亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于辯證思維的問題解決能力培養(yǎng)策略的思考

        2022-10-17 10:51:32雷安桃
        數(shù)學之友 2022年15期
        關鍵詞:解決問題思維數(shù)學

        雷安桃

        (凱里學院,貴州凱里,556000)

        《義務教育數(shù)學課程標準(2022版)》指出:“通過數(shù)學的思維,可以揭示客觀事物的本質屬性;能夠運用符合運算、形式推理等數(shù)學方法,分析、解決數(shù)學問題和實際問題;能夠發(fā)展質疑問難的批判性思維.[1]”這說明從辯證的角度去分析問題,發(fā)展學生的批判性思維,培養(yǎng)學生的問題解決能力是十分重要的.本文以辯證思維為視角,對初中數(shù)學教學中如何培養(yǎng)學生問題解決能力進行思考和研究.

        1 透過數(shù)學現(xiàn)象,抓住數(shù)學本質

        1.1 概念與背景

        透過現(xiàn)象看本質是辯證思維的一個重要方面,我們對事物的思考不能僅僅停留在表面,要學會透過表面去看到事物所固有的本質屬性,在數(shù)學中,情境化、多變式的數(shù)學問題往往無法使學生透過情境抓住數(shù)學本質.

        1.2 教學實施

        學習數(shù)學知識和思考數(shù)學問題的過程中,不要被數(shù)學知識的表面現(xiàn)象所迷惑.要學會透過數(shù)學的現(xiàn)象去揭示其中的數(shù)學規(guī)律,并利用揭示的數(shù)學規(guī)律解決問題,提升解決一類問題的能力.

        如何在教學中去引導學生透過圖形這個現(xiàn)象去把握本質呢?例如在多邊形內角和教學中,教師在進行多邊形內角和練習中有這樣一道問題:

        (1) 求下列三個圖形中∠A+∠B+∠C+∠D+∠E的度數(shù).

        圖1

        圖2

        圖3

        (2) 求一下圖形中∠B+∠C+∠D+∠E+∠F+∠G的度數(shù).

        圖4

        圖5

        圖6

        問題1:這幾個圖形有什么樣的聯(lián)系?

        通過觀察我們可以發(fā)現(xiàn)圖2是由圖1中的點A轉移到線段BE的下方,圖3是由圖1的點B和點E移到圖形中間,圖4、圖5、圖6分別是把圖1、圖2、圖3中的頂點A切成線段GF,也就是說后面的五個圖形都是由圖1演變而來的,這是他們之間的聯(lián)系.

        問題2:既然它們之間有如此聯(lián)系,如何進行轉化呢?

        連接線段CD,我們發(fā)現(xiàn)可以把第一題的5個角內角和轉化為三角形求解,把第二題中的六個角的內角和轉化成我們熟悉的四邊形進行求解.

        問題3:這6個圖形都可以用什么方法進行求解?

        多邊形的內角和公式:(n-2)×180°進行求解.

        在這個過程中我們透過這些不同圖形的表象,揭示它們之間的本質是多邊形的內角和,這種由此及彼、由表及里的思索,可以讓學生們更好地揭示問題的規(guī)律.

        2 化動為靜,靜觀其變

        2.1 概念與背景

        辯證唯物主義告訴我們:運動是物質存在的方式和固有屬性,是永恒的,絕對的;而靜止則是相對的,暫時的,是物質運動的一種特殊形式,這就是運動和變化的觀點[2].正如人在坐火車時,人沒有感覺在動,卻感覺到車窗外的樹木和建設在飛快地往后倒退,這種“車靜而物動”啟發(fā)我們,有時候“靜止”的狀態(tài)是伴隨著“運動”的,這也可以說化動為靜,靜觀其變,我們只有在運動的事物中尋求相對的靜止,才能去把握住事物的本質.在初中常見的問題中就是圖形的動點問題.

        2.2 教學實施

        教學中要引導學生用運動和靜止的觀點去思考問題并解決問題,在看待問題的時候要多方面思考,走出自己固有的思維,在解決問題的過程中要學會變換看問題的思路,尋找多種多樣的解題方法.

        在教學中如何引導學生用運動和靜止的觀點解決問題呢?例如在初步講動點問題專題中有這樣一個問題:

        如圖,在梯形ABCD中,AD∥BC,AD=9 cm,BC=6 cm,點P從點A出發(fā),沿著AD的方向向終點D以每秒一個單位的速度運動,當點P在AD上運動時,設運動時間為t,求當t為何值時,四邊形APCB為平行四邊形.

        問題:如何用把運動的動點P化為靜止的平行四邊形?

        最終是求APCB為平行四邊形,所以可以利用平行四邊形的性質去求得動點P移動的距離.

        ∵四邊形APCB為平行四邊形,

        ∴BC=AP且BC=AP,

        ∴AP=6,∴t=6.

