劉亞楠,李天舒,王彥波,傅玲琳,張德權(quán),李歡
食品生物胺安全控制關(guān)聯(lián)的包裝技術(shù)研究進(jìn)展
劉亞楠1,李天舒1,王彥波1,傅玲琳1,張德權(quán)2,李歡1
(1.浙江工商大學(xué) 食品與生物工程學(xué)院,杭州 310018;2.中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)產(chǎn)品加工研究所農(nóng)業(yè)農(nóng)村部農(nóng)產(chǎn)品質(zhì)量安全收貯運(yùn)管控重點(diǎn)實(shí)驗(yàn)室,北京 100193)
綜述包裝技術(shù)在食品生物胺安全控制領(lǐng)域的研究現(xiàn)狀及應(yīng)用進(jìn)展,為新型高效的食品生物胺控制包裝的研發(fā)提供借鑒與參考,助力食品安全國(guó)家戰(zhàn)略的實(shí)施。通過(guò)收集和整理相關(guān)文獻(xiàn),在概述食品中生物胺的形成機(jī)制和危害的基礎(chǔ)上,探討傳統(tǒng)食品包裝在控制生物胺形成方面的成效和局限性,重點(diǎn)總結(jié)近年來(lái)出現(xiàn)的新型生物胺控制包裝技術(shù)(氣調(diào)包裝、抑脫羧酶活性包裝及抑菌活性包裝)及其研究進(jìn)展,并對(duì)其未來(lái)發(fā)展方向進(jìn)行展望。食品包裝可實(shí)現(xiàn)生物胺的安全控制,研發(fā)新型、高效的生物胺安全控制包裝技術(shù)對(duì)于保障消費(fèi)者舌尖上的安全具有重要的現(xiàn)實(shí)意義。
食品包裝;生物胺控制;氣調(diào)包裝;抑酶活性包裝;抑菌活性包裝
生物胺是一類(lèi)具有生物活性的低分子量堿性含氮化合物的總稱,主要產(chǎn)生于食品的腐敗變質(zhì)過(guò)程。近年來(lái),食品中的生物胺引發(fā)了一系列食品安全問(wèn)題,引起了人們的廣泛關(guān)注。我國(guó)沿海地區(qū)(特別是浙江、廣東、江蘇和山東等地)均發(fā)生過(guò)生物胺中毒事件[1]。食物中常見(jiàn)的生物胺有組胺、酪胺、腐胺、尸胺、–苯乙胺、色胺、亞精胺及精胺等。過(guò)量攝入這些胺類(lèi)物質(zhì)不僅存在較大的中毒風(fēng)險(xiǎn),還可能導(dǎo)致機(jī)體發(fā)生過(guò)敏性反應(yīng)[2]。常規(guī)的低溫冷藏及高溫烹飪等方法均無(wú)法有效地抑制食品中生物胺的產(chǎn)生[3],如何高效便捷地控制食品中生物胺的形成和積累,保障消費(fèi)者的食用安全,成為了當(dāng)前的研究熱點(diǎn)。
食品包裝作為食品的外部保護(hù)屏障,可有效阻隔環(huán)境及微生物等外部因素對(duì)食品的侵害,有助于延長(zhǎng)食品的貨架期,提升食品質(zhì)量,保障食品安全,它已成為食品加工、貯藏產(chǎn)業(yè)的有力支撐部分[4-5]。近年來(lái),在食品安全保障需求下,食品包裝作為一種高效便捷的技術(shù)手段被廣泛應(yīng)用于生物胺的控制中。文中將在概述食品中生物胺的形成機(jī)制和危害的基礎(chǔ)上,探討傳統(tǒng)食品包裝在控制生物胺形成方面的成效和局限性,重點(diǎn)總結(jié)近年來(lái)出現(xiàn)的新型生物胺控制包裝技術(shù)及其研究進(jìn)展,旨在為今后開(kāi)發(fā)新型、高效的生物胺控制食品包裝提供借鑒與參考,以保障消費(fèi)者舌尖上的安全。
