張家軒,王財林,劉翠偉,胡其會,張睿,徐修賽,鞠世雄,李玉星
摻氫天然氣環(huán)境下管道鋼氫脆行為研究進展
張家軒1,王財林1,劉翠偉1,胡其會1,張睿1,徐修賽1,鞠世雄2,李玉星1
(1.中國石油大學(xué)(華東) 山東省油氣儲運安全省級重點實驗室,山東 青島 266580;2.國家石油天然氣管網(wǎng)集團有限公司油氣調(diào)控中心,北京 100020)
為推動我國摻氫天然氣管道的發(fā)展,綜述了目前含氫氣環(huán)境下管道鋼氫脆的研究成果,總結(jié)了溫度、壓力、摻氫比等運行條件對鋼材氫脆的影響,分析了鋼材強度、微觀組織、氫陷阱等材料性質(zhì)與管道鋼氫脆行為之間的聯(lián)系,歸納了預(yù)防和抑制管道鋼氫脆行為的方法。筆者認為,當(dāng)前亟待解決的科學(xué)技術(shù)問題包括進一步探究摻氫天然氣管道環(huán)境下不同運行條件對管道鋼氫脆行為的影響規(guī)律;確定摻氫天然氣管道的安全運行溫度、壓力、摻氫比等關(guān)鍵參數(shù);建立不同服役條件下?lián)綒涮烊粴夤艿垒斔偷陌踩u價方法,完善摻氫天然氣管道與現(xiàn)役管道相容性評價體系;形成摻氫天然氣管道的設(shè)計規(guī)范和相關(guān)標準;開展氣體抑制劑和阻氫涂層等抗氫脆方法的評價。
摻氫天然氣;管道鋼;氫脆;機理;摻氫比;涂層
在化石能源日漸枯竭、全球氣候惡化的趨勢下,各國都在大力發(fā)展低碳可再生清潔能源[1-2]。我國國家發(fā)展改革委印發(fā)的《能源技術(shù)革命創(chuàng)新行動計劃(2016—2030年)》中,已將太陽能、風(fēng)能、氫能等清潔能源的開發(fā)利用作為下一階段的重點任務(wù),重點指出要大力發(fā)展氫氣的低成本制造、運輸以及儲存。由于可再生能源發(fā)電具有不穩(wěn)定性,且電量供應(yīng)受到市場供需的影響,造成了大量風(fēng)電、光電的資源浪費[3-4]。將不穩(wěn)定的風(fēng)電、光電等通過電解制成氫氣后,再進行運輸和利用是解決以上問題的有效途徑[5-7]。然而,目前基礎(chǔ)設(shè)施、運輸方式等因素的限制,導(dǎo)致氫氣的運輸和儲存成本過高,成為氫氣在現(xiàn)有能源供應(yīng)體系中未得到廣泛應(yīng)用的重要原因[8]。目前,包括我國在內(nèi)的很多國家都已經(jīng)建立了大規(guī)模的天然氣輸送管道,利用現(xiàn)有的天然氣管道網(wǎng)絡(luò),向天然氣中添加氫氣,并混合輸送,就可以在較低的成本下實現(xiàn)氫氣的大規(guī)模輸送[9-10]。截至目前,多個國家都已開展了摻氫天然氣管道示范工程[11],表1匯總了近年來國內(nèi)外主要的摻氫天然氣管道項目,圖1總結(jié)了摻氫天然氣管道所涉及的環(huán)節(jié)以及關(guān)鍵問題。從圖1和表1可以看出,氫氣的摻入一方面會引入氫氣摻混、液化及分離等新的工藝;另一方面,氫氣區(qū)別于天然氣的物理性質(zhì),也會對管道安全、管輸設(shè)備的相容性、管道的完整性等提出新的要求。與歐美發(fā)達國家相比,我國摻氫天然氣管道的發(fā)展目前仍處在起步階段,需要解決氫氣摻入所帶來的一系列關(guān)鍵問題,制定針對摻氫天然氣管道建設(shè)及運行的相關(guān)標準規(guī)范。
鋼材在氫氣環(huán)境下會產(chǎn)生氫損傷,包括氫脆、氫致裂紋、氫鼓泡等,此外在較高的溫度壓力下還會發(fā)生脫碳和氫蝕。其中氫脆是發(fā)展摻氫天然氣管道輸送技術(shù)的主要安全問題。當(dāng)管道鋼處在富氫環(huán)境中時會發(fā)生氫脆現(xiàn)象,造成管道鋼延性和疲勞強度的降低,甚至導(dǎo)致管道開裂,引發(fā)嚴重的安全問題[20-21]。管道鋼在氫氣環(huán)境中發(fā)生氫脆的根本原因是氫原子對鋼材的滲透。氫原子滲透進入鋼材誘發(fā)氫脆并產(chǎn)生裂紋的過程為[9,22]:氫氣分子在與管道內(nèi)壁碰撞的過程中吸附在管道鋼表面,并分解為吸附氫原子;吸附氫原子擴散到管道鋼內(nèi)部成為溶解氫原子,并在鋼材內(nèi)部遷移以及缺陷和微裂紋尖端聚集;當(dāng)氫原子積累到一定程度后,會引起管道鋼脆化,并進一步產(chǎn)生氫致裂紋。目前氫氣加劇鋼材性能劣化的主流機理有:氫壓理論、氫致弱鍵理論以及氫致局部塑性變形理論等[23-28]。盡管目前國內(nèi)外對氫脆機理已經(jīng)進行了大量的研究,但針對不同的材料或外部條件,氫氣的影響機制不同[29],同時某一特定氫脆現(xiàn)象可能受多種不同機制共同作用[30],控制脆化現(xiàn)象和失效的實際微觀機制仍需進一步探索[31-32]。
本文對目前含氫氣環(huán)境下管道鋼氫脆研究進行了系統(tǒng)的綜述,總結(jié)分析了管道運行工況、鋼材性質(zhì)等不同因素對管道鋼氫脆行為的影響,歸納了預(yù)防和抑制管道鋼氫脆行為的方法,并針對現(xiàn)有研究的不足,提出了當(dāng)前亟待解決的科學(xué)技術(shù)問題和研究展望。
表1 國內(nèi)外主要的摻氫天然氣輸送管道示范項目
Tab.1 Demonstration projects of hydrogen-blended natural gas pipelines at home and abroad
圖1 摻氫天然氣管道主要環(huán)節(jié)和涉及的關(guān)鍵問題
為保證摻氫天然氣管道的安全運行,需明確影響管材氫脆行為的主要因素。在高壓摻氫天然氣長輸管道中,管道運行工況(溫度、總壓、氫氣分壓)以及管材狀態(tài)(金相組織、析出物雜質(zhì)、缺陷等),都會對氫氣與管道鋼之間的相互作用產(chǎn)生較大的影響[32-34]。
1.1.1 溫度的影響
溫度的變化會影響氫原子的擴散和聚集,從而影響鋼材的氫脆行為。目前,幾乎沒有針對氣相環(huán)境下溫度對管道鋼氫脆行為影響的相關(guān)研究,但現(xiàn)有的其他鋼材在液相環(huán)境下的氫脆研究仍具有重要指導(dǎo)意義。Mehta等[35]在早期的研究中發(fā)現(xiàn),當(dāng)溫度從室溫上升到150 ℃后,氫原子擴散速率以及氫致裂紋的擴展速率會明顯加快。Doshida等[36]也得到了類似的結(jié)論,當(dāng)溫度大于–30 ℃后,鋼的氫脆敏感性隨溫度的升高而增加。然而溫度對鋼材氫脆行為的影響還存在爭議。近期的研究中,Xing等[37]分別在模擬地層溶液環(huán)境和空氣環(huán)境中對X90鋼進行慢應(yīng)變速率拉伸試驗,并發(fā)現(xiàn)X90鋼的氫脆行為存在溫度閾值,且氫脆敏感性不隨溫度單調(diào)變化。X90鋼在313 K下的氫脆敏感性最高;當(dāng)溫度低于313 K時,氫脆效應(yīng)隨溫度的升高而增強;超過313 K時,氫脆效應(yīng)隨溫度的升高而減弱。Momotani等[38]研究了低碳馬氏體鋼氫脆敏感性在–100~100 ℃內(nèi)隨溫度的變化情況,將試樣在液相環(huán)境中電化學(xué)充氫24 h后進行拉伸試驗。結(jié)果表明,在0 ~100 ℃內(nèi),含氫試樣的抗拉強度和伸長率隨溫度降低而降低;當(dāng)溫度降到0 ℃以下時,抗拉強度和伸長率又逐漸增加。最終得出,當(dāng)溫度處在室溫下時,低碳馬氏體鋼的氫脆的敏感性最大。
以上研究表明,溫度的變化可能對氫脆行為存在較為顯著的影響。從熱力學(xué)的角度分析,低溫環(huán)境會使得氫原子的滲透、擴散變慢,很難發(fā)生富集;在高溫條件下,氫原子的活化能和擴散速率高,使得氫原子不易在位錯、晶界等處富集,甚至發(fā)生熱解吸現(xiàn)象,使金屬內(nèi)部氫原子濃度降低[38-39],同時在高溫環(huán)境下金屬表面生成的氧化膜也會抑制氫脆行為[40]??傮w上,目前關(guān)于溫度對常用管線鋼氫脆行為影響的研究還較少,尤其是在摻氫天然氣輸送環(huán)境下,不同季節(jié)管輸溫度變化對氫氣在管道鋼中擴散聚集的影響,以及不同鋼材的安全輸送溫度的確定都需要更進一步的研究。
1.1.2 壓力的影響