        這個題目是最簡單的動點構成特殊圖形類型,解決這一類動點構成特殊圖形的問題,分析圖形變化過程中變量和其他量之間的關系,或是找到變化中的不變量,確定特殊圖形中動點的位置,畫出符合題意的圖形——化動為靜,建立方程或函數(shù)關系解決動點問題.因此,在變化中找到不變的性質是解決“動點”探究題的基本思路,這也是動態(tài)幾何數(shù)學問題中最核心的數(shù)學本質.在教學中確立這種“化動為靜,靜觀其變”的觀點,可以使學生在解題時開拓視野,對于提高學生思考問題、解決問題的能力著不可估量的影響.

        3 代數(shù)與幾何互化

        3.1 概念界定與背景

        唯物辯證法指出, 客觀事物是發(fā)展變化的,不同事物間存在著種種聯(lián)系, 各種矛盾無不在一定的條件下轉化[3].著名數(shù)學家華羅庚曾經說過:“數(shù)形本是兩依依,數(shù)缺形時少直觀,形少數(shù)時難入微,數(shù)形相助雙翼飛”.這說明在初中數(shù)學中,代數(shù)與幾何是密不可分的,形成你中有我,我中有你.

        3.2 教學實施

        在遇到一些代數(shù)問題時,根據已知條件中特有的形式與特征,利用圖形轉化為幾何問題有時候更利于解決問題.幾何問題也是如此.在教學中我們如何去進行代數(shù)與幾何的互化呢?例如在講解一元二次方程組時,我們會利用圖形法求解一元二次方程組所構成的區(qū)域面積.

        問題:直線y1、y2的圖形分別是怎么樣的?與坐標軸相交后的圖形面積怎么求?

        這個問題是典型的代數(shù)問題,但是用代數(shù)思維我們無法快速求解,也就是如果借助函數(shù)圖象學生很難做出來,所要先引導學生畫出兩條直線的圖象,再去求交點問題和面積就很簡單了.

        根據圖象可得交點P為(2, 1)

        代數(shù)與幾何是初中數(shù)學的主體內容,我們要在教學中滲透代數(shù)問題幾何化,幾何問題代數(shù)化的辯證思想,讓學生學會對問題的轉化,用不同的角度去思考問題,對問題進行數(shù)形結合,這對學生的解決問題能力十分重要.

        4 聯(lián)系與發(fā)展

        4.1 概念界定及背景

        唯物辯證法告訴我們,事物之間存在著普遍的相互聯(lián)系,而且還在不斷地變化與發(fā)展[3].在數(shù)學教學中,聯(lián)系是指數(shù)學知識之間存在著某種共性,并且由此共性能發(fā)展成下一個知識點,知識點之間存在的包含關系.

        4.2 教學實施

        在教學中,我們不光是要學習一種知識,而是要從中找到知識的聯(lián)系點發(fā)展為一類連貫知識,由點形成面,又能從面中準確找到點的位置,用聯(lián)系與發(fā)展的觀點看待知識,學生就會明白所學的知識都不是單獨存在的、靜止的,而是可以由點成面地存在著相互聯(lián)系和變化發(fā)展的.例如在學完平行四邊形一章節(jié)之后,要引導學生進行知識的總結,從中發(fā)現(xiàn)知識的聯(lián)系與發(fā)展.

        請你歸納一下本章我們所學的知識,試著尋找它們之間的聯(lián)系點.

        首先我們先從簡單的平行四邊形出發(fā),由邊的特性可以得到菱形,由角的特性可以得到矩形,而正方形又是特殊的矩形,由此我們可以發(fā)現(xiàn)菱形和矩形都是由平行四邊演變而來,只不過一個是領邊相等,一個是有一個為直角.由此讓學生由一個點的知識點變成一個面的知識點,那學生在遇到有關矩形或菱形問題時就可以想到利用平行四邊形的相關知識求解,學生的知識面廣了,解決問題的能力自然就提升了.

        5 可逆性思維

        5.1 概念與背景

        可逆思維是辯證思想的一部分,可逆是學生在遇到正向思維無法解決的問題時,要學會“倒”著思考問題,改變思考問題的角度的方向分析問題.

        5.2 教學實施

        在初中數(shù)學中,運用可逆思維解決問題還是很多的, 比如:完全平方差公式的逆運算,正比例函數(shù)與反比例函數(shù)等.在一般考試中出現(xiàn)正面解決問題的比較少,更多的是可逆的和綜合性的.所以,教師在教學時,要有意識地引導學生對概念和公式進行剖析變式,培養(yǎng)其可逆性思維.比如在講解完全平方公式(a+b)2=a2+2ab+b2時,有意識地引導學生對此公式進行逆用.

        (1) 計算1.232+0.762+2.46×0.76;

        問題:這三個題目怎么計算?

        提示:(1)第一個題目直接就是完全平方公式的逆用,學生可自行完成.