生物胺廣泛存在于各類(lèi)高蛋白食品中,如肉制品、水產(chǎn)品及發(fā)酵豆制品等。除部分生物胺由醛酮類(lèi)化合物的氨基化和轉(zhuǎn)氨基作用生成外,大部分生物胺由氨基酸前體通過(guò)微生物中的氨基酸脫羧酶脫羧形成[6-7](如圖1)。其中,游離氨基酸不但是生物胺的前體物質(zhì),還是微生物生長(zhǎng)的供能物質(zhì),其總量與腐胺、尸胺、精胺、亞精胺等生物胺的生成量顯著相關(guān)[8]。微生物所含氨基酸脫羧酶在生物胺的形成過(guò)程中扮演著至關(guān)重要的角色。研究發(fā)現(xiàn),當(dāng)脫羧酶中B基因的表達(dá)受到抑制時(shí),會(huì)影響由精氨酸向腐胺的轉(zhuǎn)化[9]。此外,原料組成、加工和貯藏條件等也會(huì)對(duì)食品中生物胺的形成產(chǎn)生顯著的影響,如脂肪含量、環(huán)境的pH值、貯藏溫度和包裝條件等[10-11]。從原料組成來(lái)看,當(dāng)食品(如肉品等)中的脂肪含量較高時(shí),生物胺的生成量往往較低。這是因?yàn)楦咧竞繋?lái)的低水分活度會(huì)抑制微生物的生長(zhǎng)及游離氨基酸的生成,進(jìn)一步減少食品中生物胺的形成[12]。微生物產(chǎn)胺實(shí)際上是它抵抗酸性環(huán)境所做出的一種生理性反應(yīng),因此氨基酸脫羧酶往往在低pH條件下具有較高的活性,微生物在酸性環(huán)境下的產(chǎn)胺能力一般也較高[13]。貯藏溫度也會(huì)顯著影響生物胺的形成,比如,較高的貯藏溫度一方面會(huì)加快微生物的生長(zhǎng)和蛋白質(zhì)的分解,另一方面也會(huì)顯著提升氨基酸脫羧酶和蛋白水解酶的活性,最終加快生物胺的形成及積累速度[13]。包裝條件可對(duì)食品中的微生物種類(lèi)、數(shù)量及代謝情況等產(chǎn)生顯著影響,進(jìn)而造成生物胺形成和積累量的差異。例如,食品中的肺炎克雷伯菌()在無(wú)氧包裝條件下,尸胺的生成量會(huì)大幅減少,腐胺的生成量會(huì)顯著增加[14]。
近年來(lái),由水產(chǎn)品、肉制品及奶制品等食品中的生物胺引起的食品安全事件屢見(jiàn)不鮮[15-16],我國(guó)沿海地區(qū)(特別是浙江、廣東、江蘇和山東等地)均發(fā)生過(guò)生物胺中毒事件[1]。江蘇省南京市某工廠曾發(fā)生100余人日本鯖魚(yú)食物中毒事件。浙江省寧??h某企業(yè)部分職工食用不新鮮青占魚(yú)后,陸續(xù)出現(xiàn)頭痛、頭暈、惡心、嘔吐、皮癢、腹痛等癥狀,經(jīng)調(diào)查發(fā)現(xiàn),所食用青占魚(yú)的組胺平均含量高達(dá)2.3 g/kg,是國(guó)標(biāo)限量標(biāo)準(zhǔn)的2.3倍[15,17]。當(dāng)機(jī)體攝入含高水平生物胺的食品時(shí),過(guò)量的生物胺無(wú)法及時(shí)被小腸黏膜內(nèi)的胺氧化酶分解代謝,極易在體內(nèi)蓄積,從而對(duì)機(jī)體健康造成損傷,引發(fā)嘔吐、呼吸障礙、頭痛,甚至中毒等癥狀[18-20]。研究表明,食用高組胺食品會(huì)引起頭痛、紅疹、血壓紊亂等癥狀,還可通過(guò)組胺受體4促進(jìn)粒細(xì)胞浸潤(rùn)腸黏膜,誘發(fā)如克羅恩病、潰瘍性結(jié)腸炎等相關(guān)疾病。此外,組胺作為Ⅰ型變態(tài)反應(yīng)重要的炎性介質(zhì),可導(dǎo)致過(guò)敏性食物中毒的發(fā)生[18,21-24]。酪胺可能引起偏頭痛、呼吸紊亂、高血壓等病癥,同時(shí)還會(huì)增強(qiáng)大腸桿菌O157:H7在小腸上皮細(xì)胞上的黏附,增強(qiáng)其致病性[18,25]。尸胺和腐胺不僅能夠與亞硝酸鹽反應(yīng)生成亞硝胺致癌物,過(guò)量存在于體內(nèi)時(shí)還將促進(jìn)惡性腫瘤的轉(zhuǎn)移[26-27]。除此以外,腐胺還可以提高致病性革蘭氏陽(yáng)/陰性菌的毒性[28]。