diǎn)問(wèn)題因?yàn)樯婕暗交境醯群瘮?shù)的圖象和性質(zhì)、導(dǎo)數(shù)的應(yīng)用,又滲透著轉(zhuǎn)化化歸、數(shù)形結(jié)合、函數(shù)與方程等思想方法,在培養(yǎng)思維的靈活性和創(chuàng)造性等方面起到了非常明顯的作用,且對(duì)學(xué)生的綜合素質(zhì)提出了很高的要求,學(xué)生處理起來(lái)感到棘手,下文從四個(gè)方面加以分類例析.

        1函數(shù)與方程思想,直接求根策略

        A.[-1,2)∪[3,+∞) B.[1,2)∪[3,+∞)

        C.[1,2)∪[2,+∞) D.[1,+∞)

        解析令x2-2x-3=0,可得x=-1或x=3.

        令ln(x-1)=0,可得x=2.

        因?yàn)閤-1>0,所以x>1.

        所以λ>1.

        作出圖象(如圖1),結(jié)合圖象可得1≤λ<2或λ≥3時(shí),f(x)恰有兩零點(diǎn).故選B.

        圖1

        解析(1)不等式的解集為1,4.(過(guò)程略)

        圖2

        (2)作出函數(shù)y=x-4與y=x2-4x+3的圖象,如圖2所示,由圖可知,當(dāng)λ≤1時(shí),函數(shù)fx有1個(gè)零點(diǎn);

        當(dāng)1<λ≤3時(shí),函數(shù)f(x)有2個(gè)零點(diǎn);

        當(dāng)3<λ≤4時(shí),函數(shù)fx有3個(gè)零點(diǎn);

        當(dāng)λ>4時(shí),函數(shù)fx有2個(gè)零點(diǎn).

        所以當(dāng)函數(shù)fx有2個(gè)零點(diǎn)時(shí),λ的取值范圍為1,3∪4,+∞.

        點(diǎn)評(píng)根據(jù)零點(diǎn)的定義,函數(shù)fx零點(diǎn)是方程fx=0的根,因此利用函數(shù)與方程思想直接求根策略是處理零點(diǎn)參數(shù)問(wèn)題的首要策略.這兩個(gè)案例的參數(shù)都是分段函數(shù)分界出的自變量的取值,我們可以先直接求出每段的零點(diǎn),然后將參數(shù)與這些零點(diǎn)的關(guān)系進(jìn)行討論,不難得出結(jié)果.

        2 轉(zhuǎn)化與化歸思想,數(shù)形結(jié)合策略

        A.(0,1) B.(0,2) C.(0,3) D.(1,3)

        解析畫出函數(shù)f(x)的圖象,如圖3所示.

        圖3

        等價(jià)于方程f(x)-a=0有三個(gè)不同的實(shí)數(shù)根,即y=f(x)和y=a的圖象有3個(gè)不同的交點(diǎn),結(jié)合圖象,0

        A.[-1,0] B.[0,+∞)

        C.[-1,+∞) D.[1,+∞)

        解析函數(shù)g(x)=f(x)+x+a存在2個(gè)零點(diǎn),即關(guān)于x的方程f(x)=-x-a有2 個(gè)不同的實(shí)根,函數(shù)fx的圖象與直線y=-x-a有2個(gè)交點(diǎn),作出直線y=-x-a與函數(shù)f(x)的圖象,如圖4,由圖可知,-a≤1,解得a≥-1,故選C.

        圖4

        圖5 圖6 圖7

        故選D.