1)純氫環(huán)境下氫氣壓力的影響。近年來有很多研究者通過在純氫氣環(huán)境中進行試驗來探究氫氣壓力對管道鋼氫脆行為的影響。Amaro等[27,41]分別對X52鋼和X100鋼在氫氣環(huán)境下進行了拉伸試驗和疲勞裂紋擴展試驗。研究表明,與空氣環(huán)境下相比,13.8 MPa高壓氫氣環(huán)境下,2種鋼材拉伸試樣的伸長率都明顯減小,韌性損失顯著。在一定的應(yīng)力強度因子范圍內(nèi),X52和X100鋼的疲勞裂紋擴展速率隨氫氣壓力的增加而增加。當(dāng)氫氣壓力從1.72 MPa增加到20.68 MPa后,X100鋼的疲勞裂紋擴展速率提高2倍,甚至1個數(shù)量級。Stalheim等[42]和San等[43-44]評估了在5.5~ 21 MPa的氫氣環(huán)境下,不同種類的X60、X70、X80管道鋼的氫脆敏感性。研究結(jié)果表明,與空氣環(huán)境下相比,5.5 MPa氫氣環(huán)境下,每種管道鋼拉伸試樣的斷面收縮率和斷裂韌性都顯著減小,鋼材的氫脆程度增加,但隨著壓力的進一步增大至21 MPa,鋼材的斷面收縮率和斷裂韌性減小幅度較小。同時,在較大的強度因子范圍內(nèi)(Δmax> 20 MPa·m1/2),當(dāng)氫氣壓力從5.5 MPa增加至21 MPa后,試樣疲勞裂紋的擴速率變化不大。Andrew等[45]在1.7、7、21、48 MPa等4種氫力壓力下,對X52和X100管道鋼進行了疲勞裂紋擴展試驗。結(jié)果表明,X100和X52在氫氣環(huán)境下的疲勞裂紋擴展速率比在空氣中高出1~2個數(shù)量級,且在一定的強度因子范圍內(nèi),裂紋增長速率隨著氫氣壓力的增加而增大。
此外,還有研究表明,氫氣對管材的劣化影響并不會隨著壓力的升高而一直增大,而是存在一個臨界壓力值。Alvaro等[46]研究了X70鋼焊接熱影響區(qū)在20 ℃高壓氫氣環(huán)境下的氫脆敏感性,在不同氫壓力(0.1、0.6、10、40 MPa)下進行了單邊缺口試樣的拉伸試驗,同時對斷裂韌性進行了量化。結(jié)果表明,當(dāng)氫氣壓力高于0.1 MPa時,試樣的斷裂韌性明顯降低;當(dāng)氫壓力達到0.6 MPa以上后,斷裂韌性沒有繼續(xù)減小。他們進一步指出,X70鋼焊接熱影響區(qū)發(fā)生氫脆現(xiàn)象的臨界壓力在0.1~0.6 MPa。類似地,Moro等[47]在不同氫氣壓力下對X80鋼進行了拉伸試驗,并通過斷面收縮率對氫脆敏感性進行量化。結(jié)果表明,當(dāng)氫氣壓力超過10 MPa后,X80鋼的氫脆敏感性將不再受到壓力升高的影響。
在氫氣環(huán)境中,氫原子在鐵等金屬中的溶解度與氫氣壓力的平方根成正比[48]。在一定范圍內(nèi),單位體積內(nèi)壓力越高,氫氣分子的濃度越高,氫氣分子與管道內(nèi)壁碰撞分解為氫原子的幾率就會增大,進而使得氫原子在管道鋼中的溶解度增大[47],導(dǎo)致鋼材內(nèi)部裂紋尖端具有更高的氫濃度[49],促進脆化的發(fā)生。以上研究結(jié)果表明,對于不同的管道鋼材料,壓力對氫脆敏感性的影響規(guī)律,以及發(fā)生氫脆的臨界壓力閾值尚不明確,還需要進行進一步的研究。
2)摻氫環(huán)境下氫氣分壓的影響。在摻氫天然氣管道中,氫氣分壓可通過式(1)確定:
式中:H為氫氣分壓;為摻氫比例;為總壓。
顯然,摻氫比例和總壓的變化都會改變氫氣分壓的大小。張體明[50]測量了X80 鋼在12 MPa模擬煤制氣環(huán)境(0.25 MPa氫氣,0.20 MPa二氧化碳,其余為氮氣)中的氫滲透電流密度。結(jié)果表明,在反應(yīng)釜中充入0.25 MPa的氫氣后,氫滲透電流迅速增大,電流穩(wěn)定后再依次充入二氧化碳和氮氣將壓力逐級提高至12 MPa,這個過程中穩(wěn)態(tài)電流基本不會變化,如圖2所示。張體明認為,氫滲透電流的大小僅與煤制氣中的氫分壓有關(guān),與總壓關(guān)系不大。類似地,Nguyen等[51]在5、7、10 MPa等3種典型壓力下(摻氫比分別為0.1%、0.5%、1%、3%、5%、100%)的甲烷/氫氣混合氣體中對X70鋼的力學(xué)性能進行了測試。結(jié)果表明,X70鋼的力學(xué)性能下降主要受到氫氣分壓而非總壓的影響,如圖3所示。
圖2 X80鋼在模擬煤制氣環(huán)境中分段加壓過程中氫滲透曲線[50]
對于摻氫天然氣管道而言,在管輸壓力一定的情況下,氫氣在管道中的分壓是通過摻氫比來確定的。近年來也有學(xué)者在摻氫環(huán)境下對鋼材氫脆行為影響進行了相關(guān)研究。An等[52]通過低周疲勞試驗和裂紋擴展試驗探究了在總壓12 MPa摻氫環(huán)境下不同氫分壓對X80氫脆敏感性的影響。研究表明,隨著氫氣分壓的增加,X80缺口試樣的疲勞循環(huán)次數(shù)迅速減小,而緊湊拉伸試樣的裂紋擴展速率則急劇增加。與在氮氣環(huán)境中相比,0.2 MPa的氫氣分壓下,X80鋼的疲勞失效循環(huán)次數(shù)下降20%,疲勞裂紋擴展速率增加7倍;當(dāng)氫氣分壓進一步增加至8 MPa后,失效循環(huán)次數(shù)的下降幅度達到90%,疲勞裂紋擴展速率增加2倍。An進一步指出,隨著氫氣壓力的增加,裂紋擴展速率增加是X80鋼疲勞壽命降低的主要原因。Meng等[53]研究了12 MPa下含0~50%(體積分數(shù))氫氣的天然氣/氫氣混合氣體對X80管線鋼力學(xué)性能的影響。結(jié)果表明,隨著氫氣含量的增加,X80鋼的氫脆敏感性升高,疲勞裂紋擴展速率明顯加快。類似地,在最新的研究中,Nguyen等[51,54]同樣發(fā)現(xiàn),在5~10 MPa的壓力下,X70鋼的氫脆敏感性隨著摻氫比的增大而增大,且氫氣的體積分數(shù)達到0.7%的時候,X70鋼的斷裂模式會由韌性斷裂向脆性斷裂 轉(zhuǎn)變。
盡管目前國內(nèi)外學(xué)者的研究都表明氫氣分壓越高,鋼材的氫脆敏感性就越高,但是對于影響管道鋼安全運行的臨界氫氣分壓,目前尚沒有統(tǒng)一的定論。趙德輝等[55]將X70鋼和20#鋼的母材金相試樣和焊接區(qū)U彎試樣放置在總壓12 MPa的氮氣/氫氣混合環(huán)境中(其中氫氣分壓2 MPa)1個月后,未發(fā)現(xiàn)氫損傷和氫致開裂現(xiàn)象,同時外加恒載荷的試樣也未發(fā)生氫致開裂,并進一步得到X70鋼和20#鋼在煤制天然氣(總壓為12 MPa,氫氣分壓為0.72 MPa)中長期服役不會發(fā)生氫致開裂及氫損傷。關(guān)鴻鵬等[56]研究發(fā)現(xiàn),X70鋼的母材和焊縫試樣在總壓為4 MPa、氫氣分壓為0.2 MPa的煤制氣環(huán)境下,沖擊性能、塑性及材料的損傷容限均未受到顯著影響。然而,同樣在12 MPa的總壓工況下,也有研究表明,當(dāng)氫氣分壓分別為0.72 MPa[57]和0.96 MPa[58]時,X80鋼都表現(xiàn)出一定的氫脆敏感性。
此外,由于氫氣和甲烷的性質(zhì)不同,天然氣摻氫后不僅會對管材性能產(chǎn)生影響,還會對管道的完整性、管輸設(shè)備以及下游用戶終端產(chǎn)生影響[59]。對于天然氣管道摻入氫氣而不影響管道安全和下游終端的臨界值,不同的研究給出了不同的結(jié)論,包括3%[12]、10%[21]、17%[60]、20%[13],甚至50%[13]。國際能源署(IEA)在2020年更新了不同國家對天然摻氫比例的限制[61],如圖4所示(特殊工況分別是,德國:未與管網(wǎng)連接的CNG加氣站;立陶宛:壓力大于1.6 MPa的天然氣管道;荷蘭:高熱值煤氣)。國外已有一些標準規(guī)范對特定情況下天然氣管道的摻氫比作出了限制,美國機械工程師協(xié)會頒布的ASME B31.12- 2014“Hydrogen Piping and Pipelines”適用于氫氣體積分數(shù)不小于10%的情況。標準指出,X60及以上管道的設(shè)計壓力不應(yīng)大于10 MPa。當(dāng)摻入10%以上的氫氣后,還需要根據(jù)標準中給出的校核方法重新計算最大操作壓力。除此之外,還有歐洲標準CGA-5.6“Hydrogen Pipeline System”,其中針對使用X52鋼的天然氣管道的摻氫比例限制為10%。
圖3 不同工況下氫氣分壓對X70鋼力學(xué)性能的影響[51]
圖4 國際能源署發(fā)布的不同國家對摻氫天然氣管道中氫氣含量的限制[61]
綜上所述,目前國內(nèi)外雖然已開展摻氫天然氣管道的安全摻氫比研究,但仍缺乏一致的結(jié)論。對于在役的天然氣管道來說,受管道服役年限、材料的影響,不同研究所得出的安全摻氫比范圍有較大不同。國內(nèi)尚缺乏摻氫天然氣管道的安全摻氫比標準規(guī)范,需確定在管輸壓力下不同摻氫比對管道力學(xué)性能的影響,同時結(jié)合管輸設(shè)備相容性、用戶需求及經(jīng)濟性等多方面因素,確定適用于我國摻氫天然氣管道的安全摻氫比,填補相關(guān)規(guī)范標準的空白。
1.2.1 強度的影響
