亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        心臟非成纖維細(xì)胞的旁分泌信號(hào)在調(diào)控心肌纖維化中的研究進(jìn)展*

        2022-10-13 05:39:16周宙張科科王震王詠劉楊
        中國(guó)病理生理雜志 2022年9期
        關(guān)鍵詞:纖維細(xì)胞心肌細(xì)胞內(nèi)皮細(xì)胞

        周宙, 張科科, 王震, 王詠, 劉楊△

        心臟非成纖維細(xì)胞的旁分泌信號(hào)在調(diào)控心肌纖維化中的研究進(jìn)展*

        周宙1, 張科科1, 王震2, 王詠2, 劉楊2△

        (1山東中醫(yī)藥大學(xué)第一臨床醫(yī)學(xué)院,山東 濟(jì)南 250000;2山東中醫(yī)藥大學(xué)附屬醫(yī)院心內(nèi)科,山東 濟(jì)南 250000)

        心肌纖維化;心臟非成纖維細(xì)胞;旁分泌

        作為一種能夠危及生命的疾病,心力衰竭當(dāng)前在全球范圍內(nèi)已經(jīng)威脅到大約6 400萬人民的健康,并且患病率仍在逐年增加[1]。心肌纖維化是心力衰竭的重要病理特征,也是引起心功能不全的主要原因之一。在心肌損傷后(如過度的機(jī)械牽拉、缺血、梗死和再灌注損傷等),成纖維細(xì)胞被激活合成大量的膠原蛋白,損傷或死亡的心肌細(xì)胞被富含膠原蛋白的疤痕包裹甚至代替,在一定范圍內(nèi)的纖維化是心臟對(duì)原發(fā)性壞死性損傷的修復(fù),具有保護(hù)心臟的積極作用[2]。然而,過度的膠原蛋白富集能夠增加心室壁的硬度,阻礙了正常的收縮和舒張功能,誘發(fā)或加重了心力衰竭的病理過程,因此抑制或逆轉(zhuǎn)過度的心肌纖維化成為治療心力衰竭的重要靶點(diǎn)[3-4]。

        纖維化是細(xì)胞外基質(zhì)(extracellular matrix, ECM)累積的總稱,心臟成纖維細(xì)胞是表達(dá)和沉積纖維狀ECM的核心細(xì)胞類型,在病理性刺激下成纖維細(xì)胞被活化向肌成纖維細(xì)胞轉(zhuǎn)化,后者膠原蛋白合成能力顯著增加,是心肌纖維化過程中細(xì)胞外基質(zhì)的主要來源細(xì)胞[5]。當(dāng)前,成纖維細(xì)胞是改善心肌纖維化的研究重點(diǎn),但越來越多的證據(jù)表明,心臟中的非成纖維細(xì)胞(心肌細(xì)胞、炎癥細(xì)胞和內(nèi)皮細(xì)胞等)同樣在心肌纖維化的過程中發(fā)揮重要的作用[2]。在心肌纖維化的過程中,非成纖維細(xì)胞不僅能夠通過分泌促成纖維細(xì)胞活化因子影響成纖維細(xì)胞的表型轉(zhuǎn)化,并且能夠分泌細(xì)胞外基質(zhì)蛋白酶以啟動(dòng)ECM的過度重塑從而加重心肌纖維化的進(jìn)程[6-7]。

        心臟微環(huán)境中各類細(xì)胞的交流是通過細(xì)胞間的信號(hào)傳導(dǎo)實(shí)現(xiàn)的。不同于依賴于循環(huán)系統(tǒng)的內(nèi)分泌途徑和具有靶向局限性的神經(jīng)分泌途徑,旁分泌作為第三種常見細(xì)胞間信號(hào)因子的交流途徑是心肌微環(huán)境內(nèi)各細(xì)胞發(fā)生信號(hào)交流的主要形式。旁分泌信號(hào)主要通過直接分泌可溶性因子、細(xì)胞外囊泡包裹和外泌體攜帶等3種方式從細(xì)胞向胞外釋放[8]。纖維化過程中,鄰近的非成纖維細(xì)胞能通過以上3種旁分泌方式向組織微環(huán)境中釋放信號(hào)因子,并被成纖維細(xì)胞接受,誘導(dǎo)成纖維細(xì)胞功能和表型發(fā)生改變,促進(jìn)了心肌纖維化的產(chǎn)生和發(fā)展。此外,非成纖維細(xì)胞之間的相互影響也參與了心肌纖維化的調(diào)控。但是,當(dāng)前仍缺乏基于旁分泌治療心肌纖維化的有效藥物。本文將就旁分泌介導(dǎo)的非成纖維細(xì)胞與成纖維細(xì)胞之間的相互作用及其對(duì)心肌纖維化的影響進(jìn)行綜述。

