胡玲慧, 李慧, 吳偉
非編碼RNA在軟骨細(xì)胞衰老中作用機(jī)制的研究進(jìn)展*
胡玲慧, 李慧, 吳偉△
(上海體育學(xué)院,上海 200438)
非編碼RNA;軟骨細(xì)胞;細(xì)胞衰老;膝骨關(guān)節(jié)炎
細(xì)胞衰老較為廣泛,主要是指細(xì)胞永久性生長阻滯、凋亡抵抗和衰老相關(guān)分泌表型(senescence-associated secretory phenotype, SASP)的產(chǎn)生,導(dǎo)致不再進(jìn)入細(xì)胞周期[1]。研究表明,膝骨關(guān)節(jié)炎(knee osteoarthritis, KOA)的發(fā)生率與年齡密切相關(guān),年齡增長造成的軟骨細(xì)胞衰老也是KOA發(fā)病主要機(jī)制之一[2]。此外,一些損傷或應(yīng)激造成的炎癥環(huán)境和氧化應(yīng)激狀態(tài)都可以加速軟骨細(xì)胞衰老,最終導(dǎo)致軟骨磨損、退化等,發(fā)展成為KOA[3]。因此,軟骨細(xì)胞衰老機(jī)制在KOA的研究中具有重要意義,如何抗衰老將對(duì)KOA的治療具有重大指導(dǎo)價(jià)值。
端??s短是細(xì)胞衰老主要標(biāo)志,shelterin復(fù)合體是端粒結(jié)合蛋白的核心成分,在調(diào)控端粒長度、結(jié)構(gòu)和功能方面具有重要作用。端粒縮短會(huì)造成shelterin失穩(wěn),破壞DNA損傷反應(yīng)的抑制作用,導(dǎo)致細(xì)胞周期從G1(DNA合成前期)進(jìn)入G0期(暫時(shí)離開細(xì)胞周期和停止細(xì)胞分裂)。DNA損傷會(huì)引起細(xì)胞分裂、凋亡和衰老等反應(yīng),當(dāng)這種損傷持續(xù)發(fā)生時(shí),DNA損傷應(yīng)答時(shí)間延長,導(dǎo)致細(xì)胞衰老,增殖周期停滯。核纖層蛋白(lamin)可以誘導(dǎo)DNA損傷,其中l(wèi)amin B1是細(xì)胞衰老的關(guān)鍵指標(biāo)。一些應(yīng)激造成的氧化應(yīng)激狀態(tài),活性氧(reactive oxygen species, ROS)水平上升,過量ROS會(huì)引起細(xì)胞損傷,細(xì)胞抗氧化能力下降,最終促進(jìn)SASP產(chǎn)生,加速細(xì)胞衰老。此外,炎性環(huán)境也可以加快細(xì)胞衰老的速率。病理炎性環(huán)境下可以誘發(fā)KOA,白細(xì)胞介素(interleukin, IL)和腫瘤壞死因子α(tumor necrosis factor-α, TNF-α)等促炎因子會(huì)加速細(xì)胞衰老[4]。
衰老相關(guān)β-半乳糖甘酶(senescence-associated β-galactosidase, SA-β-Gal),細(xì)胞衰老最為顯著指標(biāo)。Zhu等[5]研究中發(fā)現(xiàn),IL-1β誘導(dǎo)的軟骨細(xì)胞中,SA-β-Gal表達(dá)顯著升高。Tian等[6]發(fā)現(xiàn),骨關(guān)節(jié)炎患者的軟骨細(xì)胞中,SA-β-Gal表達(dá)也升高。細(xì)胞衰老周期抑制調(diào)節(jié)因子p16INK4A和p21可以抑制細(xì)胞周期蛋白依賴性激酶(cyclin-dependent kinase, CDK),引起細(xì)胞周期停滯和衰老。p53表達(dá)可以促使細(xì)胞生長停滯、凋亡,也可以促進(jìn)p21表達(dá)。p16INK4A/Rb和p53/p21通路是較為典型的細(xì)胞衰老相關(guān)通路,在細(xì)胞衰老中起到重要作用。多項(xiàng)研究已證實(shí),p16INK4A、p21和p53表達(dá)可以誘導(dǎo)軟骨細(xì)胞衰老、生長周期停滯[7-9]。
ncRNAs主要包括長鏈ncRNA(long ncRNAs, lncRNAs)、微小RNA(microRNAs, miRNAs)和環(huán)狀RNA(circular RNAs, circRNAs);lncRNAs和circRNAs對(duì)miRNAs具有吸附作用,可通過lncRNA/miRNA和circRNA/miRNA途徑對(duì)軟骨細(xì)胞代謝產(chǎn)生影響[10]。軟骨細(xì)胞內(nèi)ncRNAs表達(dá)異常上調(diào)或下調(diào),可影響軟骨細(xì)胞的增殖、遷移和凋亡,從而影響KOA的發(fā)生和發(fā)展。ncRNAs正成為KOA中的研究熱點(diǎn)及前沿。