目前,多數(shù)研究者認為,鋼材的氫脆敏感性會隨著強度的增大而增大[31],對于抗拉強度小于700 MPa的鋼,幾乎不會出現(xiàn)嚴重的氫脆問題[62]。Nanninga等[49]和Hardie等[63]研究表明,不同管道鋼的氫脆敏感性隨著強度的增加而增大。Andrew等[45]也指出,相較于X52鋼,X100鋼疲勞裂紋的擴展速率和隨著氫氣壓力的增加而增大的現(xiàn)象更加明顯。Komatsuzaki等[64]指出,當(dāng)碳鋼屈服強度由500 MPa升至1 400 MPa后,氫致斷裂的應(yīng)力閾值顯著降低,最大降幅甚至達到70%。然而,Cabrini等[65]認為,當(dāng)鋼材的極限抗拉強度超過700 MPa后,氫脆敏感性才會隨著極限抗拉強度的增大而增大;極限抗拉強度小于700 MPa時,鋼材的氫脆敏感性反而會隨著極限抗拉強度的增大而降低。一般認為,低級別強度的管道鋼的韌性相對較高,抗氫脆性能也較好。歐洲目前所建立的工業(yè)級口徑氫氣管道中,大部分都使用X42、X52、X56 等低強度管線鋼,ASME B31.12—2014也推薦采用X42、X52等低強度鋼[66]。
盡管目前大多數(shù)的研究表明強度的提升會增加鋼材的氫脆敏感性,但對于常用管道鋼氫脆敏感性與強度之間的定量關(guān)系尚不明確,還需結(jié)合金屬相態(tài)組成及晶粒大小等微觀因素進行分析。同時,摻氫比對管材強度與氫脆敏感性之間關(guān)系的影響也需要進一步的探究。
1.2.2 微觀組織的影響
鋼材的微觀金相組織是影響鋼材氫脆的關(guān)鍵因素[67]。目前,輸氣管道常用管道鋼(X70、X80等)的金相組成以鐵素體為主。Stalheim等[68]測試了X52、X60、X70、X80管道鋼在5.5、20.7 MPa氫氣環(huán)境中的斷裂韌性,結(jié)果表明,多邊形鐵素體/針狀鐵素體組織抗氫性能略優(yōu)于多邊形鐵素體/上貝氏體–珠光體組織。類似地,Davani等[69]和Zhao等[67]也指出,X60、X80管線鋼中針狀鐵素體對氫致裂紋的敏感性較低。針狀鐵素體較好的抗氫脆性能,是由于其較高的韌性能夠抑制裂紋的擴展[70]。除了鐵素體外,在管道鋼的加工焊接等過程中,還會引入少量的馬氏體、貝氏體以及奧氏體等組織,這些相組織都會對鋼材的氫脆敏感性產(chǎn)生影響。其中,馬氏體對氫原子的捕獲能力最強,且馬氏體更容易受到氫脆的影響[71-72],這歸根于馬氏體含有較多的位錯和邊界缺陷,會導(dǎo)致氫致裂紋的快速萌生和擴展[73]。此外,貝氏體對氫脆的敏感性也高于鐵素體[70,74]。奧氏體組織的氫脆敏感性最低,這是由于氫在奧氏體中溶解度高,且氫原子在奧氏體中的擴散速率比馬氏體慢3~4個數(shù)量級[75]。Tao等[76]研究指出,大多數(shù)氫致裂紋會在奧氏體處停止發(fā)展。然而,一直增加奧氏體的含量并不能提高鋼的抗氫脆性能,因為在高氫濃度和應(yīng)力集中的耦合作用下,奧氏體會轉(zhuǎn)變?yōu)轳R氏體,進而增加氫脆敏感性[77]。
長輸管道在焊接過程,較高的溫度造成焊接部位組織的不均勻分布,導(dǎo)致焊縫部位的氫脆敏感性更高。美國Sandia國家實驗室[78]測量了X52、X65、X70等鋼材在6.9 MPa的氫氣環(huán)境下的拉伸性能,結(jié)果表明,焊縫處塑性的劣化比母材更嚴重。張體明等[79]研究表明,X80鋼焊縫部分晶粒明顯長大,大角度晶界含量減少,氫的擴散速率及其在裂紋尖端的富集程度增加,導(dǎo)致焊縫部分的氫脆系數(shù)相較于母材明顯升高。
對于同種牌號的鋼,國內(nèi)外對成分的控制以及熱加工工藝會有所差別,所以對于國外的實驗結(jié)果并不能盲目采用[80],還需要進一步明確本土鋼材不同組織的抗氫脆性能,建立失效評價準則。
1.2.3 陷阱的影響
在鋼材的內(nèi)部會不可避免地存在位錯、相界面、微孔以及各種雜質(zhì)析出物,這些結(jié)構(gòu)或者夾雜物的周圍會產(chǎn)生應(yīng)力集中,從而誘導(dǎo)氫原子發(fā)生聚集[81]。這種可以吸附氫原子的結(jié)構(gòu)或者夾雜物通常被稱為氫陷阱。根據(jù)其與氫原子之間結(jié)合能的大小,一般將結(jié)合能小于60 kJ/mol的氫陷阱定義為可逆氫陷阱。當(dāng)氫原子進入可逆陷阱后,在一定的條件(高溫等)下,可以逃逸出來。結(jié)合能大于60 kJ/mol的氫陷阱為不可逆氫陷阱,一旦氫原子進入不可逆氫陷阱,將難以離開[82]。表2總結(jié)了一些常見的結(jié)構(gòu)和雜質(zhì)析出相與氫原子之間的結(jié)合能。
表2 金屬中不同結(jié)構(gòu)/夾雜物與氫原子之間的結(jié)合能
Tab.2 The binding energy between structures/inclusions and hydrogen atoms in steel
氫陷阱對于鋼材氫脆行為的影響,學(xué)術(shù)界目前還沒有形成統(tǒng)一的結(jié)論。有研究表明,不可逆氫陷阱不僅可以束縛氫原子,還能阻礙位錯運動,從而抑制氫脆行為[91];而可逆氫陷阱的存在,使得溶解在鋼中的可擴散氫濃度升高,會加劇鋼材的氫脆現(xiàn)象[77,82,92]。Huang等[93]和Nakatani等[94]則認為,被不可逆陷阱捕獲的氫原子會加劇高強度鋼力學(xué)性能的劣化。一方面,氫陷阱可以阻礙氫原子的滲透,降低氫脆敏感性;另一方面,氫陷阱附近也可能出現(xiàn)氫原子過多聚集,萌生裂紋[95],且氫陷阱密度也會對鋼材氫脆敏感性產(chǎn)生較大的影響[96]。在不同的條件下,氫陷阱對鋼材氫脆行為的作用效果也會有所不同,需要進行進一步的研究。
除了鋼材本身的結(jié)構(gòu)缺陷以外,鋼材中氧化物、鐵碳化物等析出夾雜物也是誘發(fā)氫脆的常見氫陷阱[97]。Xue等[81]發(fā)現(xiàn),X80鋼中的氫致裂紋主要萌生在富Si、富Al的夾雜物附近。Escobar等[98]研究表明,MnS夾雜物會促進氫致裂紋的擴展,而MnS析出物是否會對鋼材的氫脆行為產(chǎn)生影響還存在爭議[99]。除此之外,管線鋼的氫脆敏感性還和C[100]、S[101]、V[102]等雜質(zhì)有關(guān)。夾雜物的尺寸和分布也會對氫脆行為產(chǎn)生影響,一般來說,夾雜物的尺寸和分布面積越大,越容易萌生氫致裂紋[103-104]。
綜上所述,無論是結(jié)構(gòu)缺陷,還是雜質(zhì)析出相,氫陷阱對于鋼材氫脆敏感性的影響還存在一定爭議。同時,目前的研究大多數(shù)通過電化學(xué)液相充氫的方法來表征氫陷阱,對于將來的摻氫天然氣管道來說,高壓氣相環(huán)境下管線鋼中氫陷阱對氫脆行為的影響是否會發(fā)生變化,還需要更進一步的研究。
由于不同微觀金相組織的氫脆敏感性差異較大,可以通過優(yōu)化熱處理工藝和處理參數(shù)獲得理想的組織,晶粒細化工藝也可以提高鋼的抗氫脆性能[105]。Enyinnaya等[106]比較了2種不同相組織的X70管線鋼的抗氫脆性能,結(jié)果表明,含有更多馬氏體/殘余奧氏體成分的X70鋼具有更好的抗氫致裂紋的性能。類似地,Ohaeri等[107]將X70鋼進行了兩步退火處理后,產(chǎn)生了鐵素體–回火馬氏體雙相組織,雖然強度降低,但是由于回火馬氏體較小的晶粒尺寸減緩了氫在鋼中的遷移率,使得X70鋼的氫脆敏感性降低。Park等[70]評價了經(jīng)過不同熱處理后X65鋼的抗氫脆性能,結(jié)果表明,針狀鐵素體的高韌性會阻止裂紋的擴展,鋼材的抗氫脆性能也會隨著針狀鐵素體含量的提升而提高。但改變相組織可能會導(dǎo)致部分材料力學(xué)性能下降,且控制工藝復(fù)雜,能耗大[108],將來是否可以大規(guī)模應(yīng)用于長輸管道鋼還有待進一步的驗證。
氫氣環(huán)境中的某些氣體有抑制鋼材氫脆傾向的作用。Liu等[109]和Jacobs[110]等發(fā)現(xiàn),SO2和CO2作為“毒化劑”可以抑制氫原子向鋼材內(nèi)部的滲透,從而降低鋼材的氫脆程度。Deimel等[111]和Kussmaul等[112]發(fā)現(xiàn)了氫氣環(huán)境下O2的存在同樣會降低鋼的氫脆效應(yīng)。Michler等[113]研究表明,O2對于氫脆的抑制作用是O2分壓的函數(shù),同時抑制氫脆的O2分壓存在臨界值,根據(jù)鋼材等級和溫度變化,分壓臨界值可能相差3個數(shù)量級。這種現(xiàn)象是由于O2可以使得裂紋尖端鈍化,阻止氫原子滲透,但是隨著裂紋的擴展,新的裂紋尖端表面并不能被完全鈍化,從而導(dǎo)致O2對氫脆的抑制作用下降[114]。CO通過抑制鋼材表面的氫吸附,從而抑制管道鋼氫脆行為。李婷婷[115]研究發(fā)現(xiàn),在10 MPa的氫氣環(huán)境下,添加0.01 MPa分壓的CO就使得X80鋼的氫脆指數(shù)降低95%以上。
在最新的研究中,Shang等[116]發(fā)現(xiàn),CO2和H2會產(chǎn)生耦合作用,從而增加鋼的氫脆敏感性。除此之外,水蒸氣也會對促進鋼材的氫脆行為[117],不僅如此,CO2[118]和H2S[119]等組分會和水共同形成酸性環(huán)境,也會對加劇管道鋼的氫脆現(xiàn)象。