        1 心臟非成纖維細(xì)胞的旁分泌信號(hào)對(duì)心肌纖維化的調(diào)控

        1.1心肌細(xì)胞的旁分泌信號(hào)對(duì)心肌纖維化的調(diào)控心肌細(xì)胞是心臟泵血功能的效應(yīng)細(xì)胞,也是心功能障礙的主要損傷單元。心肌細(xì)胞對(duì)于外界刺激十分敏感,除了發(fā)揮舒縮功能外,心肌細(xì)胞還參與了心臟微環(huán)境穩(wěn)態(tài)的調(diào)控[9]。受損心肌細(xì)胞向外界釋放大量的促炎因子和趨化因子,并且壞死的細(xì)胞還能觸發(fā)先天性免疫通路引起強(qiáng)烈的炎癥反應(yīng),炎癥細(xì)胞(白細(xì)胞和單核細(xì)胞)的大量浸潤(rùn)是心肌ECM發(fā)生重塑的重要原因[10-11]。研究顯示接受主動(dòng)脈縮窄術(shù)后,活性氧(reactive oxygen species, ROS)介導(dǎo)了小鼠心肌細(xì)胞結(jié)締組織生長(zhǎng)因子(connective tissue growth factor, CTGF)的上調(diào)并以旁分泌形式釋放,心肌細(xì)胞源的CTGF顯著激活了心肌成纖維細(xì)胞,表現(xiàn)出大量的膠原蛋白合成[12]。此外,心肌細(xì)胞可以通過介導(dǎo)微小RNA(microRNA, miRNA)向胞外的釋放調(diào)控心肌纖維化[13]。miRNA作為一種進(jìn)化的保守機(jī)制,能夠與靶基因的轉(zhuǎn)錄本的部分區(qū)域互補(bǔ)而形成RNA誘導(dǎo)沉默復(fù)合體,抑制其蛋白的合成[14]。Li等[15]發(fā)現(xiàn),在心肌梗死或缺血再灌注狀態(tài)下,心肌細(xì)胞分泌富含miR-30d的細(xì)胞外囊泡(extracellular vesicles, EVs),miR-30d通過沉默心肌成纖維細(xì)胞中的整合素α5(integrin alpha-5,),阻礙了ITGA5介導(dǎo)的心肌成纖維細(xì)胞活化。不僅是缺血性疾病,在機(jī)械牽拉刺激下(如心臟前負(fù)荷過高),心肌細(xì)胞與心肌成纖維細(xì)胞間也存在信號(hào)傳遞。接受主動(dòng)脈縮窄術(shù)的心臟壓力超負(fù)荷大鼠心肌存在大量纖維化病變,其病理機(jī)制包括壓力誘導(dǎo)的心肌成纖維細(xì)胞活化和內(nèi)皮-間充質(zhì)轉(zhuǎn)化(endothelial-mesenchymal transition, EndMT;內(nèi)皮細(xì)胞轉(zhuǎn)化為成纖維細(xì)胞為主的間充質(zhì)細(xì)胞)等多種病理過程[16-17]。在接受主動(dòng)脈縮窄術(shù)后的小鼠心肌組織中miR-378的水平顯著提高,而體外實(shí)驗(yàn)顯示心肌細(xì)胞(而不是成纖維細(xì)胞)在接受機(jī)械牽拉刺激后將攜帶大量miR-378的外泌體從胞內(nèi)多囊泡小體釋放進(jìn)入心肌微環(huán)境,miR-378靶向心肌成纖維細(xì)胞中絲裂原活化蛋白激酶激酶6(mitogen-activated protein kinase kinase 6, MKK6)的mRNA而抑制其蛋白表達(dá),并促進(jìn)p38絲裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)/Smad2/3信號(hào)通路因缺少M(fèi)KK6激活而失去的促成纖維細(xì)胞活化能力[18]。這可能是心肌代償性調(diào)控心肌纖維化的機(jī)制之一。

        纖維化也是心房顫動(dòng)的重要病理基礎(chǔ)[19]。降鈣素(calcitonin, CT)是一種主要(但不完全)由甲狀腺濾泡旁細(xì)胞產(chǎn)生的激素,它參與了骨吸收和膠原蛋白轉(zhuǎn)換[20]。Moreira等[21]觀察到CT也能夠在人類心房組織中表達(dá),并且心房的心肌細(xì)胞是CT的主要非甲狀腺來源;與對(duì)照組相比,沉默的自發(fā)性房顫小鼠房顫的出現(xiàn)時(shí)間明顯提前且心房表現(xiàn)出顯著的心肌纖維化改變,而CT過表達(dá)組與對(duì)照組無顯著差異;進(jìn)一步研究顯示心肌細(xì)胞通過旁分泌釋放的CT能夠與心房成纖維細(xì)胞表面的CT受體結(jié)合,通過上調(diào)Gαs/cAMP通路抑制骨形態(tài)發(fā)生蛋白1(bone morphogenetic protein 1, BMP1)的表達(dá);BMP1參與了膠原前體向成熟膠原的加工過程,因此心肌細(xì)胞通過旁分泌途徑分泌的CT能夠抑制成纖維細(xì)胞成熟膠原的合成。上述研究結(jié)果提示CT具有延緩心房心肌纖維化改變的作用,這為基于抑制心房纖維化治療心房顫動(dòng)提供了新的靶點(diǎn)。

        1.2心臟微血管內(nèi)皮細(xì)胞的旁分泌信號(hào)對(duì)心肌纖維化的調(diào)控心臟微血管內(nèi)皮細(xì)胞作為心臟脈管系統(tǒng)的保護(hù)屏障也是對(duì)循環(huán)系統(tǒng)來源刺激(缺氧、氧自由基、炎癥因子、血流應(yīng)剪切力異常等)的最早反應(yīng)單位[22]。病理?xiàng)l件下,微血管內(nèi)皮細(xì)胞發(fā)生EndMT,為心肌纖維化提供了額外的成纖維細(xì)胞來源,在高血壓、心肌梗死和心力衰竭等疾病的心肌纖維化過程中發(fā)揮重要作用[23-25]。除此之外,內(nèi)皮細(xì)胞還能通過旁分泌信號(hào)誘導(dǎo)鄰近成纖維細(xì)胞的活化。在缺氧/復(fù)氧條件下(如缺血再灌注),心臟微血管內(nèi)皮細(xì)胞被Snai1誘導(dǎo)發(fā)生EndMT,EndMT細(xì)胞能夠向微環(huán)境中分泌大量的CTGF以誘導(dǎo)鄰近心肌成纖維細(xì)胞的活化,這種纖維化調(diào)控可能是心臟發(fā)生再灌注損傷的原因之一[7]。Zhang等[26]通過構(gòu)建多種小鼠心肌纖維化模型(主動(dòng)脈縮窄、心肌梗死或血管緊張素II誘導(dǎo)),觀察到E26轉(zhuǎn)化特異性相關(guān)基因[E26 transformation-specific (ETS)-related gene,]在心肌組織中的表達(dá)顯著下調(diào);進(jìn)一步研究表明,表達(dá)的降低導(dǎo)致內(nèi)皮細(xì)胞中內(nèi)皮素1(endothelin-1, ET-1)表達(dá)上調(diào)并通過旁分泌途徑激活了心肌成纖維細(xì)胞的蛋白激酶B(protein kinase B, PKB/AKT)/糖原合酶激酶3β(glycogen synthase kinase 3β, GSK3β)、MAPKs和Smad等信號(hào)通路,從而誘導(dǎo)成纖維細(xì)胞的表型活化;在內(nèi)皮細(xì)胞中特異性過表達(dá)ERG蛋白或使用ET-1抗體后,多種刺激下的心肌纖維化被顯著抑制。這為從阻斷微血管內(nèi)皮細(xì)胞與成纖維細(xì)胞間的信號(hào)傳導(dǎo)而抑制心肌纖維化提供了思路。值得注意的是,微血管內(nèi)皮細(xì)胞在促進(jìn)心肌纖維化的同時(shí)也可以通過旁分泌途徑誘導(dǎo)心肌細(xì)胞的凋亡。在缺氧/復(fù)氧內(nèi)皮細(xì)胞模型中,內(nèi)皮細(xì)胞中轉(zhuǎn)化生長(zhǎng)因子β1(transforming growth factor β1, TGFβ1)顯著上調(diào),作為已知EndMT的最強(qiáng)誘導(dǎo)因子,TGFβ1在促進(jìn)內(nèi)皮細(xì)胞發(fā)生EndMT的同時(shí)以旁分泌形式被釋放,作用于心肌細(xì)胞表面的1型TGFβ受體(TGFβ receptor type-1, TGFβR1),誘導(dǎo)心肌細(xì)胞凋亡,新的心肌缺失和心肌纖維化之間形成惡性循環(huán),加重了心功能的惡化[27]。