目前有關(guān)ncRNAs在KOA軟骨細(xì)胞衰老作用的研究并不多見。lncRNA-00623/miRNA-101、miRNA-140、miRNA-375、miRNA-34a和miRNA-146a被證實(shí)在KOA細(xì)胞衰老中起著重要作用[11-15]。本文主要從3種nRNAs對(duì)其他細(xì)胞衰老作用及機(jī)制進(jìn)行總結(jié)分析,結(jié)合現(xiàn)有KOA研究,探討其對(duì)于軟骨細(xì)胞衰老相關(guān)作用的潛在機(jī)制。
3.1lncRNAslncRNAs是長度在200~100 000個(gè)核苷酸(nucleotide, nt)的ncRNAs,調(diào)節(jié)著幾乎所有的生物進(jìn)程,在細(xì)胞分化、凋亡中具有重要作用。
從表1可見,lncRNAs與細(xì)胞衰老的相關(guān)研究主要以心血管和骨骼系統(tǒng)居多,還涉及肝、肺和胃等臟器。在心肌細(xì)胞中l(wèi)ncRNA-H19可通過吸附miRNA-19α促進(jìn)SA-β-Gal、p53和p21表達(dá),加快心肌細(xì)胞衰老[16]。lncRNA-ES3可吸附miRNA-34c-5p,促進(jìn)下游BMF(Bcl-2 modifying factor)和SA-β-Gal的表達(dá),加速血管平滑肌細(xì)胞衰老[20]。在KOA中,lncRNA-00623可通過吸附miRNA-101促進(jìn)HRAS(Harvey rat sarcoma viral oncogene homolog)表達(dá),并通過絲裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)信號(hào)通路抑制軟骨細(xì)胞凋亡、衰老和細(xì)胞外基質(zhì)降解[11]。敲減lncRNA-SNHG6可以抑制胃癌細(xì)胞增殖,誘導(dǎo)其衰老;此過程中,c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)信號(hào)通路被激活,降低EZH2(enhancer of zeste homolog 2)表達(dá),促進(jìn)SA-β-Gal和p21表達(dá)[27]。lncRNA-TUG1在椎間盤變性(intervertebral disc degeneration, IDD)患者中高表達(dá);TUG1-siRNA可以顯著降低Wnt1、β-catenin、基質(zhì)金屬蛋白酶3(matrix metallopeptidase 3, MMP3)和ADAMTS5(a disintegrin and metalloproteinase with thrombospondin type 1 motif 5)表達(dá),促進(jìn)聚集蛋白聚糖(aggrecan)和II型膠原α1鏈(collagen type II alpha 1 chain, COL2A1)表達(dá),抑制髓核細(xì)胞凋亡和衰老,促進(jìn)其增殖[22]。MMP3和ADAMTS5是軟骨細(xì)胞常見的降解因子,aggrecan和COL2A1是軟骨細(xì)胞常見的生成因子。因此,lncRNA-TUG1可能在軟骨細(xì)胞衰老中同樣發(fā)揮重要作用。
表1 lncRNAs對(duì)細(xì)胞衰老作用及機(jī)制
YAP: Yes-associated protein; Sirt1: silent information regulator 1; BMF: Bcl-2 modifying factor; JNK: c-Jun N-terminal kinase; SAHF: senescence-associated heterochromatin loci; NPC: nucleus pulposus cell; VSMC: vascular smooth muscle cells; AEC: alveolar epithelial cells; OGC: ovarian granulosa cells; CPC: cardiac progenitor cells; GCC: gastric cancer cells.