就目前的研究來看,不同氣體對于鋼材氫脆行為的影響還存在爭議,其作用機理尚不完全明確,需要在摻氫天然氣管道實際工況條件下進一步探究不同氣體對于長輸氣體管道鋼氫脆行為的影響。同時,諸如分壓閾值、不同氣體之間的耦合作用等問題也都需要進一步的實驗來驗證,同時結(jié)合管道運行安全和管道下游需求,最終確定可以添加到管道中的氫脆氣體抑制劑,這將對摻氫天然氣管道的發(fā)展具有重要意義。
除了加入抑制氣體和改善管道鋼微觀組織結(jié)構(gòu)之外,阻氫內(nèi)涂層由于可以阻止氫原子的滲透,也成為預(yù)防管道鋼氫脆的新方法[9,20]。阻氫涂層大致上分為:金屬涂層、金屬氧化物涂層以及石墨烯等非金屬涂層。很早就有研究者發(fā)現(xiàn),在鋼表面電鍍上Pt、Ni、Sn、Cd等金屬薄膜可以降低氫原子的滲透效率[120-121],但是金屬涂層常常因為斷裂應(yīng)變過低、附著力不足和涂層缺陷等問題使得涂層失效,需要進一步改進涂層工藝來改善涂層延性、附著力等性能[122]。
金屬涂層可以抑制氫原子滲透,一部分原因歸結(jié)于其表面的氧化層[123],金屬氧化物也是一種有效的阻氫涂層。在金屬氧化物涂層中,Al2O3的阻氫效果較好,1 μm厚的Al2O3可以使氫滲透通量下降3~4個數(shù)量級,而且其在高溫下也具有較好的穩(wěn)定性[124-125]。相較于單層的氧化物涂層,復(fù)合涂層具有更好的阻氫效果、更好的結(jié)合強度以及穩(wěn)定性[126-127]。然而,并不是所有的氧化物都可以起到阻氫的作用,其對氫脆的影響在很大程度上取決于氧化物的深度分布,晶粒尺寸以及堆積方式,只有特定的氧化物層才有較好的阻氫效果[128]。
隨著石墨烯材料的興起,其阻氫性能的研究近年來也得到了廣泛關(guān)注。由于氫原子進入石墨烯涂層后,會形成C—H sp3鍵,從而阻礙了氫原子的滲透,在金屬表面覆蓋石墨烯涂層后,金屬內(nèi)部的氫含量會顯著降低[129]。C—H的形成引起了石墨烯結(jié)構(gòu)的變形,導(dǎo)致其阻氫能力降低。通過調(diào)整合成方式進一步減小晶粒尺寸,改善石墨烯結(jié)構(gòu)以及多層石墨烯的研制可以進一步提升石墨烯涂層的抗變形能力[130]。
雖然涂層的阻氫效果好,但是由于涂層在加工過程中本身就會引入一些氫原子,而且其在破損后還會引發(fā)嚴重的局部腐蝕,再加上經(jīng)濟性以及加工工藝的限制,導(dǎo)致阻氫涂層并不能大規(guī)模應(yīng)用[108]。目前的研究多采用液相充氫實驗來衡量阻氫涂層的效果,并不能真實反映其在氫氣環(huán)境中的阻氫效果,還需要在高壓氣相環(huán)境中展開抗氫脆效果的評價研究。此外,新型涂層材料以及新型涂層制備工藝的效果評價也需進一步探究。
基于以上綜述分析,現(xiàn)階段對于摻氫天然氣管道的氫脆行為研究較少,不同服役條件下?lián)綒涮烊粴夤艿赖娘L(fēng)險性、安全性和可靠性的變化規(guī)律尚不明確。針對當(dāng)前的研究現(xiàn)狀,為推動將來摻氫天然氣管道的發(fā)展,提出以下建議及展望:
1)目前溫度變化對氫原子的擴散聚集以及常用管線鋼氫脆行為的影響規(guī)律尚無定量描述,需通過試驗明確不同鋼材在摻氫天然氣管道輸送環(huán)境下的安全輸送溫度。
2)摻氫天然氣管道的安全摻氫比缺乏一致的結(jié)論。需研究在管輸壓力下不同摻氫比對管道材料性能的影響,確定管材發(fā)生氫脆的臨界壓力閾值,同時結(jié)合管輸設(shè)備相容性、用戶需求及經(jīng)濟因素等多方面條件,最終確定適用于我國摻氫天然氣管道的安全摻氫比。
3)改善微觀組織、在管道中添加氣體抑制劑、添加阻氫涂層等抑制管道鋼氫脆行為的方法需要進一步探索,尤其需要明確實際管輸溫度壓力、不同氣體相互作用等因素對阻氫效果的影響。
4)目前我國尚缺乏摻氫天然氣管道建設(shè)和安全運行的相關(guān)規(guī)范,應(yīng)盡快建立不同服役條件下?lián)綒涮烊粴夤艿垒斔偷陌踩u價方法,形成相關(guān)標準規(guī)范,為摻氫天然氣管道的發(fā)展和大規(guī)模應(yīng)用奠定基礎(chǔ)。此外,還需完善摻氫天然氣管道與現(xiàn)役天然氣管道相容性的評價方法和評價體系。
[1] 邱玥, 周蘇洋, 顧偉, 等. “碳達峰、碳中和”目標下混氫天然氣技術(shù)應(yīng)用前景分析[J]. 中國電機工程學(xué)報, 2022, 42(4): 1301-1321.
QIU Yue, ZHOU Su-yang, GU Wei, et al. Application Prospect Analysis of Hydrogen Enriched Compressed Natural Gas Technologies under the Target of Carbon Emission Peak and Carbon Neutrality[J]. Proceedings of the CSEE, 2022, 42(4): 1301-1321.
[2] 李秋揚, 趙明華, 張斌, 等. 2020年全球油氣管道建設(shè)現(xiàn)狀及發(fā)展趨勢[J]. 油氣儲運, 2021, 40(12): 1330-1337.
LI Qiu-yang, ZHAO Ming-hua, ZHANG Bin, et al. Current Construction Status and Development Trend of Global Oil and Gas Pipelines in 2020[J]. Oil & Gas Storage and Transportation, 2021, 40(12): 1330-1337.
[3] 張世欽. 基于改進粒子群算法的風(fēng)光水互補發(fā)電系統(tǒng)短期調(diào)峰優(yōu)化調(diào)度[J]. 水電能源科學(xué), 2018, 36(4): 208-212.
ZHANG Shi-qin. Short-Term Peak Shaving for Wind- Pho--tovoltaic-Hydro System Optimization Based on Impr-oved Particle Swarm Optimization[J]. Water Resources and Power, 2018, 36(4): 208-212.
[4] 張歆蒴, 黃煒斌, 王峰, 等. 大型風(fēng)光水混合能源互補發(fā)電系統(tǒng)的優(yōu)化調(diào)度研究[J]. 中國農(nóng)村水利水電, 2019(12): 181-185.
ZHANG Xin-shuo, HUANG Wei-bin, WANG Feng, et al. Research on the Optimal Scheduling of Large Wind- PV-Hydro Hybrid Energy Complementary Power Gener-ation System[J]. China Rural Water and Hydropower, 2019(12): 181-185.
[5] STILLER C, BüNGER U, M?LLER-HOLST S, et al. Pathways to a Hydrogen Fuel Infrastructure in Norway[J]. International Journal of Hydrogen Energy, 2010, 35(7): 2597-2601.
[6] RIVEROS-GODOY G A, CAVALIERO C, SILVA E. Ana-lysis of Electrolytic Hydrogen Production Models and Distribution Modes for Public Urban Transport: Study Case in Foz do Iguacu, Brazil[J]. International Journal of Energy Research, 2013, 37(10): 1142-1150.
[7] RIVAROLO M, MARMI S, RIVEROS-GODOY G, et al. Development and Assessment of a Distribution Network of Hydro-Methane, Methanol, Oxygen and Carbon Dioxide in Paraguay[J]. Energy Conversion and Management, 2014, 77: 680-689.
[8] HANLEY E S, DEANE J, GALLACHóIR B ó. The Role of Hydrogen in Low Carbon Energy Futures-a Review of Existing Perspectives[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 3027-3045.