        1.3巨噬細(xì)胞的旁分泌信號(hào)對(duì)心肌纖維化的調(diào)控高炎癥性和細(xì)胞外基質(zhì)重塑是心肌梗死后心臟的關(guān)鍵病理機(jī)制,而在二者的病理過程中都存在巨噬細(xì)胞的參與[28-29]。常駐于心肌的巨噬細(xì)胞在不同病理階段以促炎表型(M1)和抗炎表型(M2)分別參與損傷組織的清除和促進(jìn)修復(fù)的過程[30]。除了直接參與細(xì)胞外基質(zhì)重塑外,巨噬細(xì)胞與其他心肌細(xì)胞間也存在著旁分泌信號(hào)并對(duì)心肌纖維化進(jìn)行調(diào)控。心肌梗死后,心臟中常駐巨噬細(xì)胞中基質(zhì)金屬蛋白酶14(matrix metalloproteinase 14, MMP14)顯著上調(diào),MMP14能夠促進(jìn)儲(chǔ)存于巨噬細(xì)胞胞膜的潛伏期相關(guān)肽(latency-associated peptide, LAP)和TGFβ1形成的潛伏復(fù)合體的分解,TGFβ1以旁分泌形式進(jìn)入心臟組織微環(huán)境,通過對(duì)內(nèi)皮細(xì)胞Smad2的磷酸化活化誘導(dǎo)內(nèi)皮細(xì)胞發(fā)生EndMT,最終加重了心肌纖維化[31]。此外,TGFβ1也能夠通過與心肌成纖維細(xì)胞的相應(yīng)受體TGFβR1結(jié)合促進(jìn)心肌成纖維細(xì)胞的活化[32]。因此巨噬細(xì)胞分泌的TGFβ1可能通過促進(jìn)內(nèi)皮細(xì)胞EndMT過程和直接活化心肌成纖維細(xì)胞等多途徑參與心肌纖維化的調(diào)控。circRNA作為一種環(huán)狀閉合的非編碼RNA鏈能夠與細(xì)胞中多種miRNA結(jié)合從而抑制其功能,這種吸附性抑制miRNA的能力被稱為circRNA的海綿作用[33]。有研究表明,心梗后的抗炎表型巨噬細(xì)胞(M2)能夠釋放大量富含CircUbe3a的小細(xì)胞外囊泡(small extracellular vesicles, SEVs),M2來源的CircUbe3a通過SEVs進(jìn)入心肌成纖維細(xì)胞并靶向miR-138-5p,miR-138-5p失去了對(duì)促成纖維細(xì)胞活化基因表達(dá)的抑制,因此M2通過旁分泌CircUbe3a對(duì)miR-138-5p/信號(hào)軸的調(diào)控促進(jìn)了成纖維細(xì)胞的活化和心肌纖維化[34]。

        1.4粒細(xì)胞的旁分泌信號(hào)對(duì)心肌纖維化的調(diào)控不僅是巨噬細(xì)胞,同樣作為感知心肌組織損傷并作出反應(yīng)的白細(xì)胞,粒細(xì)胞也參與心肌纖維化的調(diào)控[35]。中性粒細(xì)胞是粒細(xì)胞的一個(gè)亞型,心肌梗死中性粒細(xì)胞中前列腺六次跨膜上皮抗原2(six-transmembrane epithelial antigen of prostate 2, Stamp2)的缺乏使細(xì)胞中核因子κB(nuclear factor-κB, NF-κB)激活,活化的NF-κB可促進(jìn)中性粒細(xì)胞以旁分泌途徑釋放大量髓過氧化物酶(myeloperoxidase, MPO)誘導(dǎo)成纖維細(xì)胞發(fā)生纖維化表型轉(zhuǎn)化[36]。MPO是活化成纖維細(xì)胞的中性粒細(xì)胞來源重要介質(zhì),主要通過激活成纖維細(xì)胞中的p38 MAPK信號(hào)通路誘導(dǎo)成纖維細(xì)胞向肌成纖維細(xì)胞轉(zhuǎn)分化,從而促進(jìn)心肌纖維化[37]。