3.2miRNAsmiRNAs是長度在18~22 bp之間的單鏈ncRNAs,可特異性結(jié)合信使RNA(messenger RNA, mRNA)而起到抑制基因表達(dá)的作用。
從表2可見,關(guān)于miRNAs在細(xì)胞衰老中的作用機(jī)制有較多研究,其中miRNA-34a被證實(shí)可以促進(jìn)內(nèi)皮細(xì)胞、間充質(zhì)干細(xì)胞、食管鱗狀細(xì)胞癌細(xì)胞和髓核細(xì)胞等衰老。Wang等[28]發(fā)現(xiàn),衰老內(nèi)皮細(xì)胞中miRNA-217表達(dá)上調(diào),過表達(dá)miRNA-217可通過Sirt1(silent information regulator 1, SIRT1; miRNA-217靶點(diǎn))/p53軸促進(jìn)SA-β-Gal表達(dá),抑制內(nèi)皮細(xì)胞增值、遷移和血管生成。Wen等[33]研究發(fā)現(xiàn),30 μL無水乙醇注射小鼠尾部造成尾椎IDD模型后,通過骨髓間充質(zhì)干細(xì)胞分泌的胞外囊泡(extracellular vesicles, EV)可抑制MMP2和MMP6等表達(dá),促進(jìn)miRNA-199a表達(dá)。體外EV干預(yù)后,aggrecan和SA-β-Gal表達(dá)下降,髓核細(xì)胞凋亡率下降。且miRNA-199a可靶向gremlin 1 [轉(zhuǎn)化生長因子β(transforming growth factor-β, TGF-β)結(jié)合因子],下調(diào)TGF-β通路,促進(jìn)IDD修復(fù)。這也提示,miRNA-199a可能在軟骨細(xì)胞衰老中具有重要作用。
表2 miRNAs對(duì)細(xì)胞衰老作用及機(jī)制
PTEN: phosphatase and tensin homologue deleted on chromosome ten gene; DDR1: discoidin domain receptor 1; TGF-β: transforming growth factor-β; NF-κB: nuclear factor-κB; FOXO3a: forkhead box O3a; ZEB2: zinc finger E-box binding homeobox 2; AMPK: AMP-activated protein kinase; mTORC1: mammalian target of rapamycin 1; CNOT6: CCR4-NOT transcription complex subunit 6; VEC: vascular endothelial cell; HUVEC: human umbilical vein endothelial cell; MSC: mesenchymal stem cell; HGMC: human glomerular mesangial cell; HAMSC: human adipose tissue-derived mesenchymal stem cell; LCC: lung carcinoma cell; HSC: hepatic stellate cell; ESCC: human esophageal squamous cancer cell.
在KOA研究中,李蘭等[12]發(fā)現(xiàn),miRNA-140表達(dá)可以抑制早期KOA軟骨細(xì)胞衰老,降低G0/G1期細(xì)胞比例和SA-β-Gal活性,減少p16INK4A、p21和p53表達(dá)。卓澤銘等[13]發(fā)現(xiàn),桑寄生提取物可促進(jìn)IL-1β誘導(dǎo)的軟骨細(xì)胞活力和細(xì)胞周期蛋白D1(cyclin D1)表達(dá)水平,抑制軟骨細(xì)胞凋亡和p21表達(dá)水平,過表達(dá)miRNA-375可以逆轉(zhuǎn)桑寄生提取物的作用。Zhang等[14]的研究顯示,KOA患者軟骨中miRNA-34a表達(dá)增加;通過大鼠手術(shù)造模后,轉(zhuǎn)染miRNA-34a可顯著抑制DLL1(Delta-like 1; 干細(xì)胞更新、凋亡調(diào)節(jié)因子)、磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)和p-AKT表達(dá),促進(jìn)軟骨細(xì)胞衰老和凋亡,DLL1過表達(dá)后提高了PI3K和p-AKT的表達(dá)水平,消除了miRNA-34a的作用,提示miRNA-34a可通過DLL1調(diào)節(jié)PI3K/AKT信號(hào)通路而加重KOA。Guan等[15]的研究顯示,創(chuàng)傷后關(guān)節(jié)炎軟骨細(xì)胞中miRNA-146a(炎癥和機(jī)械應(yīng)力相關(guān)因子)表達(dá)下降,過表達(dá)miRNA-146a對(duì)小鼠衰老軟骨細(xì)胞具有抗性;其主要機(jī)制是通過抑制Notch信號(hào)通路(Notch1)減緩炎癥因子IL-1β表達(dá)。