[9] 李守英, 胡瑞松, 趙衛(wèi)民, 等. 氫在鋼鐵表面吸附以及擴散的研究現(xiàn)狀[J]. 表面技術(shù), 2020, 49(8): 15-21.
LI Shou-ying, HU Rui-song, ZHAO Wei-min, et al. Hydrogen Adsorption and Diffusion on Steel Surface[J]. Surface Technology, 2020, 49(8): 15-21.
[10] WITKOWSKI A, RUSIN A, MAJKUT M, et al. Analysis of Compression and Transport of the Methane/Hydrogen Mixture in Existing Natural Gas Pipelines[J]. Interna-tional Journal of Pressure Vessels and Piping, 2018, 166: 24-34.
[11] EDWARDS R L, FONT-PALMA C, HOWE J. The Status of Hydrogen Technologies in the UK: A Multi-Discip-linary Review[J]. Sustainable Energy Technologies and Assessments, 2021, 43: 100901.
[12] SUZUKI T, KAWABATA S, TOMITA T. Present Status of Hydrogen Transport Systems Utilizing Existing Natural Gas Supply Infrastructures in Europe and the USA[J]. IEEJ, 2005(10): 1-16.
[13] The NATURALHY Project: First Step in Assessing the Potential of the Existing Natural Gas Network for Hydro-gen Delivery[J]. Lunión Médicale Du Canada, 2008, 114(3): 213-219.
[14] KIPPERS M J, DE LAAT J C, HERMKENS R J M, et al. Pilot Project on Hydrogen Injection in Natural Gas on Island of Ameland in the Netherlands[J]. International Gas Research Conference Proceedings, 2011, 2: 1163-1177.
[15] None. McPhy Energy Role in French Power-to-Gas GRHYD Programme[J]. Fuel Cells Bulletin, 2014, 2014(2): 9-10.
[16] Fuel Cells Works. Hydrogen Levels in German Gas Distr-ibution System to Be Raised to 20 Percent for the First Time[EB/OL]. (2019-08-3) [2021-07-13]. https://fuelcel-lsworks.com/news/hydrogen-levels-in-german-gas-distribution-system-to-be-raised-to-20-percent-for-the-first-time.
[17] SNAM: Hydrogen Blend Doubled To 10% in Contursi Trial[EB/OL]. (2020-01-18) [2021-07-13]. https://www. snam.it/en/Media/news_events/2020/Snam_hydrogen_blend_doubled_in_Contursi_trial.html.
[18] 中國能源報. 天然氣摻氫技術(shù)距商用還有多遠?[EB/OL]. (2020-09-28) [2021-07-13].
China Energy News. How Far is Natural Gas Hydrogen Technology from Commercial Use? [EB/OL]. (2020-09- 28) [2021-07-13]. http://paper.people.com.cn/zgnyb/html/ 2020-09/28/content_2011720.htm.
[19] ITM Power. HyDeploy: UK Gas Grid Injection of Hydr-ogen in Full Operation[EB/OL]. (2020-01-02) [2021-07- 13]. https://www.itm-power.com/news/hydeploy-uk-gas-grid- injection-of-hydrogen-in-full-operation.
[20] DWIVEDI S K, VISHWAKARMA M. Hydrogen Embr-ittlement in Different Materials: A Review[J]. Interna-tional Journal of Hydrogen Energy, 2018, 43(46): 21603- 21616.
[21] REITENBACH V, GANZER L, ALBRECHT D, et al. Influence of Added Hydrogen on Underground Gas Storage: A Review of Key Issues[J]. Environmental Earth Sciences, 2015, 73(11): 6927-6937.
[22] SEREBRINSKY S, CARTER E A, ORTIZ M. A Quantum- Mechanically Informed Continuum Model of Hydrogen Embrittlement[J]. Journal of the Mechanics and Physics of Solids, 2004, 52(10): 2403-2430.
[23] LYNCH S P. Gaseous Hydrogen Embrittlement of Materials in Energy Technologies[M]. Amsterdam: Elsevier, 2012: 274-346.
[24] THOMAS S, OTT N, SCHALLER R F, et al. The Effect of Absorbed Hydrogen on the Dissolution of Steel[J]. Heliyon, 2016, 2(12): e00209.
[25] KAPPES M, IANNUZZI M, CARRANZA R M. Hydro-gen Embrittlement of Magnesium and Magnesium Alloys: A Review[J]. Journal of the Electrochemical Society, 2013, 160(4): C168-C178.
[26] LU G, ZHANG Q, KIOUSSIS N, et al. Hydrogen- Enha-nced Local Plasticity in Aluminum: An Ab Initio Study[J]. Physical Review Letters, 2001, 87(9): 095501.
[27] AMARO R L, RUSTAGI N, FINDLEY K O, et al. Modeling the Fatigue Crack Growth of X100 Pipeline Steel in Gaseous Hydrogen[J]. International Journal of Fatigue, 2014, 59: 262-271.
[28] TIEGEL M C, MARTIN M L, LEHMBERG A K, et al. Crack and Blister Initiation and Growth in Purified Iron Due to Hydrogen Loading[J]. Acta Materialia, 2016, 115: 24-34.
[29] ROBERTSON I M, SOFRONIS P, NAGAO A, et al. Hydrogen Embrittlement Understood[J]. Metallurgical and Materials Transactions B, 2015, 46(3): 1085-1103.
[30] ROBERTSON I M. The Effect of Hydrogen on Dislo-cation Dynamics[J]. Engineering Fracture Mechanics, 2001, 68(6): 671-692.
[31] VENEZUELA J, LIU Qing-long, ZHANG Ming-xing, et al. A Review of Hydrogen Embrittlement of Martensitic Advanced High-Strength Steels[J]. Corrosion Reviews, 2016, 34(3): 153-186.
[32] VERGANI L, COLOMBO C, GOBBI G, et al. Hydrogen Effect on Fatigue Behavior of a Quenched&tempered Steel[J]. Procedia Engineering, 2014, 74: 468-471.
[33] SAINI N, PANDEY C, MAHAPATRA M M. Effect of Diffusible Hydrogen Content on Embrittlement of P92 Steel[J]. International Journal of Hydrogen Energy, 2017, 42(27): 17328-17338.
[34] HOOSHMAND ZAFERANI S, MIRESMAEILI R, POURCHARMI M K. Mechanistic Models for Environ-mentally-Assisted Cracking in Sour Service[J]. Enginee-ring Failure Analysis, 2017, 79: 672-703.
[35] MEHTA M L, BURKE J. Role of Hydrogen in Stress Corrosion Cracking of Austenitic Stainless Steels[J]. Corrosion, 1975, 31(3): 108-110.
[36] DOSHIDA T, TAKAI K. Dependence of Hydrogen- Induced Lattice Defects and Hydrogen Embrittlement of Cold-Drawn Pearlitic Steels on Hydrogen Trap State, Temperature, Strain Rate and Hydrogen Content[J]. Acta Materialia, 2014, 79: 93-107.
[37] XING Xiao, CHENG Ran, CUI Gan, et al. Quantification of the Temperature Threshold of Hydrogen Embrittlement in X90 Pipeline Steel[J]. Materials Science and Engin-eering: A, 2021, 800: 140118.
[38] MOMOTANI Y, SHIBATA A, TSUJI N. Hydrogen Emb-rittlement Behaviors at Different Deformation Temper-atures in As-Quenched Low-Carbon Martensitic Steel[J]. International Journal of Hydrogen Energy, 2022, 47(5): 3131-3140.
[39] GALLIANO F, ANDRIEU E, BLANC C, et al. Effect of Trapping and Temperature on the Hydrogen Embrittl-ement Susceptibility of Alloy 718[J]. Materials Science and Engineering: A, 2014, 611: 370-382.
[40] ZHANG Ti-ming, ZHAO Wei-min, ZHAO Yu-jiao, et al. Effects of Surface Oxide Films on Hydrogen Permeation and Susceptibility to Embrittlement of X80 Steel under Hydrogen Atmosphere[J]. International Journal of Hydro-gen Energy, 2018, 43(6): 3353-3365.
[41] AMARO R L, DREXLER E S, SLIFKA A J. Fatigue Crack Growth Modeling of Pipeline Steels in High Pressure Gaseous Hydrogen[J]. International Journal of Fatigue, 2014, 62: 249-257.
[42] STALHEIM D, BOGGESS T, SAN MARCHI C, et al. Microstructure and Mechanical Property Performance of Commercial Grade API Pipeline Steels in High Pressure Gaseous Hydrogen[C]//Proceedings of 2010 8th Intern-ational Pipeline Conference. Calgary: [s. n.], 2011: 529-537.
[43] SAN MARCHI C, SOMERDAY B P, NIBUR K A, et al. Fracture and Fatigue of Commercial Grade API Pipeline Steels in Gaseous Hydrogen[C]//Proceedings of ASME 2010 Pressure Vessels and Piping Division/K-PVP Confe-rence. Bellevue: [s. n.], 2011.
[44] SAN MARCHI C, SOMERDAY B P, NIBUR K A, et al. Fracture Resistance and Fatigue Crack Growth of X80 Pipeline Steel in Gaseous Hydrogen[C]//Proceedings of ASME 2011 Pressure Vessels and Piping Conference. Baltimore: [s. n.], 2012.
[45] SLIFKA A J, DREXLER E S, NANNINGA N E, et al. Fatigue Crack Growth of Two Pipeline Steels in a Pressu-rized Hydrogen Environment[J]. Corrosion Science, 2014, 78: 313-321.
[46] ALVARO A, OLDEN V, MACADRE A, et al. Hydrogen Embrittlement Susceptibility of a Weld Simulated X70 Heat Affected Zone under H2Pressure[J]. Materials Science and Engineering: A, 2014, 597: 29-36.
[47] MORO I, BRIOTTET L, LEMOINE P, et al. Hydrogen Embrittlement Susceptibility of a High Strength Steel X80[J]. Materials Science and Engineering: A, 2010, 527(27-28): 7252-7260.