        研究表明,結(jié)構(gòu)異常性心肌病患者經(jīng)常伴有嗜酸性粒細(xì)胞增多癥[38]。而在動(dòng)物實(shí)驗(yàn)中嗜酸性粒細(xì)胞增多對(duì)于心臟重塑的促進(jìn)作用也被證實(shí),因此嗜酸性粒細(xì)胞對(duì)心肌纖維化的影響也成為了研究重點(diǎn)[39]。心肌梗死后,嗜酸性粒細(xì)胞依賴白細(xì)胞介素4(interleukin-4, IL-4)介導(dǎo)嗜酸性粒細(xì)胞陽離子蛋白(eosinophil cationic protein, ECP)高表達(dá),ECP能夠通過旁分泌途徑抑制成纖維細(xì)胞的TGF-β1/Smad2/3信號(hào)通路,進(jìn)而以抑制成纖維細(xì)胞活化的方式抑制心肌纖維化的進(jìn)展[40]。此外,ECP還可以作用于心肌細(xì)胞,抑制心肌細(xì)胞的凋亡和細(xì)胞肥大相關(guān)信號(hào)通路的激活[41]。因此,嗜酸性粒細(xì)胞能夠通過旁分泌信號(hào)從抑制成纖維細(xì)胞活化、心肌細(xì)胞凋亡和肥大等多種途徑發(fā)揮抗心臟結(jié)構(gòu)重塑的功能。嗜堿性粒細(xì)胞在心肌纖維化過程中的作用少有研究,有研究表明其通過旁分泌途徑釋放大量IL-4參與了心臟同種異體移植物中成纖維細(xì)胞活化,成為心臟慢性同種異體移植排斥的重要原因[42]。

        1.5T細(xì)胞的旁分泌信號(hào)對(duì)心肌纖維化的調(diào)控在心肌損傷后,作為對(duì)心肌抗原(外源性或內(nèi)源性)的反應(yīng),T細(xì)胞的募集可以通過直接的細(xì)胞毒性或通過細(xì)胞間的信號(hào)增強(qiáng)其他類型心臟細(xì)胞的活性來引發(fā)或促進(jìn)慢性炎癥過程[43]。多項(xiàng)研究表明T細(xì)胞浸潤(rùn)廣泛存在于由各種缺血性心肌病、非缺血性心肌?。ㄖ鲃?dòng)脈縮窄、心肌炎等)誘導(dǎo)的心肌纖維化過程中,是心臟發(fā)生左心室纖維化和功能障礙的重要條件[44-46]。在此過程中,T細(xì)胞與其他細(xì)胞間的特異性相互作用可能在ECM重塑中發(fā)揮關(guān)鍵作用。

        輔助T細(xì)胞(helper T cells, Th)是T細(xì)胞諸多亞群中的具有協(xié)助體液免疫和細(xì)胞免疫功能的一大類,因其細(xì)胞表面表達(dá)CD4又被稱為CD4+T細(xì)胞[47]。心肌梗死條件下,Th以旁分泌途徑釋放富含miR-142-3p的Th源外泌體,miR-142-3p進(jìn)入成纖維細(xì)胞后與腺瘤性結(jié)腸息肉病蛋白(adenomatous polyposis coli, APC)的轉(zhuǎn)錄本結(jié)合抑制其表達(dá),進(jìn)而調(diào)控APC/β-catenin信號(hào)通路發(fā)揮促進(jìn)成纖維細(xì)胞活化的作用[48]。Th又可分為Th1、Th2、Th17和調(diào)節(jié)T細(xì)胞(Treg)等多個(gè)Th亞群。既往研究表明,Th17細(xì)胞聚集能夠促進(jìn)心肌纖維化,而Treg是心肌纖維化的負(fù)向調(diào)節(jié)細(xì)胞[49-50]。因此Th17/Treg動(dòng)態(tài)平衡的打破是心肌纖維化的重要病理因素。研究表明Th17/Treg平衡對(duì)心肌纖維化的調(diào)控依賴于促纖維化蛋白賴氨酰氧化酶(lysyl oxidase,LOX)的表達(dá),Th17合成的IL-17能夠以旁分泌形式與成纖維細(xì)胞的IL17受體(IL17 receptor, IL17R)結(jié)合,激活細(xì)胞外信號(hào)調(diào)節(jié)激酶1/2(extracellular signal-regulated kinase 1/2, ERK1/2)/活化蛋白1(activator protein-1, AP-1)信號(hào)通路促進(jìn)LOX的表達(dá),Treg能夠通過旁分泌途徑釋放大量的IL-10,IL-10與成纖維細(xì)胞的IL-10受體(interleukin-10 receptor, IL10R)結(jié)合以磷酸化形式激活JAK1/STAT3信號(hào)通路抑制LOX的表達(dá)[51]。因此,Th17/Treg兩種細(xì)胞之間的平衡共同通過旁分泌途徑對(duì)LOX的調(diào)控影響了心肌纖維化的進(jìn)程。此外,有研究向血管緊張素/去甲腎上腺素誘導(dǎo)的心肌纖維化小鼠過繼性轉(zhuǎn)移一種工程T細(xì)胞—— FAP-CAR T[該T細(xì)胞能夠表達(dá)針對(duì)成纖維細(xì)胞活化蛋白(FAP)的嵌合受體蛋白(CAR)]顯著抑制了心肌纖維化的進(jìn)展,其具體機(jī)制為:FAP僅在活化的心肌成纖維細(xì)胞中表達(dá),而FAP-CAR T能夠靶向并消除活化的心肌成纖維細(xì)胞[52]。這為通過構(gòu)建工程T細(xì)胞靶向抑制或消除活化心肌成纖維細(xì)胞從而抑制心肌纖維化提供了思路。