3.3circRNAscircRNAs主要存在于哺乳動(dòng)物細(xì)胞的細(xì)胞質(zhì)中,其特殊的環(huán)狀結(jié)構(gòu)具有高穩(wěn)定性和靈敏性的特點(diǎn),在體液中易被檢測。circRNAs尾部磷酸二酯鍵3'和5'以共價(jià)鍵連接,形成了一個(gè)環(huán)狀結(jié)構(gòu),這種結(jié)構(gòu)非常穩(wěn)定且能耐受RNA外切酶介導(dǎo)的降解,因此稱為環(huán)狀RNA。
從表3可見,circRNA在細(xì)胞衰老中作用研究相對(duì)較少。Ma等[51]發(fā)現(xiàn),circRNA-ACTA2可以通過ILF3 (interleukin enhancer-binding factor 3)/CDK4促進(jìn)血管平滑肌細(xì)胞衰老。Yu等[52]通過增加SA-β-Gal活性,增強(qiáng)CDK抑制物1A(CDK inhibitor 1A, CDKN1A)/p21和p53表達(dá),可檢測到circRNA-CCNB1表達(dá)下降,引發(fā)了成纖維細(xì)胞衰老。進(jìn)一步研究發(fā)現(xiàn)降低circRNA-CCNB1可通過吸附miRNA-449a抑制CCNE2(cyclin E2)表達(dá)。靶向circ-CCNB1可能是一種有前景的衰老和年齡相關(guān)疾病干預(yù)策略。Zhou等[53]發(fā)現(xiàn),circRNA-S7(ciRS-7)/miRNA-7(miR-7)在骨關(guān)節(jié)炎中表達(dá)異常。建立內(nèi)側(cè)半月板失穩(wěn)大鼠骨關(guān)節(jié)炎模型后,上調(diào)ciRS-7/下調(diào)miR-7可以激活PI3K/AKT/mTOR信號(hào)通路改善軟骨損傷和IL-1β誘導(dǎo)的軟骨細(xì)胞降解與自噬缺陷。
表3 circRNAs對(duì)細(xì)胞衰老作用及機(jī)制
CCNE2: cyclin E2; ILF3: interleukin enhancer-binding factor 3; CDK4: cyclin-dependent kinase 4.
3.4信號(hào)通路及相關(guān)因子從上述表格的總結(jié)發(fā)現(xiàn),ncRNAs對(duì)不同細(xì)胞衰老作用機(jī)制的研究中,很多途徑的信號(hào)通路及因子與軟骨細(xì)胞代謝有著密切關(guān)系。目前ncRNAs在細(xì)胞衰老作用機(jī)制的研究,主要涉及到了Wnt、JNK、AMP活化蛋白激酶(AMP-activated protein kinase, AMPK)、核因子κB(nuclear factor-κB, NF?κB)和TGF-β等信號(hào)通路。Wnt和JNK(MAPK主要信號(hào)通路之一)是軟骨代謝中的經(jīng)典通路之一,兩者在軟骨細(xì)胞分化增值和凋亡中起到重要作用。Wnt/β-catenin信號(hào)通路在軟骨細(xì)胞早期分化增值,促進(jìn)軟骨形成中具有重要作用。JNK信號(hào)通路在關(guān)節(jié)損傷后的應(yīng)激反應(yīng)及軟骨細(xì)胞凋亡具有重要作用,且反應(yīng)強(qiáng)烈、迅速[54]。AMPK信號(hào)通路則可通過調(diào)控軟骨細(xì)胞叉頭框蛋白O3a(forkhead box O3a, FOXO3a)、NF-κB和哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)等促進(jìn)軟骨細(xì)胞增殖[55]。TGF-β/Smad3信號(hào)通路可以促進(jìn)II型膠原蛋白、aggrecan和SOX9(SRY-related high-mobility group box 9)等軟骨細(xì)胞生成因子表達(dá),有利于軟骨形成[56]。Yes相關(guān)蛋白(Yes-associated protein, YAP)/Smad3信號(hào)通路可以下調(diào)大鼠KOA模型(改良Hulth法)軟骨細(xì)胞促凋亡因子Bax表達(dá),促進(jìn)抗凋亡因子Bcl-2表達(dá),從而促進(jìn)軟骨細(xì)胞增殖,抑制其凋亡,YAP還可作用于TGF-β/Smad3通路[57]。此外,Sirt1對(duì)軟骨細(xì)胞具有一定的保護(hù)作用,Sirt1低表達(dá)與軟骨細(xì)胞生物學(xué)異常、降解活性增加、生成活性降低、軟骨細(xì)胞自噬和代謝紊亂具有重要關(guān)系[58]。
雖然目前3種主要ncRNAs對(duì)軟骨細(xì)胞衰老作用的研究尚不多見,但是根據(jù)以上信息可以推測,ncRNAs很有可能通過Wnt/β-catenin、JNK、AMPK、NF?κB、TGF-β等信號(hào)通路和YAP、Smad3、Sirt1等因子調(diào)控軟骨細(xì)胞衰老,詳見圖1。
Figure 1. Potential mechanisms of three kinds of ncRNAs in chondrocyte senescence.