由此可見(jiàn),不當(dāng)攝入生物胺對(duì)人體健康存在著較大的威脅。對(duì)此,我國(guó)以水產(chǎn)品中最容易產(chǎn)生、毒性最強(qiáng)的組胺為代表設(shè)置了最高限量水平,即高組胺魚(yú)類(lèi)中組胺含量不得超過(guò)400 mg/kg,其他魚(yú)類(lèi)中組胺含量不得超過(guò)200 mg/kg[29]。可見(jiàn),有效地控制食品中生物胺的形成對(duì)于保障消費(fèi)者的生命健康具有重要的意義。
圖1 生物胺的形成途徑
如前所述,食品中生物胺的產(chǎn)生與原料組成、加工儲(chǔ)存條件等密切相關(guān)[30]。添加植物或化學(xué)物質(zhì),采用非熱物理處理等加工方法是減少或抑制食品中生物胺形成的重要舉措[28]。然而,這些方法通常會(huì)導(dǎo)致食品組分和感官特性發(fā)生變化[31]。此外,消費(fèi)者對(duì)部分加工方式及添加劑的接受度較差[32]。消費(fèi)者和食品行業(yè)生產(chǎn)者均偏好質(zhì)量高、添加劑少、保質(zhì)期長(zhǎng)的產(chǎn)品[33]。食品包裝作為物理保護(hù)屏障,可有效隔絕外部環(huán)境和物質(zhì)對(duì)內(nèi)含食品的污染,減少微生物在食品中的定植與生長(zhǎng)等,可在一定程度上減緩生物胺的生成[34],且消費(fèi)者對(duì)其接受度和認(rèn)可度較高。姜曉娜[35]模擬物流過(guò)程不同包裝方式對(duì)黃鰭金槍魚(yú)品質(zhì)變化影響的研究中發(fā)現(xiàn),聚乙烯包裝組中黃鰭金槍魚(yú)的組胺含量顯著低于無(wú)包裝處理組中黃鰭金槍魚(yú)的組胺含量,表明食品包裝對(duì)組胺的產(chǎn)生具有顯著的抑制作用。真空包裝通過(guò)改變包裝環(huán)境中氧氣的含量,從而影響微生物生長(zhǎng)和代謝等多種生命活動(dòng)過(guò)程[12],可有效降低魚(yú)片和干香腸等肉制品在儲(chǔ)存過(guò)程中的生物胺生成量[36-37]。蔡秋杏等[38]采用真空和普通等2種包裝方式在25 °C下貯藏液熏羅非魚(yú)片,并比較了其生物胺產(chǎn)生量的變化,研究發(fā)現(xiàn),貯藏結(jié)束后真空包裝和普通包裝樣品中腐胺的含量分別為13.94 mg/kg和16.25 mg/kg,表明真空包裝能夠顯著抑制腐胺含量的增加。劉義等[39]將真空貼體包裝與普通真空包裝、托盤(pán)包裝進(jìn)行對(duì)比,探究在4 °C冷藏過(guò)程中鱘魚(yú)片的品質(zhì)變化規(guī)律,研究發(fā)現(xiàn),真空貼體包裝組鱘魚(yú)片的生物胺含量顯著低于普通真空包裝和托盤(pán)包裝組鱘魚(yú)片的生物胺含量,且貨架期被延長(zhǎng)至9 d。Kaniou等[40]研究發(fā)現(xiàn),在4 °C貯藏條件下,真空包裝的鮮牛肉與未包裝的鮮牛肉相比,腐胺的產(chǎn)生量顯著降低。對(duì)于發(fā)酵食品而言,在配送和貯藏過(guò)程中通常采用鹽溶液包裝,而NaCl的存在可能會(huì)加速泡菜等發(fā)酵食品對(duì)腐胺的降解或轉(zhuǎn)化[41]。Zhao等[31]比較了不同包裝方式(有氧包裝、NaCl溶液包裝、真空包裝)對(duì)泡菜貯藏過(guò)程中生物胺產(chǎn)生水平的影響,研究發(fā)現(xiàn),真空包裝對(duì)泡菜中組胺、酪胺和腐胺的積累的抑制作用優(yōu)于有氧包裝和NaCl溶液包裝。然而,真空包裝、有氧包裝和鹽溶液包裝等傳統(tǒng)包裝方式在減少或抑制食品生物胺產(chǎn)生和積累方面的效果較為有限,研發(fā)新型、高效的包裝技術(shù)對(duì)于食品生物胺控制至關(guān)重要,如食品氣調(diào)包裝、食品活性包裝(如圖2)等。