        2 基于旁分泌信號(hào)調(diào)控心肌纖維化的策略

        目前基于調(diào)控旁分泌信號(hào)改善心肌纖維化的研究仍局限于實(shí)驗(yàn)階段,當(dāng)前已有研究的方法主要包括:抑制或促進(jìn)旁分泌源細(xì)胞釋放旁分泌信號(hào)以調(diào)控心肌纖維化、通過拮抗劑等方式阻斷旁分泌信號(hào)、利用外源性旁分泌信號(hào)實(shí)現(xiàn)對(duì)心肌纖維化的改善作用等。Hermida等[12]的研究顯示心肌細(xì)胞β3-腎上腺素能受體(β3-adrenergic receptor, β3AR)與神經(jīng)元一氧化氮合酶(neuronal nitric oxide synthase, nNOS)的偶聯(lián)能夠顯著抑制由ROS誘導(dǎo)的心肌細(xì)胞CTGF的上調(diào),從而抑制CTGF通過旁分泌促進(jìn)心肌成纖維細(xì)胞活化的作用。Li等[15]通過遺傳修飾、慢病毒攜帶、miRNA模擬物(miRNA agomir)3種手段分別對(duì)大鼠的心肌細(xì)胞進(jìn)行miR-30d的過表達(dá),均改善了心肌梗死引起的心肌纖維化。Yuan[18]等使用miR-378的miRNA agomir顯著抑制了成纖維細(xì)胞的活化,而在心肌細(xì)胞的培養(yǎng)上清中加入miR-378的拮抗劑后(antagomir),心肌細(xì)胞通過旁分泌對(duì)成纖維細(xì)胞活性的抑制作用顯著下調(diào)。Snail的抑制劑羅格列酮(rosiglitazone)能夠通過抑制Snail誘導(dǎo)的旁分泌信號(hào)CTGF的上調(diào),改善了心肌梗死大鼠的心臟的纖維化水平[7]。Zhang等[26]給予大鼠ET-1受體拮抗劑(Bosentan)和ET-1中和抗體(ET-1 NAb),結(jié)果顯示二者均能改善由ET-1高表達(dá)誘導(dǎo)的心肌纖維化。另有研究通過表達(dá)成纖維細(xì)胞中miR-142-3p的靶向蛋白APC,Th來源的miR-142-3p的促成纖維細(xì)胞活化能力顯著減弱[48]。由此可見,阻斷旁分泌信號(hào)的方式既包括拮抗旁分泌信號(hào)因子也可以通過調(diào)控旁分泌信號(hào)因子的靶向目標(biāo)實(shí)現(xiàn)。此外,Ramanujam等[53]研究顯示:與對(duì)照組相比接受主動(dòng)脈縮窄術(shù)的小鼠心肌組織表現(xiàn)出顯著的心肌纖維化以及miR-21上調(diào),而存在巨噬細(xì)胞基因特異性缺陷(cKO)的小鼠術(shù)后的心肌纖維化水平顯著低于模型組并且心功能也受到保護(hù),隨后將接受脂多糖刺激后的巨噬細(xì)胞和靜態(tài)心肌成纖維細(xì)胞進(jìn)行共培養(yǎng),結(jié)果顯示通過鎖核酸(LNA)對(duì)巨噬細(xì)胞的沉默能夠顯著抑制其通過旁分泌信號(hào)誘導(dǎo)的心肌成纖維細(xì)胞活化。表明在心肌纖維化過程中,巨噬細(xì)胞通過旁分泌促心肌成纖維細(xì)胞活化的作用可能具有某些miRNA依賴性,這也成為了心肌纖維化潛在的治療靶點(diǎn)。

        3 總結(jié)

        心肌纖維化是心臟老化或損傷后的基礎(chǔ)病理表現(xiàn),也是影響心功能的重要因素。心臟中非成纖維細(xì)胞通過旁分泌途徑與成纖維細(xì)胞以及其他非成纖維細(xì)胞間的信號(hào)傳遞參與了對(duì)心肌纖維化的調(diào)控。深入刨析非成纖維細(xì)胞通過旁分泌信號(hào)構(gòu)建的心肌纖維化調(diào)控網(wǎng)絡(luò),能夠擴(kuò)展心肌纖維化潛在的治療靶點(diǎn)。如本綜述所討論,外界刺激下內(nèi)皮細(xì)胞除通過分泌CTGF、ET-1促進(jìn)成纖維細(xì)胞的活化外,其還能通過促進(jìn)心肌細(xì)胞的凋亡以及內(nèi)皮細(xì)胞自身向成纖維細(xì)胞轉(zhuǎn)化等多途徑推動(dòng)心肌纖維化的進(jìn)展。中性粒細(xì)胞和Th17細(xì)胞也能分別通過分泌MPO和IL17激活成纖維細(xì)胞。而嗜酸性粒細(xì)胞和Treg細(xì)胞分別通過分泌ECP和IL10能夠抑制成纖維細(xì)胞的活化。巨噬細(xì)胞既能夠分泌TGF-β1促進(jìn)內(nèi)皮細(xì)胞發(fā)生EndMT,也能夠分泌circUbe3a促進(jìn)成纖維細(xì)胞向肌成纖維細(xì)胞轉(zhuǎn)化參與心肌纖維化的進(jìn)程。值得注意的是,心臟非成纖維細(xì)胞的旁分泌效應(yīng)對(duì)心肌纖維化的調(diào)控可能具有雙向作用。例如心肌細(xì)胞既能夠通過分泌CTGF激活成纖維細(xì)胞,也能夠分泌CT或miRNA(miR-30d和miR-378等)抑制成纖維細(xì)胞的活化。這體現(xiàn)了細(xì)胞間信號(hào)傳遞對(duì)于心肌纖維化的調(diào)控本身具有一個(gè)復(fù)雜的拮抗機(jī)制,而兩種對(duì)立效應(yīng)之間的平衡狀態(tài)決定了心肌纖維化的最終進(jìn)展(圖1)。

        Figure 1. Paracrine signaling in cardiac microenvironment regulated myocardial fibrosis. A: endothelial cell secreted connective tissue growth factor (CTGF)[7] and endothelin-1 (ET-1)[26] to promote the activation of fibroblasts, and secreted transforming growth factor β1 (TGFβ1)[27] to promote the apoptosis of cardiomyocytes; B: cardiomyocyte secreted CTGF[12] to promote the activation of fibroblasts, and secreted miR-30d[15], miR-378[18] and calcitonin (CT)[21] to inhibit the activation of fibroblasts; C and D: T helper cell (Th) secreted miR-142-3p[48] to promote the activation of fibroblasts, and interleukin-17 (IL17) secreted by T helper 17 cell (Th17) and IL10 secreted by regulatory T cell (Treg) co-regulated fibroblast activity[51]; E: macrophage secreted circUbe3a[34] to promote fibroblast activity, and secreted TGFβ1 to promote the process of endothelial-mesenchymal transition (EndMT)[31]; F: eosinophil secreted eosinophil cationic protein (ECP)[40] to inhibit the activation of fibroblasts; G: neutrophil secreted myeloperoxidase (MPO)[36] to promote fibroblast activity.