[1] Shmulevich R, Krizhanovsky V. Cell senescence, DNA damage, and metabolism[J]. Antioxid Redox Signal, 2021, 34(4):324-334.
[2] Salwana Kamsan S, Kaur Ajit Singh D, Pin Tan M, et al. Systematic review on the contents and parameters of self-management education programs in older adults with knee osteoarthritis[J]. Australas J Ageing, 2021, 40(1):e1-e12.
[3] Tudorachi NB, Totu EE, Fifere A, et al. The implication of reactive oxygen species and antioxidants in knee osteoarthritis[J]. Antioxidants (Basel), 2021, 10(6):985.
[4]時(shí)孝晴, 揭立士, 殷松江, 等. 軟骨細(xì)胞衰老與骨關(guān)節(jié)炎的研究進(jìn)展[J]. 醫(yī)學(xué)研究生學(xué)報(bào), 2021, 34(9):962-968.
Shi XQ, Jie LS, Yin SJ, et al. Research progress of chondrocyte senescence and osteoarthritis[J]. J Med Postgrad, 2021, 34(9):962-968.
[5] Zhu H, Yan X, Zhang M, et al. miR-21-5p protects IL-1β-induced human chondrocytes from degradation[J]. J Orthop Surg Res, 2019, 14(1):118.
[6] Tian J, Cheng C, Kuang SD, et al. OPN deficiency increases the severity of osteoarthritis associated with aberrant chondrocyte senescence and apoptosis and upregulates the expression of osteoarthritis-associated genes[J]. Pain Res Manag, 2020, 2020:3428587.
[7] Chung YP, Chen YW, Weng TI, et al. Arsenic induces human chondrocyte senescence and accelerates rat articular cartilage aging[J]. Arch Toxicol, 2020, 94(1):89-101.
[8] Shao JH, Fu QW, Li LX, et al. Prx II reduces oxidative stress and cell senescence in chondrocytes by activating the p16-CDK4/6-pRb-E2F signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2020, 24(7):3448-3458.
[9] Wang H, Zhu Z, Wu J, et al. Effect of type II diabetes-induced osteoarthritis on articular cartilage aging in rats: a studyand[J]. Exp Gerontol, 2021, 150:111354.
[10] Panni S, Lovering RC, Porras P, et al. Non-coding RNA regulatory networks[J]. Biochim Biophys Acta Gene Regul Mech, 2020, 1863(6):194417.
[11] Lv G, Li L, Wang B, et al. LINC00623/miR-101/HRAS axis modulates IL-1β-mediated ECM degradation, apoptosis and senescence of osteoarthritis chondrocytes[J]. Aging (Albany NY), 2020, 12(4):3218-3237.
[12] 李蘭, 梁明瑋, 陸燕蓉, 等. miR-140對(duì)早期骨關(guān)節(jié)炎軟骨細(xì)胞衰老的調(diào)控作用及機(jī)制[J]. 中國矯形外科雜志, 2020, 28(3):252-259.
Li L, Liang MW, Lu YR, et al. Regulatory effect and mechanism of miR-140 on chondrocyte senescence in early-stage osteoarthritis[J]. Orthop J China, 2020, 28(3):252-259.
[13]卓澤銘, 范忠誠, 郭祥. 桑寄生提取物聯(lián)合miR-375對(duì)骨關(guān)節(jié)炎軟骨細(xì)胞活力和凋亡的影響[J]. 中國病理生理雜志, 2020, 36(6):1082-1088.
Zhuo ZM, Fan ZC, Guo X. Effect ofextracts combined with miR-375 on viability and apoptosis of osteoarthritic chondrocytes[J]. Chin J Pathophysiol, 2020, 36(6):1082-1088.
[14] Zhang W, Hsu P, Zhong B, et al. MiR-34a enhances chondrocyte apoptosis, senescence and facilitates development of osteoarthritis by targeting DLL1 and regulating PI3K/AKT pathway[J]. Cell Physiol Biochem, 2018, 48(3):1304-1316.