氣調(diào)包裝是利用一種或數(shù)種混合氣體改變食品所處氣體環(huán)境的一種新型包裝方式[1]。研究表明,O2含量的減少可有效降低氣調(diào)包裝內(nèi)食品的菌落總數(shù),尤其是對(duì)梭狀芽胞桿菌屬()和假單胞菌屬()等典型產(chǎn)胺菌的生長(zhǎng)有抑制作用[42]。目前,用于控制生物胺的氣調(diào)包裝主要集中在降低食品外部包裝袋中O2所占比值。如利用CO2、N2等氣體調(diào)控食品外部包裝氣體組成來(lái)抑制梭狀芽胞桿菌和假單胞菌等產(chǎn)胺微生物的生長(zhǎng),從而達(dá)到降低生物胺含量的目的[42],見(jiàn)表1。Ozogul等[43]以暴露于空氣中的沙丁魚(yú)為對(duì)照,比較了在4 °C貯藏條件下CO2/N2(體積分?jǐn)?shù)為60%/40%)氣調(diào)包裝和真空包裝中沙丁魚(yú)生物胺的變化情況,研究發(fā)現(xiàn),雖然各類(lèi)包裝方式均未能完全消除生物胺的積累和增加,但與對(duì)照組相比,真空包裝沙丁魚(yú)中生物胺的質(zhì)量分?jǐn)?shù)降低了51.8%,CO2/N2(體積分?jǐn)?shù)為60%/40%)氣調(diào)包裝沙丁魚(yú)的生物胺含量降低了77.4%。由此可見(jiàn),氣調(diào)包裝對(duì)沙丁魚(yú)生物胺的抑制能力優(yōu)于真空包裝。Yew等[44]比較了不同CO2濃度(體積分?jǐn)?shù)為30%、60%、80%、100%)對(duì)熟雞胸肉絲中組胺形成的影響,研究結(jié)果顯示,氣調(diào)包裝中CO2的體積分?jǐn)?shù)分別為30%、60%、80%和100%時(shí),雞肉中組胺的質(zhì)量分?jǐn)?shù)分別降低了8.5%、70.3%、78.8%和90.2%。此外,Rodriguez等[45]也研究了具有不同CO2濃度(體積分?jǐn)?shù)為10%、30%、50%、70%和90%)的氣調(diào)包裝對(duì)熟雞胸肉絲中生物胺形成的影響,研究發(fā)現(xiàn),貯藏于不同CO2條件下雞胸肉絲中的腐胺和尸胺含量顯著減少,且減小程度隨CO2濃度的增加而增加。同時(shí),研究還發(fā)現(xiàn)產(chǎn)腐胺的細(xì)菌對(duì)CO2的敏感度相對(duì)較弱。Fraqueza等[46]比較了CO2與其他氣體構(gòu)成不同氣調(diào)包裝環(huán)境時(shí)對(duì)火雞生物胺產(chǎn)生量的影響,研究發(fā)現(xiàn),與普通有氧包裝相比,在氣調(diào)包裝中添加較高濃度CO2和CO混合氣體時(shí),肉品的生物胺含量較低。Rokka等[47]對(duì)比了氣調(diào)包裝(體積分?jǐn)?shù)80%的CO2+體積分?jǐn)?shù)20%的N2)中的雞肉片在不同溫度(2.9、3.4、5.4 ℃)下生物胺含量的變化情況,研究發(fā)現(xiàn),隨著儲(chǔ)藏時(shí)間的增加,在2.9 ℃低溫環(huán)境下貯藏的氣調(diào)包裝中雞肉片的生物胺含量的增加更為緩慢。Rodriguez等[36]探究了輻射處理、真空包裝和氣調(diào)包裝對(duì)虹鱒魚(yú)片生物胺含量的影響,研究發(fā)現(xiàn),采用氣調(diào)包裝可有效減緩虹鱒魚(yú)中腐胺和尸胺的形成,進(jìn)而延長(zhǎng)了虹鱒魚(yú)片的保質(zhì)期,且生物胺控制能力為3種處理方式中最強(qiáng)的。徐思雨[48]將復(fù)合保鮮劑(白藜蘆醇、迷迭香酸和肉桂醛)與氣調(diào)包裝相結(jié)合,研究其對(duì)生鮮鴨胸肉的保鮮效果,研究發(fā)現(xiàn),實(shí)驗(yàn)組的菌落總數(shù)、腸桿菌數(shù)量、假單胞菌數(shù)量和乳酸菌數(shù)量顯著低于對(duì)照組的,苯乙胺、腐胺、尸胺、組胺和酪胺的含量顯著降低,說(shuō)明復(fù)合保鮮劑與氣調(diào)包裝(體積分?jǐn)?shù)40%的CO2+體積分?jǐn)?shù)20%的CO2+體積分?jǐn)?shù)40%的N2)相結(jié)合的活性包裝方式增強(qiáng)了氣調(diào)包裝減緩生物胺的生成和積累的能力。