[48] KUMNICK A J, JOHNSON H H. Hydrogen and Deute-rium in Iron, 9-73 ℃[J]. Acta Metallurgica, 1977, 25(8): 891-895.
[49] NANNINGA N E, LEVY Y S, DREXLER E S, et al. Comparison of Hydrogen Embrittlement in Three Pipeline Steels in High Pressure Gaseous Hydrogen Environ-ments[J]. Corrosion Science, 2012, 59: 1-9.
[50] 張體明. 高壓煤制氣管線X80鋼焊接接頭的氫致脆化研究[D]. 東營: 中國石油大學(xué)(華東), 2016.
ZHANG Ti-ming. Study on Hydrogen Embrittlement of X80 Pipeline Steel Welded Joints in High Pressure Coal Gas Environment[D]. Dongying: China University of Petroleum (Huadong), 2016.
[51] NGUYEN T T, PARK J S, KIM W S, et al. Environment Hydrogen Embrittlement of Pipeline Steel X70 under Various Gas Mixture Conditions with in Situ Small Punch Tests[J]. Materials Science and Engineering: A, 2020, 781: 139114.
[52] AN Teng, PENG Huang-tao, BAI Peng-peng, et al. Influ-e-nce of Hydrogen Pressure on Fatigue Properties of X80 Pipeline Steel[J]. International Journal of Hydrogen Energy, 2017, 42(23): 15669-15678.
[53] MENG Bo, GU Chao-hua, ZHANG Lin, et al. Hydrogen Effects on X80 Pipeline Steel in High-Pressure Natural Gas/Hydrogen Mixtures[J]. International Journal of Hydr-o-gen Energy, 2017, 42(11): 7404-7412.
[54] NGUYEN T T, PARK J, KIM W S, et al. Effect of Low Partial Hydrogen in a Mixture with Methane on the Mecha-nical Properties of X70 Pipeline Steel[J]. Interna-tional Journal of Hydrogen Energy, 2020, 45(3): 2368-2381.
[55] 趙德輝, 徐慶虎, 崔德春, 等. 管線鋼在含氫氣的煤制天然氣中服役安全性評估[J]. 工程科學(xué)學(xué)報, 2016, 38(7): 952-957.
ZHAO De-hui, XU Qing-hu, CUI De-chun, et al. Safety Evaluation of Pipeline Steels under SNG Containing H2[J]. Chinese Journal of Engineering, 2016, 38(7): 952-957.
[56] 關(guān)鴻鵬, 林振嫻, 李瑜仙, 等. X70管線鋼及焊縫在模擬煤制氣含氫環(huán)境下的氫脆敏感性[J]. 工程科學(xué)學(xué)報, 2017, 39(4): 535-541.
GUAN Hong-peng, LIN Zhen-xian, LI Yu-xian, et al. Hydrogen Embrittlement Susceptibility of the X70 Pipeline Steel Substrate and Weld in Simulated Coal Gas Containing Hydrogen Environment[J]. Chinese Journal of Engineering, 2017, 39(4): 535-541.
[57] 史昊, 邢云穎, 王修云. 煤制氣環(huán)境中氫含量對X80管線鋼氫脆敏感性的影響規(guī)律[J]. 腐蝕與防護, 2018, 39(5): 336-339.
SHI Hao, XING Yun-ying, WANG Xiu-yun. Influence Law of Hydrogen Content in Coal Gas System on Hydr-ogen Embrittlement Sensitivity of X80 Pipeline Steel[J]. Corrosion & Protection, 2018, 39(5): 336-339.
[58] 金立果, 邢云穎. X80管線鋼在含氫煤制氣環(huán)境中的氫脆敏感性[J]. 腐蝕與防護, 2017, 38(5): 361-364.
JIN Li-guo, XING Yun-ying. Susceptibility of X80 Pipeline Steel to Hydrogen Embrittlement in Coal Gas Environment Containing Hydrogen[J]. Corrosion & Prot-e-ction, 2017, 38(5): 361-364.
[59] TABKHI F, AZZARO-PANTEL C, PIBOULEAU L, et al. A Mathematical Framework for Modelling and Evaluating Natural Gas Pipeline Networks under Hydrogen Injec-tion[J]. International Journal of Hydrogen Energy, 2008, 33(21): 6222-6231.
[60] HAESELDONCKX D, D’HAESELEER W. The Use of the Natural-Gas Pipeline Infrastructure for Hydrogen Transport in a Changing Market Structure[J]. Internat-ional Journal of Hydrogen Energy, 2007, 32(10-11): 1381-1386.
[61] International Energy Agency. Limits on Hydrogen Blen-ding in Natural Gas Networks[EB/OL]. (2020-03-04) [2021-07-13]. https://www.iea.org/data-and-statistics/charts/ limits-on-hydrogen-blending-in-natural-gas-networks-2018
[62] ?WIEK J. Prevention Methods Against Hydrogen Degra-dation of Steel[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2010, 43(1): 214-221.
[63] HARDIE D, CHARLES E A, LOPEZ A H. Hydrogen Embrittlement of High Strength Pipeline Steels[J]. Corrosion Science, 2006, 48(12): 4378-4385.
[64] KOMATSUZAKI Y, JOO H, YAMADA K. Influence of Yield Strength Levels on Crack Growth Mode in Delayed Fracture of Structural Steels[J]. Engineering Fracture Mechanics, 2008, 75(3/4): 551-559.
[65] CABRINI M, LORENZI S, MARCASSOLI P, et al. Hydrogen Embrittlement Behavior of HSLA Line Pipe Steel under Cathodic Protection[J]. Corrosion Reviews, 2011, 29(5/6): 261-274.
[66] 劉自亮, 熊思江, 鄭津洋, 等. 氫氣管道與天然氣管道的對比分析[J]. 壓力容器, 2020, 37(2): 56-63.
LIU Zi-liang, XIONG Si-jiang, ZHENG Jin-yang, et al. Comparative Analysis of Hydrogen Pipeline and Natural Gas Pipeline[J]. Pressure Vessel Technology, 2020, 37(2): 56-63.
[67] ZHAO Wei-min, ZHANG Ti-ming, ZHAO Yu-jiao, et al. Hydrogen Permeation and Embrittlement Susceptibility of X80 Welded Joint under High-Pressure Coal Gas Envir-onment[J]. Corrosion Science, 2016, 111: 84-97.
[68] STALHEIM D, BOGGESS T, BROMLEY D, et al. Conti-nued Microstructure and Mechanical Property Perform-ance Evaluation of Commercial Grade API Pipeline Steels in High Pressure Gaseous Hydrogen[C]//Volume 3: Mat-erials and Joining. Calgary: American Society of Mecha-nical Engineers, 2012.
[69] KHATIB ZADEH DAVANI R, MIRESMAEILI R, SOLTANMOHAMMADI M. Effect of Thermomechan-ical Parameters on Mechanical Properties of Base Metal and Heat Affected Zone of X65 Pipeline Steel Weld in the Presence of Hydrogen[J]. Materials Science and Engine-ering: A, 2018, 718: 135-146.
[70] PARK G T, KOH S U, JUNG H G, et al. Effect of Microstructure on the Hydrogen Trapping Efficiency and Hydrogen Induced Cracking of Linepipe Steel[J]. Corrosion Science, 2008, 50(7): 1865-1871.
[71] CHAN S L I. Hydrogen Trapping Ability of Steels with Different Microstructures[J]. Journal of the Chinese Institute of Engineers, 1999, 22(1): 43-53.
[72] RAMíREZ E, GONZáLEZ-RODRIGUEZ J G, TORRES- ISLAS A, et al. Effect of Microstructure on the Sulphide Stress Cracking Susceptibility of a High Strength Pipeline Steel[J]. Corrosion Science, 2008, 50(12): 3534-3541.
[73] JEFFREY V, QINGJUN Z, QINGLONG L, et al. The influence of microstructure on the hydrogen embrittle-ment susceptibility of martensitic advanced high strength steels[J]. Materials Today Communications, 2018, 17: 1-14.
[74] LI Jing, GAO Xiu-hua, DU Lin-xiu, et al. Relationship between Microstructure and Hydrogen Induced Cracking Behavior in a Low Alloy Pipeline Steel[J]. Journal of Materials Science & Technology, 2017, 33(12): 1504-1512.
[75] VENEZUELA J, ZHOU Qing-jun, LIU Qing-long, et al. The Influence of Microstructure on the Hydrogen Embri-ttlement Susceptibility of Martensitic Advanced High Strength Steels[J]. Materials Today Communications, 2018, 17: 1-14.
[76] TAO Ping, GONG Jian-ming, WANG Yan-fei, et al. Modeling of Hydrogen Diffusion in Duplex Stainless Steel Based on Microstructure Using Finite Element Method[J]. International Journal of Pressure Vessels and Piping, 2020, 180: 104031.
[77] HE Jun, CHEN Lin, TAO Xuan, et al. Hydrogen Embri-ttlement Behavior of 13Cr-5Ni-2Mo Supermartensitic Stainless Steel[J]. Corrosion Science, 2020, 176: 109046.
[78] SAN MARCHI C, SOMERDAY B. Technical reference for hydrogen compatibility of materials[R]. Office of Scientific and Technical Information (OSTI), 2012.
[79] 張體明, 王勇, 趙衛(wèi)民, 等. 模擬煤制氣環(huán)境下X80管線鋼及HAZ的氫脆敏感性[J]. 焊接學(xué)報, 2015, 36(9): 43-46.
ZHANG Ti-ming, WANG Yong, ZHAO Wei-min, et al. Hydrogen Embrittlement Susceptibility of X80 Steel Substrate and HAZ in Simulated Coal Gas Environ-ment[J]. Transactions of the China Welding Institution, 2015, 36(9): 43-46.