        分析:(2)對分母逆用平方差公式,這是學生思考該題目的難點,分母可以利用平方差公式解決.分母=(2 0082-1)+(2 0102-1)

        =(2 008+1)(2 008-1)+(2 010+1)

        (2 010-1)

        =2 009×2 007+2 011×2 009.

        至此,學生自然就能把這個問題解決了.

        解決:(3)看著難其實簡單.第一步利用完全平方差展開:第二步展開之后看這些式子有沒有相似簡便算法;第三步解決問題.

        在課堂中對學生多進行可逆思維的訓練,進行正逆向問題對比,學生能清晰地理解正問題的已知和所求正好是逆問題的所求和已知,解題思路相反,從列式上看運算也是互逆的.這樣學生對應用題,特別是對逆問題的結構特征,有深刻的認識,可逆性思維又得到培養(yǎng).培養(yǎng)學生的可逆性思維.

        6 不可忽視的批判性思維

        6.1 概念與背景

        思維批判性的高層次表現(xiàn)為思維的論證性[4].擁有這種思維的學生看問題時總有自己獨特的見解,善于思考為什么,喜歡發(fā)現(xiàn)問題并解決問題,他們會十分耐心地去判斷問題的真實性和根據,從而去偽存真,揭示問題正確的因果關系.

        6.2 教學實施

        在數(shù)學教學過程中,在教學過程中進行反思訓練,鼓勵學生大膽質疑,引導學生進行辨析.教師要善于激發(fā)學生的批判性思維,多讓學生想一想“為什么要這么做?”“這樣的做法合不合理?”“怎樣做才是對的?”

        例如在反比例教學中,有這樣一道練習題:

        師:你為什么會想到這么做這個題目?

        師:你覺得不等號的方向要改變嗎?

        生:不用改變.

        師:為什么不用改變呢?

        生:應該要改變吧,比較未知數(shù)的正負未定.

        師:那你再想一想怎么做更合理呢?

        生:可以分類討論和畫圖象.

        在上面的教學過程中,老師利用學生比較容易犯的錯誤,可以通過類似不斷地詢問學生為什么,引導學生進行多方面思考,培養(yǎng)了學生的批判性思維.

        基于辯證思維培養(yǎng)學生解決問題的能力,不僅僅只是上面闡述的六點,中學數(shù)學中的辯證關系是十分豐富的,作為一名教師,不僅是傳授知識,更重要的是通過知識的傳授,去培養(yǎng)學生辯證思考問題的習慣,提高學生的辯證思維能力.因此,既要讓學生在遇到問題時透過數(shù)學現(xiàn)象,抓住數(shù)學本質,也要讓學生學會用運動和靜止的觀點看問題,尋找問題的聯(lián)系與發(fā)展,在代數(shù)問題與幾何問題中互化,對問題學會從反面思考,培養(yǎng)可逆思維,對問題要敢于質疑,培養(yǎng)批判性思維,最終達到更好地培養(yǎng)學生問題解決能力.

        猜你喜歡
        解決問題思維數(shù)學
        思維跳跳糖
        思維跳跳糖
        思維跳跳糖
        思維跳跳糖
        聯(lián)系實際 解決問題
        助農解決問題增收致富
        在解決問題中理解整式
        化難為易 解決問題
        我為什么怕數(shù)學
        新民周刊(2016年15期)2016-04-19 18:12:04
        數(shù)學到底有什么用?
        新民周刊(2016年15期)2016-04-19 15:47:52
        日本久久久| 国产午夜免费高清久久影院| 国产网红主播无码精品| 草莓视频成人| 国产杨幂AV在线播放| 男女做那个视频网站国产| 国精品人妻无码一区二区三区性色| 国产精品无套内射迪丽热巴| 成人国产在线观看高清不卡| 一本色道88久久加勒比精品| 高潮毛片无遮挡高清视频播放| 中文字幕精品一二三四五六七八 | 欧美一级色图| 青青草伊人视频在线观看| 免费黄片小视频在线播放| 风韵多水的老熟妇| 精品无码AV无码免费专区| 一区两区三区视频在线观看| 老熟女的中文字幕欲望| 欧美大肥婆大肥bbbbb| 精选麻豆国产AV| 日本一区二区偷拍视频| 免费观看mv大片高清| 亚洲熟伦熟女新五十路熟妇| 亚洲成AV人久久| 国产女优一区在线观看| 毛片无码国产| 欧美性久久| 国产av一区二区内射| 中文字幕亚洲无线码在线一区| 无码国产色欲xxxxx视频| 国产在线视频h| 高清少妇二区三区视频在线观看| 强开少妇嫩苞又嫩又紧九色 | 日日摸天天碰中文字幕你懂的| 精品国产乱码久久久久久口爆网站| 91极品尤物国产在线播放| 国产高清一区二区三区三州| 国产精品兄妹在线观看麻豆| 91麻豆精品激情在线观看最新| 国语对白三级在线观看|