[15] Guan YJ, Li J, Yang X, et al. Evidence that miR-146a attenuates aging- and trauma-induced osteoarthritis by inhibiting Notch1, IL-6, and IL-1 mediated catabolism[J]. Aging Cell, 2018, 17(3):e12752.
[16] Zhuang Y, Li T, Xiao H, et al. LncRNA-H19 drives cardiomyocyte senescence by targeting miR-19a/SOCS1/p53 axis[J]. Front Pharmacol, 2021, 12:631835.
[17] Yuan P, Qi X, Song A, et al. LncRNA MAYA promotes iron overload and hepatocyte senescence through inhibition of YAP in non-alcoholic fatty liver disease[J]. J Cell Mol Med, 2021, 25(15):7354-7366.
[18] Liang D, Hong D, Tang F, et al. Upregulated lnc-HRK-2:1 prompts nucleus pulposus cell senescence in intervertebral disc degeneration[J]. Mol Med Rep, 2020, 22(6):5251-5261.
[19] Tan P, Guo YH, Zhan JK, et al. LncRNA-ANRIL inhibits cell senescence of vascular smooth muscle cells by regulating miR-181a/Sirt1[J]. Biochem Cell Biol, 2019, 97(5):571-580.
[20] Lin X, Zhan JK, Zhong JY, et al. lncRNA-ES3/miR-34c-5p/BMF axis is involved in regulating high-glucose-induced calcification/senescence of VSMCs[J]. Aging (Albany NY), 2019, 11(2):523-535.
[21] Yuan D, Liu Y, Li M, et al. Senescence associated long non-coding RNA 1 regulates cigarette smoke-induced senescence of type II alveolar epithelial cells through sirtuin-1 signaling[J]. J Int Med Res, 2021, 49(2):300060520986049.
[22] Chen J, Jia YS, Liu GZ, et al. Role of LncRNA TUG1 in intervertebral disc degeneration and nucleus pulposus cells via regulating Wnt/β-catenin signaling pathway[J]. Biochem Biophys Res Commun, 2017, 491(3):668-674.
[23] Liu Q, Dong J, Li J, et al. LINC01255 combined with BMI1 to regulate human mesenchymal stromal senescence and acute myeloid leukemia cell proliferation through repressing transcription of MCP-1[J]. Clin Transl Oncol, 2021, 23(6):1105-1116.
[24] Kim Y, Ji H, Cho E, et al. nc886, a non-coding RNA, is a new biomarker and epigenetic mediator of cellular senescence in fibroblasts[J]. Int J Mol Sci, 2021, 22(24):13673.
[25] Xiong Y, Liu T, Wang S, et al. Cyclophosphamide promotes the proliferation inhibition of mouse ovarian granulosa cells and premature ovarian failure by activating the lncRNA-Meg3-p53-p66Shc pathway[J]. Gene, 2017, 596:1-8.
[26] Cai B, Ma W, Bi C, et al. Long noncoding RNA H19 mediates melatonin inhibition of premature senescence of c-kit+cardiac progenitor cells by promoting miR-675[J]. J Pineal Res, 2016, 61(1):82-95.
[27] Li Y, Li D, Zhao M, et al. Long noncoding RNA SNHG6 regulates p21 expression via activation of the JNK pathway and regulation of EZH2 in gastric cancer cells[J]. Life Sci, 2018, 208:295-304.
[28] Wang Z, Shi D, Zhang N, et al. MiR-217 promotes endothelial cell senescence through the SIRT1/p53 signaling pathway[J]. J Mol Histol, 2021, 52(2):257-267.
[29] Xiong Y, Xiong Y, Zhang H, et al. hPMSCs-derived exosomal miRNA-21 protects against aging-related oxidative damage of CD4+T cells by targeting the PTEN/PI3K-Nrf2 axis[J]. Front Immunol, 2021, 12:780897.
[30] Yan L, Xie X, Niu BX, et al. Involvement of miR-199a-3p/DDR1 in vascular endothelial cell senescence in diabetes[J]. Eur J Pharmacol, 2021, 908:174317.
[31] Yu L, Cao C, Li X, et al. Complete loss of miR-200 family induces EMT associated cellular senescence in gastric cancer [J]. Oncogene. 2022; 41(1): 26-36.
[32] Guo Y, Xing L, Chen N, et al. Total flavonoids from theSarg. leaves inhibit HUVEC senescence through the miR-34a/SIRT1 pathway[J]. J Cell Biochem, 2019, 120(10):17240-17249.