[80] 陳瑞, 鄭津洋, 徐平, 等. 金屬材料常溫高壓氫脆研究進展[J]. 太陽能學(xué)報, 2008, 29(4): 502-508.
CHEN Rui, ZHENG Jin-yang, XU Ping, et al. Hydrogen Embrittlement of Metallic Materials in high-Pressure Hydrogen at Normal Temperature[J]. Acta Energiae Solaris Sinica, 2008, 29(4): 502-508.
[81] XUE H B, CHENG Y F. Characterization of Inclusions of X80 Pipeline Steel and Its Correlation with Hydrogen- Induced Cracking[J]. Corrosion Science, 2011, 53(4): 1201-1208.
[82] FINDLEY K O, O'BRIEN M K, NAKO H. Critical Assessment 17: Mechanisms of Hydrogen Induced Cracking in Pipeline Steels[J]. Materials Science and Technology, 2015, 31(14): 1673-1680.
[83] SONG E J, SUH D W, BHADESHIA H K D H. Theory for Hydrogen Desorption in Ferritic Steel[J]. Computa-tional Materials Science, 2013, 79: 36-44.
[84] NOVAK P, YUAN R, SOMERDAY B P, et al. A Statistical, Physical-Based, Micro-Mechanical Model of Hydrogen-Induced Intergranular Fracture in Steel[J]. Journal of the Mechanics and Physics of Solids, 2010, 58(2): 206-226.
[85] CHOO W Y, LEE J Y. Effect of Cold Working on the Hydrogen Trapping Phenomena in Pure Iron[J]. Metallu-rgical Transactions A, 1983, 14(7): 1299-1305.
[86] CHOO W Y, LEE J Y. Thermal Analysis of Trapped Hydrogen in Pure Iron[J]. Metallurgical Transactions A, 1982, 13(1): 135-140.
[87] WALLAERT E, DEPOVER T, ARAFIN M, et al. Thermal Desorption Spectroscopy Evaluation of the Hydrogen- Trapping Capacity of NbC and NbN Precipitates[J]. Metal-lurgical and Materials Transactions A, 2014, 45(5): 2412-2420.
[88] DREXLER A, DEPOVER T, VERBEKEN K, et al. Model-Based Interpretation of Thermal Desorption Spectra of Fe-C-Ti Alloys[J]. Journal of Alloys and Com-pounds, 2019, 789: 647-657.
[89] WEI F G, HARA T, TSUZAKI K. Precise Determination of the Activation Energy for Desorption of Hydrogen in Two Ti-Added Steels by a Single Thermal-Desorption Spectrum[J]. Metallurgical and Materials Transactions B, 2004, 35(3): 587-597.
[90] LEE J L, LEE J Y. The Interaction of Hydrogen with the Interface of Al2O3Particles in Iron[J]. Metallurgical Transactions A, 1986, 17(12): 2183-2186.
[91] SHI Rong-jian, CHEN Lin, WANG Zi-dong, et al. Quant-itative Investigation on Deep Hydrogen Trapping in Tempered Martensitic Steel[J]. Journal of Alloys and Compounds, 2021, 854: 157218.
[92] JACK T A, POURAZIZI R, OHAERI E, et al. Investi-gation of the Hydrogen Induced Cracking Behaviour of API 5L X65 Pipeline Steel[J]. International Journal of Hydrogen Energy, 2020, 45(35): 17671-17684.
[93] HUANG F, LIU J, DENG Z J, et al. Effect of Microst-ructure and Inclusions on Hydrogen Induced Cracking Susceptibility and Hydrogen Trapping Efficiency of X120 Pipeline Steel[J]. Materials Science and Engineering: A, 2010, 527(26): 6997-7001.
[94] NAKATANI M, FUJIHARA H, SAKIHARA M, et al. Fatigue Crack Growth Acceleration Caused by Irrever-sible Hydrogen Desorption in High-Strength Steel and Its Mechanical Condition[J]. Materials Science and Engine-ering: A, 2011, 528(25-26): 7729-7738.
[95] 劉清華, 唐慧文, 斯庭智. 氫陷阱對鋼氫脆敏感性的影響[J]. 材料保護, 2018, 51(11): 127-132.
LIU Qing-hua, TANG Hui-wen, SI Ting-zhi. Effects of Hydrogen Traps on the Hydrogen Embrittlement Suscep-ti-bility of Steel[J]. Materials Protection, 2018, 51(11): 127-132.
[96] CHENG X Y, ZHANG H X. A New Perspective on Hydrogen Diffusion and Hydrogen Embrittlement in Low-Alloy High Strength Steel[J]. Corrosion Science, 2020, 174: 108800.
[97] DONG C F, LIU Z Y, LI X G, et al. Effects of Hydrogen- Charging on the Susceptibility of X100 Pipeline Steel to Hydrogen-Induced Cracking[J]. International Journal of Hydrogen Energy, 2009, 34(24): 9879-9884.
[98] ESCOBAR D P, MI?AMBRES C, DUPREZ L, et al. Internal and Surface Damage of Multiphase Steels and Pure Iron after Electrochemical Hydrogen Charging[J]. Corrosion Science, 2011, 53(10): 3166-3176.
[99] HEJAZI D, HAQ A J, YAZDIPOUR N, et al. Effect of Manganese Content and Microstructure on the Suscep-tibility of X70 Pipeline Steel to Hydrogen Cracking[J]. Materials Science and Engineering: A, 2012, 551: 40-49.
[100] DEPOVER T, VAN DEN EECKHOUT E, VERBEKEN K. The Impact of Hydrogen on the Ductility Loss of Bainitic Fe-C Alloys[J]. Materials Science and Technology, 2016, 32(15): 1625-1631.
[101] DOMIZZI G, ANTERI G, OVEJERO-GARC??A J. Influe-nce of Sulphur Content and Inclusion Distribution on the Hydrogen Induced Blister Cracking in Pressure Vessel and Pipeline Steels[J]. Corrosion Science, 2001, 43(2): 325-339.
[102] LI Long-fei, SONG Bo, CAI Ze-yun, et al. Effect of Vanadium Content on Hydrogen Diffusion Behaviors and Hydrogen Induced Ductility Loss of X80 Pipeline Steel[J]. Materials Science and Engineering: A, 2019, 742: 712-721.
[103] HUANG F, LI X G, LIU J, et al. Effects of Alloying Elements, Microstructure, and Inclusions on Hydrogen Induced Cracking of X120 Pipeline Steel in Wet H2S Sour Environment[J]. Materials and Corrosion, 2012, 63(1): 59-66.
[104] HARA T, ASAHI H, OGAWA H. Conditions of Hydrogen- Induced Corrosion Occurrence of X65 Grade Line Pipe Steels in Sour Environments[J]. Corrosion, 2004, 60(12): 1113-1121.
[105] 王洪海, 陳俊德, 陳冬, 等. 高強度低合金鋼氫脆預(yù)防措施[J]. 石油化工設(shè)備, 2018, 47(5): 48-55.
WANG Hong-hai, CHEN Jun-de, CHEN Dong, et al. Preventive Measures for Hydrogen Embrittlement of High- Strength Low Alloy Steels[J]. Petro-Chemical Equip-ment, 2018, 47(5): 48-55.
[106] OHAERI E, SZPUNAR J, FAZELI F, et al. Hydrogen Induced Cracking Susceptibility of API 5L X70 Pipeline Steel in Relation to Microstructure and Crystallographic Texture Developed after Different Thermomechanical Treatments[J]. Materials Characterization, 2018, 145: 142-156.
[107] OHAERI E, OMALE J, RAHMAN K M M, et al. Effect of Post-Processing Annealing Treatments on Microstr-ucture Development and Hydrogen Embrittlement in API 5L X70 Pipeline Steel[J]. Materials Characterization, 2020, 161: 110124.
[108] 徐政一, 張鵬遠, 孟國哲. 金屬氫滲透研究綜述[J]. 表面技術(shù), 2019, 48(11): 45-58.
XU Zheng-yi, ZHANG Peng-yuan, MENG Guo-zhe. Review of Studies on Metal Hydrogen Permeation[J]. Surface Technology, 2019, 48(11): 45-58.
[109] LIU H W, YA-LUNG H, FICALORA P J. The Control of Catalytic Poisoning and Stress Corrosion Cracking[J]. Engineering Fracture Mechanics, 1973, 5(2): 281-292.
[110] JACOBS A J, CHANDLER W T. Inhibition of Hydrogen Environment Embrittlement by SO2[J]. Scripta Metallu-rgica, 1975, 9(7): 767-769.
[111] DEIMEL P, LEONHARD H, SATTLER E. Characte-rization of the Influence of High-Pressure Hydrogen Gas on the Ductility of the Steel 15 MnNi 6 3[J]. International Journal of Hydrogen Energy, 1993, 18(4): 313-318.
[112] KUSSMAUL K, DEIMEL P, FISCHER H, et al. Fracture Mechanical Behaviour of the Steel 15 MnNi 6 3 in Argon and in High Pressure Hydrogen Gas with Admixtures of Oxygen[J]. International Journal of Hydrogen Energy, 1998, 23(7): 577-582.
[113] MICHLER T, BOITSOV I E, MALKOV I L, et al. Assessing the Effect of Low Oxygen Concentrations in Gaseous Hydrogen Embrittlement of DIN 1.4301 and 1.1200 Steels at High Gas Pressures[J]. Corrosion Science, 2012, 65: 169-177.
[114] SOMERDAY B P, SOFRONIS P, NIBUR K A, et al. Elucidating the Variables Affecting Accelerated Fatigue Crack Growth of Steels in Hydrogen Gas with Low Oxygen Concentrations[J]. Acta Materialia, 2013, 61(16): 6153-6170.
[115] 李婷婷. CO抑制高壓臨氫管線氫致脆化機理的研究[D]. 東營: 中國石油大學(xué)(華東), 2018.
LI Ting-ting. Study on Inhibition Mechanism of CO on Hydrogen Embrittlement of High-Pressure Hydrogen Transport Pipeline[D]. Dongying: China University of Petroleum (Huadong), 2018.