        綜上所述,非成纖維細(xì)胞通過旁分泌途徑釋放大量的信號(hào)載體(蛋白、miRNA、circRNA等)與微環(huán)境中的其他細(xì)胞形成密集的通訊網(wǎng)絡(luò),細(xì)胞間相互影響,共同實(shí)現(xiàn)對(duì)心肌纖維化的調(diào)控。然而,基于調(diào)控旁分泌信號(hào)網(wǎng)絡(luò)以實(shí)現(xiàn)改善心肌纖維化的策略仍處于實(shí)驗(yàn)階段,因此需要進(jìn)一步的研究并開發(fā)能夠應(yīng)用于臨床的旁分泌調(diào)控制劑,以達(dá)到改善和治療心肌纖維化的目的。

        [1] Bozkurt B, Coats AJS, Tsutsui H, et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association[J]. Eur J Heart Fail, 2021, 23(3):352-380.

        [2] Frangogiannis NG. Cardiac fibrosis[J]. Cardiovasc Res, 2021, 117(6):1450-1488.

        [3] Gourdie RG, Dimmeler S, Kohl P. Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease[J]. Nat Rev Drug Discov, 2016, 15(9):620-638.

        [4] Nagaraju CK, Robinson EL, Abdesselem M, et al. Myofibroblast phenotype and reversibility of fibrosis in patients with end-stage heart failure[J]. J Am Coll Cardiol, 2019, 73(18):2267-2282.

        [5] Stratton MS, Bagchi RA, Felisbino MB, et al. Dynamic chromatin targeting of BRD4 stimulates cardiac fibroblast activation[J]. Circ Res, 2019, 125(7):662-677.

        [6] Lafuse WP, Wozniak DJ, Rajaram MVS. Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair[J]. Cells, 2020, 10(1):51.

        [7] Lee SW, Won JY, Kim WJ, et al. Snail as a potential target molecule in cardiac fibrosis: paracrine action of endothelial cells on fibroblasts through snail and CTGF axis[J]. Mol Ther, 2013, 21(9):1767-1777.

        [8] Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine[J]. Stem Cell Res Ther, 2018, 9(1):63.

        [9] Prabhu SD, Frangogiannis NG. The Biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis[J]. Circ Res, 2016, 119(1):91-112.

        [10] Frangogiannis NG. Regulation of the inflammatory response in cardiac repair[J]. Circ Res, 2012, 110(1):159-173.

        [11] Panizzi P, Swirski FK, Figueiredo JL, et al. Impaired infarct healing in atherosclerotic mice with Ly-6Chimonocytosis[J]. J Am Coll Cardiol, 2010, 55(15):1629-1638.

        [12] Hermida N, Michel L, Esfahani H, et al. Cardiac myocyte β3-adrenergic receptors prevent myocardial fibrosis by modulating oxidant stress-dependent paracrine signaling[J]. Eur Heart J, 2018, 39(10):888-898.

        [13] Xue R, Tan W, Wu Y, et al. Role of exosomal miRNAs in heart failure[J]. Front Cardiovasc Med, 2020, 7:592412.

        [14] Lu TX, Rothenberg ME. MicroRNA[J]. J Allergy Clin Immunol, 2018, 141(4):1202-1207.

        [15] Li J, Salvador AM, Li G, et al. Mir-30d regulates cardiac remodeling by intracellular and paracrine signaling[J]. Circ Res, 2021, 128(1):e1-e23.

        [16] Song S, Liu L, Yu Y, et al. Inhibition of BRD4 attenuates transverse aortic constriction- and TGF-β-induced endothelial-mesenchymal transition and cardiac fibrosis[J]. J Mol Cell Cardiol, 2019, 127:83-96.

        [17] Yao Y, Hu C, Song Q, et al. ADAMTS16 activates latent TGF-β, accentuating fibrosis and dysfunction of the pressure-overloaded heart[J]. Cardiovasc Res, 2020, 116(5):956-969.

        [18] Yuan J, Liu H, Gao W, et al. MicroRNA-378 suppresses myocardial fibrosis through a paracrine mechanism at the early stage of cardiac hypertrophy following mechanical stress[J]. Theranostics, 2018, 8(9):2565-2582.

        [19] Reese-Petersen AL, Olesen MS, Karsdal MA, et al. Atrial fibrillation and cardiac fibrosis: a review on the potential of extracellular matrix proteins as biomarkers[J]. Matrix Biol, 2020, 91/92:188-203.

        [20] Maleitzke T, Hildebrandt A, Dietrich T, et al. The calcitonin receptor protects against bone loss and excessive inflammation in collagen antibody-induced arthritis[J]. iScience, 2022, 25(1):103689.

        [21] Moreira LM, Takawale A, Hulsurkar M, et al. Paracrine signalling by cardiac calcitonin controls atrial fibrogenesis and arrhythmia[J]. Nature, 2020, 587(7834):460-465.

        [22] Wang Y, Zhang J, Wang Z, et al. Endothelial-cell-mediated mechanism of coronary microvascular dysfunction leading to heart failure with preserved ejection fraction[J/OL]. Heart Fail Rev, 2022 (2022-03-09) [2022-07-14]. https://link.springer.com/article/10.1007/s10741-022-10224-y.