[33] Wen T, Wang H, Li Y, et al. Bone mesenchymal stem cell-derived extracellular vesicles promote the repair of intervertebral disc degeneration by transferring microRNA-199a[J]. Cell Cycle, 2021, 20(3):256-270.
[34] Lai XH, Lei Y, Yang J, et al. Effect of microRNA-34a/SIRT1/p53 signal pathway on notoginsenoside R? delaying vascular endothelial cell senescence[J]. Zhongguo Zhong Yao Za Zhi, 2018, 43(3):577-584.
[35] Chen Y, Wang S, Yang S, et al. Inhibitory role of ginsenoside Rb2 in endothelial senescence and inflammation mediated by microRNA-216a[J]. Mol Med Rep, 2021, 23(6):415.
[36] Zhang F, Gao F, Wang K, et al. MiR-34a inhibitor protects mesenchymal stem cells from hyperglycaemic injury through the activation of the SIRT1/FoxO3a autophagy pathway[J]. Stem Cell Res Ther, 2021, 12(1):115.
[37] Chen G, Zhou X, Li H, et al. Inhibited microRNA-494-5p promotes proliferation and suppresses senescence of nucleus pulposus cells in mice with intervertebral disc degeneration by elevating TIMP3[J]. Cell Cycle, 2021, 20(1):11-22.
[38] Cao D, Zhao M, Wan C, et al. Role of tea polyphenols in delaying hyperglycemia-induced senescence in human glomerular mesangial cells via miR-126/Akt-p53-p21 pathways[J]. Int Urol Nephrol, 2019, 51(6):1071-1078.
[39] Dong X, Hu X, Chen J, et al. BRD4 regulates cellular senescence in gastric cancer cells via E2F/miR-106b/p21 axis[J]. Cell Death Dis, 2018, 9(2):203.
[40] Mokhberian N, Bolandi Z, Eftekhary M, et al. Inhibition of miR-34a reduces cellular senescence in human adipose tissue-derived mesenchymal stem cells through the activation of SIRT1[J]. Life Sci, 2020, 257:118055.
[41] Tao W, Hong Y, He H, et al. MicroRNA-199a-5p aggravates angiotensin II-induced vascular smooth muscle cell senescence by targeting Sirtuin-1 in abdominal aortic aneurysm[J]. J Cell Mol Med, 2021, 25(13):6056-6069.
[42] Choi JY, Shin HJ, Bae IH. miR-93-5p suppresses cellular senescence by directly targeting Bcl-w and p21[J]. Biochem Biophys Res Commun, 2018, 505(4):1134-1140.
[43] Shen Z, Xuan W, Wang H, et al. miR-200b regulates cellular senescence and inflammatory responses by targeting ZEB2 in pulmonary emphysema[J]. Artif Cells Nanomed Biotechnol, 2020, 48(1):656-663.
[44] Shi L, Han Q, Hong Y, et al. Inhibition of miR-199a-5p rejuvenates aged mesenchymal stem cells derived from patients with idiopathic pulmonary fibrosis and improves their therapeutic efficacy in experimental pulmonary fibrosis[J]. Stem Cell Res Ther, 2021, 12(1):147.
[45] Khor ES, Wong PF. Endothelial replicative senescence delayed by the inhibition of mTORC1 signaling involves microRNA-107[J]. Int J Biochem Cell Biol, 2018, 101:64-73.
[46] Yang J, Lu Y, Yang P, et al. MicroRNA-145 induces the senescence of activated hepatic stellate cells through the activation of p53 pathway by ZEB2[J]. J Cell Physiol, 2019, 234(5):7587-7599.
[47] Dong C, Zhou Q, Fu T, et al. Circulating exosomes derived-miR-146a from systemic lupus erythematosus patients regulates senescence of mesenchymal stem cells [J]. Biomed Res Int, 2019, 2019:6071308.
[48] Zhou Y, Li GY, Ren JP, et al. Protection of CD4+T cells from hepatitis C virus infection-associated senescence via ΔNp63-miR-181a-Sirt1 pathway[J]. J Leukoc Biol, 2016, 100(5):1201-1211.
[49] Ye Z, Fang J, Dai S, et al. MicroRNA-34a induces a senescence-like change via the down-regulation of SIRT1 and up-regulation of p53 protein in human esophageal squamous cancer cells with a wild-type p53 gene background[J]. Cancer Lett, 2016, 370(2):216-221.