[116] SHANG Juan, CHEN Wei-feng, ZHENG Jin-yang, et al. Enhanced Hydrogen Embrittlement of Low-Carbon Steel to Natural Gas/Hydrogen Mixtures[J]. Scripta Materialia, 2020, 189: 67-71.
[117] TAKASUGI T, KIMURA A, SUGIMOTO T, et al. The Effects of Partial Pressure and Strain Rate on Water Vapor- and Hydrogen Gas-Induced Embrittlement of Co3Ti Alloys[J]. Acta Materialia, 1997, 45(11): 4765-4773.
[118] XIONG Mao-xian, ZHENG Shu-qi, QI Ya-meng, et al. Effect of H2/CO2Partial Pressure Ratio on the Tensile Properties of X80 Pipeline Steel in the Absence and Presence of Water[J]. International Journal of Hydrogen Energy, 2015, 40(35): 11917-11924.
[119] 林海, 許杰, 范白濤, 等. L80鋼在CO2/H2S腐蝕環(huán)境中的力學(xué)特性[J]. 表面技術(shù), 2016, 45(5): 91-96.
LIN Hai, XU Jie, FAN Bai-tao, et al. Mechanical Prop-erties of L80 Steel in CO2/H2S Environment[J]. Surface Technology, 2016, 45(5): 91-96.
[120] CHATTERJEE S S, ATEYA B G, PICKERING H W. Effect of Electrodeposited Metals on the Permeation of Hydrogen through Iron Membranes[J]. Metallurgical Transactions A, 1978, 9(3): 389-395.
[121] ZAMANZADEH M, ALLAM A, KATO C, et al. Hydr-ogen Absorption during Electrodeposition and Hydrogen Charging of Sn and Cd Coatings on Iron[J]. Journal of the Electrochemical Society, 1982, 129(2): 284-289.
[122] MICHLER T, NAUMANN J. Coatings to Reduce Hydr-ogen Environment Embrittlement of 304 Austenitic Stainless Steel[J]. Surface and Coatings Technology, 2009, 203(13): 1819-1828.
[123] JO K R, CHO L, SULISTIYO D H, et al. Effects of Al-Si Coating and Zn Coating on the Hydrogen Uptake and Emb-rittlement of Ultra-High Strength Press-Hardened Steel[J]. Surface and Coatings Technology, 2019, 374: 1108-1119.
[124] LEVCHUK D, KOCH F, MAIER H, et al. Deuterium Permeation through Eurofer and α-Alumina Coated Eurofer[J]. Journal of Nuclear Materials, 2004, 328(2/3): 103-106.
[125] FORCEY K S, ROSS D K, WU C H. The Formation of Hydrogen Permeation Barriers on Steels by Alumin-ising[J]. Journal of Nuclear Materials, 1991, 182: 36-51.
[126] WANG Ji-peng, LU Zhao-xia, LING Yun-han, et al. Hydr-ogen Permeation Properties of CrC@Cr2O3/Al2O3Composite Coating Derived from Selective Oxidation of a CrC Alloy and Atomic Layer Deposition[J]. International Journal of Hydrogen Energy, 2018, 43(45): 21133-21141.
[127] ZHOU Qing-yun, LING Yun-han, LU Zhao-xia, et al. Characteristics of Hydrogen Plasma Treatment on Al2O3/ CrO/AlmOn Composite Film via Al-Ion-Implantation and Ultra-Low Partial Pressure Oxidation[J]. Surface and Coatings Technology, 2020, 395: 125917.
[128] IZAWA C, WAGNER S, DEUTGES M, et al. Role of Surface Oxide Layers in the Hydrogen Embrittlement of Austenitic Stainless Steels: A TOF-SIMS Study[J]. Acta Materialia, 2019, 180: 329-340.
[129] NAM T H, LEE J H, CHOI S R, et al. Graphene Coating as a Protective Barrier Against Hydrogen Embrittle-ment[J]. International Journal of Hydrogen Energy, 2014, 39(22): 11810-11817.
[130] KIM Y S, KIM J G. Electroplating of Reduced-Graphene Oxide on Austenitic Stainless Steel to Prevent Hydrogen Embrittlement[J]. International Journal of Hydrogen Energy, 2017, 42(44): 27428-27437.
Research Progress on Hydrogen Embrittlement Behavior of Pipeline Steel in the Environment of Hydrogen-Blended Natural Gas
1,1,1,1,1,1,2,1
(1. Shandong Provincial Key Laboratory of Oil & Gas Storage and Transportation Security, China University of Petroleum (East China), Shandong Qingdao 266580, China; 2. Pipe China Oil & Gas Pipeline Control Center, Beijing 100020, China)
Hydrogen energy has been vigorously developed in recent years, but excessive transportation and storage costs have become a key issue in restricting the development of hydrogen utilization. Blending H2into existing natural gas long- distance pipelines is the potential best way to transport hydrogen on a large scale, cost-effectively and efficiently. However, H2can induce hydrogen embrittlement of pipeline steel, which seriously restricts the safe operation of hydrogen-blended natural gas pipelines.
In order to promote the development of hydrogen-blended natural gas pipelines in China, this paper reviews the current research results of hydrogen embrittlement of pipeline steel in hydrogen-containing environment; summarizes the influence of operating conditions such as temperature, pressure, and hydrogen blending ratio on hydrogen embrittlement of steel; analyzes the relationship between the material properties and the hydrogen embrittlement behavior of pipeline steel, such as strength, microstructure organization, hydrogen traps; summarizes the methods to prevent and inhibit the hydrogen embrittlement behavior of pipeline steel.
For the high-pressure hydrogen-blended natural gas pipeline, the operating parameters such as temperature, pressure, and hydrogen-blending ratio have a great impact on the hydrogen embrittlement. At present, there are few studies focusing on the effect of temperature on the hydrogen embrittlement of pipeline steel. With the increase in hydrogen partial pressure, the hydrogen embrittlement susceptibility of pipeline steel increases. Affected by the service life and materials of the pipeline, the ranges of the safe hydrogen blending ratio obtained by different researches are quite different. It is necessary to determine the safe hydrogen blending ratio suitable for the hydrogen-blended natural gas pipelines in China, and formulate relevant standards and specifications.
Steel properties are also an important factor affecting the hydrogen embrittlement behavior. Most studies have shown that hydrogen embrittlement susceptibility of pipeline steel increased with strength, but the quantitative relationship is not clear. The different microstructures of steels can also lead to different hydrogen embrittlement susceptibilities, and particularly, there is a higher hydrogen embrittlement sensitivity for the welding area. In addition, under different conditions, the effects of hydrogen traps such as dislocations and grain boundaries on the hydrogen embrittlement behavior of steel are different, and further research is needed.
Finally, three methods for inhibiting hydrogen embrittlement of pipeline steel are summarized, including changing phase structure, blending protective gas, and hydrogen barrier coating. But all three methods have great limitations. Changing the phase structure may lead to the decline of the mechanical properties of some materials, and the energy consumption is large, so it is not suitable for large-scale application in long-distance pipeline steel. For blending protective gas, the influence of different gases on the hydrogen embrittlement behavior of steel is still controversial, and its mechanism of action is not completely clear. Moreover, blending other gases will have a greater impact on the safety of pipeline operation and downstream user terminals. The hydrogen barrier coating will cause severe local corrosion after damage. Due to the limitation of price and processing technology, the hydrogen barrier coating cannot be applied on a large scale.
In conclusion, the current scientific and technical issues that need to be solved include: further exploring the influence of different operating conditions on the hydrogen embrittlement behavior of pipeline steel under the environment of hydrogen- blended natural gas pipelines; determining the key parameters of hydrogen-blended natural gas pipelines such as the safe operating temperature, pressure and hydrogen blended ratio; establishing safety evaluation methods for hydrogen-blended natural gas pipeline transportation under different service conditions, and improving the compatibility evaluation system of hydrogen-blended natural gas pipelines and existing pipelines; forming design specifications and related standards for hydrogen-blended natural gas pipelines; carrying out evaluation of anti-hydrogen embrittlement methods such as gas inhibitors and hydrogen barrier coating.
hydrogen-blended natural gas; pipeline steel; hydrogen embrittlement; mechanism; hydrogen blending ratio; coating
TE88
A
1001-3660(2022)10-0076-13
10.16490/j.cnki.issn.1001-3660.2022.10.009
2021–08–18;
2022–01–19
2021-08-18;
2022-01-19
國家重點研發(fā)計劃“氫能技術(shù)”重點專項(2021YFB4001601);山東省油氣儲運安全重點實驗室重點科研平臺基金開發(fā)課題(20CX02405A)
The National Key R & D Program of China (2021YFB4001601); The Fundamental Research Funds for the Central Universities and the Development Fund of Shandong Key Laboratory of Oil & Gas Storage and Transportation Safety (20CX02405A)
張家軒(1997—),男,碩士研究生,主要研究方向為管道鋼氫脆行為。
ZHANG Jia-xuan (1997-), Male, Postgraduate, Research focus: hydrogen embrittlement behavior of pipeline steel.
李玉星(1970—),男,博士,教授,主要研究方向為油氣及特殊氣體管輸技術(shù)。
LI Yu-xing (1970-), Male, Doctor, Professor, Research focus: oil-gas and special gas pipeline transportation technology
張家軒, 王財林, 劉翠偉, 等. 摻氫天然氣環(huán)境下管道鋼氫脆行為研究進展[J]. 表面技術(shù), 2022, 51(10): 76-88.
ZHANG Jia-xuan, WANG Cai-lin, LIU Cui-wei, et al. Research Progress on Hydrogen Embrittlement Behavior of Pipeline Steel in The Environment of Hydrogen-Blended Natural Gas[J]. Surface Technology, 2022, 51(10): 76-88.
責(zé)任編輯:劉世忠