        [23] Liu ZH, Zhang Y, Wang X, et al. SIRT1 activation attenuates cardiac fibrosis by endothelial-to-mesenchymal transition[J]. Biomed Pharmacother, 2019, 118:109227.

        [24] Wilhelmi T, Xu X, Tan X, et al. Serelaxin alleviates cardiac fibrosis through inhibiting endothelial-to-mesenchymal transition via RXFP1[J]. Theranostics, 2020, 10(9):3905-3924.

        [25] 湯石林, 劉一劍, 彭良善, 等. 大鼠急性心肌梗死后NLRP3炎性體-IL-1β信號(hào)軸激活與End-MT的關(guān)系[J]. 中國(guó)病理生理雜志, 2018, 34(11):1935-1939.

        Tang S, Liu Y, Peng L, et al. Relationship between NLRP3 inflammasome-IL-1β axis and End-MT after acute myocardial infarction in rats[J]. Chin J Pathophysiol, 2018, 34(11):1935-1939.

        [26] Zhang X, Hu C, Yuan YP, et al. Endothelial ERG alleviates cardiac fibrosis via blocking endothelin-1-dependent paracrine mechanism[J]. Cell Biol Toxicol, 2021, 37(6):873-890.

        [27] Sniegon I, Prie? M, Heger J, et al. Endothelial mesenchymal transition in hypoxic microvascular endothelial cells and paracrine induction of cardiomyocyte apoptosis are mediated via TGFβ?/SMAD signaling[J]. Int J Mol Sci, 2017, 18(11):2290.

        [28] Dick SA, Macklin JA, Nejat S, et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction[J]. Nat Immunol, 2019, 20(1):29-39.

        [29] 覃宇燕, 吳茜, 余細(xì)勇. 單核/巨噬細(xì)胞調(diào)控心梗后心肌纖維化的研究進(jìn)展[J]. 中國(guó)病理生理雜志, 2020, 36(8):1521-1525.

        Qin YY, Wu Q, Yu XY. Progress in monocytes/macrophages regulating cardiac fibrosis after myocardial infarction[J]. Chin J Pathophysiol, 2020, 36(8):1521-1525.

        [30] O'Rourke SA, Dunne A, Monaghan MG. The role of macrophages in the infarcted myocardium: orchestrators of ECM remodeling[J]. Front Cardiovasc Med, 2019, 6:101.

        [31] Alonso-Herranz L, Sahún-Espa?ol á, Paredes A, et al. Macrophages promote endothelial-to-mesenchymal transition via MT1-MMP/TGFβ1 after myocardial infarction[J]. Elife, 2020, 9:e57920.

        [32] Cheng R, Dang R, Zhou Y, et al. MicroRNA-98 inhibits TGF-β1-induced differentiation and collagen production of cardiac fibroblasts by targeting TGFBR1[J]. Hum Cell, 2017, 30(3):192-200.

        [33] Patop IL, Wüst S, Kadener S. Past, present, and future of circRNAs[J]. EMBO J, 2019, 38(16):e100836.

        [34] Wang Y, Li C, Zhao R, et al. CircUbe3a from M2 macrophage-derived small extracellular vesicles mediates myocardial fibrosis after acute myocardial infarction[J]. Theranostics, 2021, 11(13):6315-6333.

        [35] Okyere AD, Tilley DG. Leukocyte-dependent regulation of cardiac fibrosis[J]. Front Physiol, 2020, 11:301.

        [36] Mollenhauer M, Bokredenghel S, Gei?en S, et al. Stamp2 protects from maladaptive structural remodeling and systolic dysfunction in post-ischemic hearts by attenuating neutrophil activation[J]. Front Immunol, 2021, 12:701721.

        [37] Mollenhauer M, Friedrichs K, Lange M, et al. Myeloperoxidase mediates postischemic arrhythmogenic ventricular remodeling[J]. Circ Res, 2017, 121(1):56-70.

        [38] Baandrup U. Eosinophilic myocarditis[J]. Herz, 2012, 37(8):849-852.

        [39] Diny NL, Baldeviano GC, Talor MV, et al. Eosinophil-derived IL-4 drives progression of myocarditis to inflammatory dilated cardiomyopathy[J]. J Exp Med, 2017, 214(4):943-957.

        [40] Liu J, Yang C, Liu T, et al. Eosinophils improve cardiac function after myocardial infarction[J]. Nat Commun, 2020, 11(1):6396.

        [41] Yang C, Li J, Deng Z, et al. Eosinophils protect pressure overload- and β-adrenoreceptor agonist-induced cardiac hypertrophy[J/OL]. Cardiovasc Res, 2022 (2022-04-08) [2022-06-21]. https://academic.oup.com/cardiovascres/advance-article/doi/10.1093/cvr/cvac060/6565299.

        [42] Schiechl G, Hermann FJ, Rodriguez Gomez M, et al. Basophils trigger fibroblast activation in cardiac allograft fibrosis development[J]. Am J Transplant, 2016, 16(9):2574-2588.

        [43] Blanton RM, Carrillo-Salinas FJ, Alcaide P. T-cell recruitment to the heart: friendly guests or unwelcome visitors?[J]. Am J Physiol Heart Circ Physiol, 2019, 317(1):H124-H140.

        [44] Myers JM, Cooper LT, Kem DC, et al. Cardiac myosin-Th17 responses promote heart failure in human myocarditis[J]. JCI Insight, 2016, 1(9):e85851.

        [45] Saxena A, Dobaczewski M, Rai V, et al. Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function[J]. Am J Physiol Heart Circ Physiol, 2014, 307(8):H1233-H1242.

        [46] Nevers T, Salvador AM, Grodecki-Pena A, et al. Left ventricular T-Cell recruitment contributes to the pathogenesis of heart failure[J]. Circ Heart Fail, 2015, 8(4):776-787.

        [47] Hirahara K, Nakayama T. CD4+T-cell subsets in inflammatory diseases: beyond the Th1/Th2 paradigm[J]. Int Immunol, 2016, 28(4):163-171.