        點(diǎn)評(píng)函數(shù)零點(diǎn)是函數(shù)與x軸交點(diǎn)的橫坐標(biāo),具有很強(qiáng)的幾何特征,采取數(shù)形結(jié)合的策略是處理函數(shù)零點(diǎn)問(wèn)題的最為常見(jiàn)而有效的策略.這一策略基于一種轉(zhuǎn)化與化歸的思想,即方程f(x)=0有實(shí)數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點(diǎn)的橫坐標(biāo)?函數(shù)y=f(x)有零點(diǎn),圍繞三者之間的關(guān)系,是可以探求參數(shù)的范圍.例3轉(zhuǎn)化為函數(shù)圖象與一條水平直線的交點(diǎn)問(wèn)題,例4轉(zhuǎn)化為函數(shù)圖象與一組平行直線的交點(diǎn)問(wèn)題,例5轉(zhuǎn)化為函數(shù)圖象與斜率變化的直線交點(diǎn)問(wèn)題,這里解題的關(guān)鍵是運(yùn)用運(yùn)動(dòng)的觀點(diǎn),立足參數(shù)的幾何含義和題目中有關(guān)零點(diǎn)的條件,加以分類討論從而解決參數(shù)范圍.

        3 轉(zhuǎn)化與化歸思想,導(dǎo)數(shù)分析策略

        A.a<-1,b<0 B.a<-1,b>0

        C.a>-1,b<0 D.a>-1,b>0

        根據(jù)題意函數(shù)y=f(x)-ax-b恰有3個(gè)零點(diǎn),則函數(shù)y=f(x)-ax-b在(-∞,0)上有一個(gè)零點(diǎn),在[0,+∞)上有2個(gè)零點(diǎn),如圖8:

        圖8

        所以a>-1,b<0.故選C.

        例7(2020年全國(guó)卷(文科)(新課標(biāo)Ⅰ))已知函數(shù)f(x)=ex-a(x+2).

        (1)當(dāng)a=1時(shí),討論f(x)的單調(diào)性;

        (2)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍.

        解析(1)當(dāng)a=1時(shí),f(x)的單調(diào)遞減區(qū)間為(-∞,0),單調(diào)遞增區(qū)間為(0,+∞);

        (2)若f(x)有兩個(gè)零點(diǎn),即ex-a(x+2)=0有兩個(gè)解.

        令h′(x)>0,解得x>-1,

        令h′(x)<0,解得x<-2或-2

        所以函數(shù)h(x)在(-∞,-2)和(-2,-1)上單調(diào)遞減,在(-1,+∞)上單調(diào)遞增,且當(dāng)x<-2時(shí),h(x)<0,而x→-2+時(shí),h(x)→+∞,當(dāng)x→+∞時(shí),h(x)→+∞.

        點(diǎn)評(píng)根據(jù)零點(diǎn)個(gè)數(shù)判斷一個(gè)或多個(gè)參數(shù)的范圍問(wèn)題,其難度較大,但解題基本思路和工具依然沒(méi)有變化,即利用零點(diǎn)存在定理,結(jié)合數(shù)形結(jié)合、分類討論思想,加以轉(zhuǎn)化與化歸.例6和例7充分利用導(dǎo)數(shù)研究函數(shù)的性質(zhì)(單調(diào)性和極值、最值等)來(lái)確定參數(shù)范圍,這表明函數(shù)零點(diǎn)問(wèn)題與導(dǎo)數(shù)的交匯性很深,也凸顯導(dǎo)數(shù)功能的強(qiáng)大.

        4 變量分類思想,函數(shù)值域策略

        (1)求a的值;

        (2)函數(shù)g(x)=f(x)-log2k,若函數(shù)g(x)有零點(diǎn),求參數(shù)k的取值范圍.

        解析(1)a=2(過(guò)程略).

        (2)若函數(shù)g(x)有零點(diǎn),則直線y=log2k與曲線y=f(x)有交點(diǎn).

        (1)當(dāng)m=1時(shí),解不等式f(x)+1>f(x+1);

        (2)設(shè)x∈[3,4],且函數(shù)y=f(x)+3存在零點(diǎn),求實(shí)數(shù)m的取值范圍.

        解析(1)不等式f(x)+1>f(x+1)的解集為(-∞,0)∪(1,+∞)(過(guò)程略).