[50] Shang J, Yao Y, Fan X, et al. miR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53-p21 and p16-pRB pathways[J]. Biochim Biophys Acta, 2016, 1863(4):520-532.
[51] Ma Y, Zheng B, Zhang XH, et al. circACTA2 mediates Ang II-induced VSMC senescence by modulation of the interaction of ILF3 with CDK4 mRNA[J]. Aging (Albany NY), 2021, 13(8):11610-11628.
[52] Yu AQ, Wang ZX, Wu W, et al. Circular RNA CircCCNB1 sponge microRNA-449a to inhibit cellular senescence by targeting CCNE2[J]. Aging (Albany NY), 2019, 11(22):10220-10241.
[53] Zhou X, Li J, Zhou Y, et al. Down-regulated ciRS-7/up-regulated miR-7 axis aggravated cartilage degradation and autophagy defection by PI3K/AKT/mTOR activation mediated by IL-17A in osteoarthritis[J]. Aging (Albany NY), 2020, 12(20):20163-20183.
[54] 吳偉, 焦俊玥, 李慧, 等. 運(yùn)動(dòng)對(duì)軟骨代謝影響的研究進(jìn)展[J]. 中國骨質(zhì)疏松雜志, 2018, 24(10):1384-1389.
Wu W, Jiao JY, Li H, et al. Research progression on the effect of exercise on chondrocyte metabolism[J]. Chin J Osteoporos, 2018, 24(10):1384-1389.
[55] 于辰曦, 孫水. AMPK在骨關(guān)節(jié)炎發(fā)生發(fā)展中的作用[J]. 生命的化學(xué), 2016, 36(6):842-846.
Yu CX, Sun S. Research of AMPK on the progression of OA[J]. Chem Life, 2016, 36(6):842-846.
[56] 喬虎軍, 王國祥, 郝鑫. 轉(zhuǎn)化生長因子β/Smad信號(hào)通路和骨關(guān)節(jié)炎研究進(jìn)展[J]. 中國運(yùn)動(dòng)醫(yī)學(xué)雜志, 2019, 38(2):143-151.
Qiao HJ, Wang GX, Hao X. Research progression of TGFβ/Smad and osteoarthritis[J]. Chin J Sports Med, 2019, 38(2):143-151.
[57] 李宏軍, 施源, 何敏, 等. 千草方熏洗對(duì)膝骨關(guān)節(jié)炎大鼠軟骨YAP/Smad3表達(dá)的影響[J]. 中國病理生理雜志, 2019, 35(5):933-939.
Li HJ, Shi Y, He M, et al. Effects of Qiancaofang fumigation on expression of YAP/Smad3 in rats with knee osteoarthritis[J]. Chin J Pathophysiol, 2019, 35(5):933-939.
[58] Papageorgiou AA, Goutas A, Trachana V, et al. Dual role of SIRT1 in autophagy and lipid metabolism regulation in osteoarthritic chondrocytes[J]. Medicina (Kaunas), 2021, 57(11):1203.
Role of non-coding RNA in chondrocyte senescence
HU Ling-hui, LI Hui, WU Wei△
(,200438,)
Knee osteoarthritis (KOA) is closely related to aging, and it is of great significance to study the mechanism of KOA induced by aging. Non-coding RNAs are involved in most biological processes including aging. This review summarized the effects of three types of non-coding RNAs, including long non-coding RNAs, microRNAs and circular RNAs, on cellular senescence. The metabolic activities of chondrocytes and the potential mechanism of non-coding RNAs in chondrocyte senescence are also reviewed, providing some reference for the investigation of KOA.
Non-coding RNA; Chondrocytes; Cellular senescence; Knee osteoarthritis
1000-4718(2022)09-1702-07
2022-05-09
2022-07-28
15026701526; E-mail: 15026701526@126.com
R684; R363
A
10.3969/j.issn.1000-4718.2022.09.021
[基金項(xiàng)目]2021上海市青年科技英才揚(yáng)帆計(jì)劃(No. 21YF1445700);上海市運(yùn)動(dòng)與代謝健康前沿科學(xué)研究基地,2022年上海體育學(xué)院附屬競技體育學(xué)校教育教學(xué)課題中職內(nèi)建設(shè)經(jīng)費(fèi)資助和上海市人類運(yùn)動(dòng)能力開發(fā)與保障重點(diǎn)實(shí)驗(yàn)室(上海體育學(xué)院)(No. 11DZ2261100)
(責(zé)任編輯:宋延君,羅森)