        [48] Cai L, Chao G, Li W, et al. Activated CD4+T cells-derived exosomal miR-142-3p boosts post-ischemic ventricular remodeling by activating myofibroblast[J]. Aging (Albany NY), 2020, 12(8):7380-7396.

        [49] Chang SL, Hsiao YW, Tsai YN, et al. Interleukin-17 enhances cardiac ventricular remodeling via activating MAPK pathway in ischemic heart failure[J]. J Mol Cell Cardiol, 2018, 122:69-79.

        [50] Liu Y, Lu H, Zhang C, et al. Recent advances in understanding the roles of T cells in pressure overload-induced cardiac hypertrophy and remodeling[J]. J Mol Cell Cardiol, 2019, 129:293-302.

        [51] Lu M, Qin X, Yao J, et al. Th17/Treg imbalance modulates rat myocardial fibrosis and heart failure by regulating LOX expression[J]. Acta Physiol (Oxf), 2020, 230(3):e13537.

        [52] Aghajanian H, Kimura T, Rurik JG, et al. Targeting cardiac fibrosis with engineered T cells[J]. Nature, 2019, 573(7774):430-433.

        [53] Ramanujam D, Sch?n AP, Beck C, et al. MicroRNA-21-dependent macrophage-to-fibroblast signaling determines the cardiac response to pressure overload[J]. Circulation, 2021, 143(15):1513-1525.

        Progress in regulation of myocardial fibrosis by paracrine signaling of cardiac non-fibroblasts

        ZHOU Zhou1, ZHANG Ke-ke1, WANG Zhen2, WANG Yong2, LIU Yang2△

        (1,,250000,;2,,250000,)

        Myocardial fibrosis is the result of extracellular matrix (ECM) remodeling after aging or myocardial injury, and it is also the main pathological feature accompanying cardiac dysfunction. Cardiac fibroblasts, responsible for the synthesis and accumulation of collagen fibers, are the central cell group for myocardial fibrosis. However, in recent years, it has been found that the signal communication between cardiac non-fibroblasts (including myocardial cells, myocardial microvascular endothelial cells, inflammatory cells and so on) and cardiac fibroblasts as well as between cardiac non-fibroblasts through the paracrine pathway plays an important role in the derivation and activation of cardiac fibroblasts, the change of ECM and the progression of cardiac fibrosis. This review focuses on the effects of paracrine signaling of cardiac non-fibroblasts on cardiac cell populations, so as to unveil the communication network of cardiac microenvironment during myocardial fibrosis and provide more references for the study of pathological mechanism of myocardial fibrosis.

        Myocardial fibrosis; Cardiac non-fibroblasts; Paracrine

        1000-4718(2022)09-1709-07

        2022-05-09

        2022-07-26

        18678850885; E-mail: 18678850885@163.com

        R542.2+3; R363

        A

        10.3969/j.issn.1000-4718.2022.09.022

        [基金項(xiàng)目]國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 82104797);山東省自然科學(xué)基金(No. ZR2020MR333; No. ZR2021LZY011);山東省中醫(yī)藥科技發(fā)展計(jì)劃(No. 2015-088)

        (責(zé)任編輯:宋延君,羅森)

        猜你喜歡
        纖維細(xì)胞心肌細(xì)胞內(nèi)皮細(xì)胞
        左歸降糖舒心方對(duì)糖尿病心肌病MKR鼠心肌細(xì)胞損傷和凋亡的影響
        活血解毒方對(duì)缺氧/復(fù)氧所致心肌細(xì)胞凋亡的影響
        Tiger17促進(jìn)口腔黏膜成纖維細(xì)胞的增殖和遷移
        滇南小耳豬膽道成纖維細(xì)胞的培養(yǎng)鑒定
        淺議角膜內(nèi)皮細(xì)胞檢查
        雌激素治療保護(hù)去卵巢對(duì)血管內(nèi)皮細(xì)胞損傷的初步機(jī)制
        心肌細(xì)胞慢性缺氧適應(yīng)性反應(yīng)的研究進(jìn)展
        胃癌組織中成纖維細(xì)胞生長(zhǎng)因子19和成纖維細(xì)胞生長(zhǎng)因子受體4的表達(dá)及臨床意義
        細(xì)胞微泡miRNA對(duì)內(nèi)皮細(xì)胞的調(diào)控
        槲皮素通過抑制蛋白酶體活性減輕心肌細(xì)胞肥大
        在线日韩中文字幕乱码视频| 国产香蕉尹人在线观看视频| 久久中文字幕乱码免费| 中文字幕无码免费久久| 国产高清人肉av在线一区二区| 国产综合色在线视频区| 久久精品国产亚洲精品| 亚洲国产综合专区在线电影| 日韩精品一区二区亚洲专区| 天天躁日日躁aaaaxxxx| 四房播播在线电影| 亚洲欧美变态另类综合| 无码日韩人妻AV一区免费 | 91精品啪在线观看国产18| 亚洲美女av二区在线观看| 天堂视频在线观看一二区| 中国人妻与老外黑人| 欧美喷潮久久久xxxxx| 成人自拍视频国产一区| 亚洲成人精品久久久国产精品| 乱子伦在线观看| h在线国产| 人妻少妇激情久久综合| 色综合久久蜜芽国产精品| a级国产乱理论片在线观看| 国产成年无码AⅤ片日日爱| 成人免费av高清在线| 色www永久免费视频| 伊人久久中文大香线蕉综合| av免费在线观看网站大全| 亚洲成av人综合在线观看| 台湾佬娱乐中文22vvvv| 日本一本草久国产欧美日韩| 手机在线播放av网址| 免费无码一区二区三区a片百度| 久久中文字幕人妻熟av女蜜柚m| 国产桃色精品网站| 一本之道久久一区二区三区| a级特黄的片子| 国产美女裸身网站免费观看视频| 伊人久久大香线蕉av最新午夜|