        即m=-(x+1)2+4在[3,4]上有解.

        函數(shù)y=-(x+1)2+4在[3,4]上單調(diào)遞減,則y∈[-21,-12],從而,實(shí)數(shù)m的取值范圍是[-21,-12].

        點(diǎn)評(píng)關(guān)于零點(diǎn)存在性問(wèn)題,一般都可以變量分離后,轉(zhuǎn)化為函數(shù)的值域問(wèn)題,例8和例9都是這種做法,當(dāng)然,面對(duì)零點(diǎn)具體個(gè)數(shù)的分析,函數(shù)值域策略有時(shí)會(huì)失靈.

        與函數(shù)零點(diǎn)相關(guān)的參數(shù)范圍求解問(wèn)題是高考的熱點(diǎn),是高考命制壓軸題的主要源泉之一,我們需要引起足夠重視.處理零點(diǎn)相關(guān)的參數(shù)問(wèn)題,我們有如下常用的策略:

        (1) 直接求根策略:解方程f(x)=0.

        (2) 數(shù)形結(jié)合策略:先對(duì)解析式變形,在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解.

        (3) 導(dǎo)數(shù)分析策略:面對(duì)零點(diǎn)具體個(gè)數(shù)的討論求參范圍時(shí)用導(dǎo)數(shù)分析.

        (4) 函數(shù)值域策略:零點(diǎn)的存在問(wèn)題一般可以轉(zhuǎn)化成求函數(shù)值域問(wèn)題.

        我們相信,只要熟練掌握這四種策略,求解與函數(shù)零點(diǎn)相關(guān)的參數(shù)范圍問(wèn)題并不是一件很難的事.

        猜你喜歡
        交點(diǎn)零點(diǎn)圖象
        函數(shù)y=Asin(ωx+?)的圖象
        2019年高考全國(guó)卷Ⅱ文科數(shù)學(xué)第21題的五種解法
        一類Hamiltonian系統(tǒng)的Abelian積分的零點(diǎn)
        閱讀理解
        從圖象中挖掘知識(shí)的聯(lián)結(jié)點(diǎn)
        “有圖有真相”——談一次函數(shù)圖象的應(yīng)用
        一次函數(shù)圖象的平移變換
        借助函數(shù)圖像討論含參數(shù)方程解的情況
        試析高中數(shù)學(xué)中橢圓與雙曲線交點(diǎn)的問(wèn)題
        一道高考函數(shù)零點(diǎn)題的四變式
        亚洲视频在线免费观看一区二区 | 日本三级欧美三级人妇视频 | 亚洲一区精品无码色成人| 亚洲乱码av中文一区二区| 亚洲精品无码人妻无码| 国产成人免费a在线视频| 产国语一级特黄aa大片| 欧美日韩a级a| 日本国产在线一区二区| av中文码一区二区三区| 美国又粗又长久久性黄大片| 国产成人av区一区二区三| 日本免费一区二区在线看片| 国产午夜视频一区二区三区| 中国免费看的片| 在线播放免费人成毛片乱码| 97精品国产97久久久久久免费| 91热视频在线观看| 丰满人妻无奈张开双腿av| 中文字幕综合一区二区| 国产人妻熟女呻吟在线观看| 国产三级av在线播放| 亚洲av无码之国产精品网址蜜芽| 麻豆国产人妻欲求不满谁演的 | 亚洲麻豆av一区二区| 国产亚洲一区二区精品| 日韩精品成人区中文字幕| 全黄性性激高免费视频| 区二区三区玖玖玖| 国产乱人伦av在线a| 啊v在线视频| 亚洲美女主播一区二区| 中文天堂一区二区三区| 偷拍视频网址一区二区| 人妻少妇看a偷人无码| 樱桃视频影院在线播放| 无尽动漫性视频╳╳╳3d| 亚洲综合五月天欧美| 一区二区三区在线视频免费观看| 最新亚洲视频一区二区| 不卡一区二区黄色av|