圖2 具有生物胺控制功效的食品包裝
表1 氣調(diào)包裝用于食品中生物胺控制
Tab.1 Control of biogenic amines based on modified atmosphere packaging
由于食品中的生物胺主要由微生物中的氨基酸脫羧酶作用于游離氨基酸產(chǎn)生,故抑制氨基酸脫羧酶活性是減少生物胺形成的有效途徑之一[4]。研究發(fā)現(xiàn),如阿魏酸、兒茶素、丁香酚等活性物質(zhì)可通過(guò)降低氨基酸脫羧酶活性來(lái)抑制生物胺的產(chǎn)生[53-54]。將抑酶活性物質(zhì)包埋于包裝膜材料中,進(jìn)而減少包裝食品中生物胺的積累,是目前基于活性包裝材料控制生物胺的研究熱點(diǎn)之一,見(jiàn)表2。
研究表明,在阿魏酸的作用下,等產(chǎn)胺菌的酪氨酸脫羧酶基因和酪氨酸/酪胺透性酶基因的表達(dá)均會(huì)受到抑制,其對(duì)酪氨酸的敏感性大大減弱,進(jìn)而導(dǎo)致酪胺的產(chǎn)量降低[58]。同時(shí),阿魏酸具有抑制大腸桿菌等微生物生長(zhǎng)的功效,因此將具有雙重功效的阿魏酸與其他物質(zhì)結(jié)合制備活性包裝可為控制生物胺提供新的策略。肖乃玉等[55]以膠原蛋白為成膜基材,制備了阿魏酸–膠原蛋白復(fù)合膜,并進(jìn)一步探究了阿魏酸–膠原蛋白復(fù)合膜對(duì)臘腸中生物胺生成量的影響。研究發(fā)現(xiàn),阿魏酸–膠原蛋白復(fù)合膜可顯著降低臘腸中揮發(fā)性生物胺的含量,且可將臘腸的貨架期延長(zhǎng)8.5 d。兒茶素不僅可抑制賴氨酸脫羧酶、組氨酸脫羧酶和苯丙氨酸脫羧酶等多種脫羧酶的活性,還可以抑制微生物的生長(zhǎng),且對(duì)風(fēng)味微生物生長(zhǎng)的影響較小[53]。Cao等[56]將表沒(méi)食子兒茶素沒(méi)食子酸酯添加到明膠膜中制備出了表沒(méi)食子兒茶素沒(méi)食子酸酯–明膠薄膜,將其用于包裝羅非魚(yú)片后,魚(yú)片中的腐胺及尸胺生成量顯著降低,并可有效減緩魚(yú)片中脂肪和蛋白質(zhì)的氧化,延長(zhǎng)了保質(zhì)期。除兒茶素外,丁香酚對(duì)賴氨酸脫羧酶、組氨酸脫羧酶和苯丙氨酸脫羧酶等多種脫羧酶也具有抑制功效[53],且對(duì)微生物的生長(zhǎng)具有明顯的抑制作用[59]。Zhou等[57]探究了采用丁香酚–明膠涂膜與氣調(diào)包裝聯(lián)用的方式對(duì)鱸魚(yú)的保鮮功效,研究發(fā)現(xiàn),丁香酚–明膠涂膜可有效抑制假單胞菌的生長(zhǎng),減少游離氨基酸的生成量,從而抑制生物胺的生成。未來(lái)可進(jìn)一步開(kāi)發(fā)對(duì)氨基酸脫羧酶具有特異性抑制功能的活性成分,將其與活性包裝技術(shù)相結(jié)合,從而更加精準(zhǔn)地控制生物胺的產(chǎn)生和積累。
由生物胺的形成機(jī)制可知,除抑制脫羧酶活性外,抑制食品中具有脫羧酶活性的產(chǎn)胺菌或蛋白酶產(chǎn)生菌等微生物的生長(zhǎng)也有助于減緩生物胺的生成。利用抑菌包裝材料控制食品中的產(chǎn)胺菌活性,進(jìn)而減少生物胺的生成,已成為控制食品中生物胺產(chǎn)生的一個(gè)高潛力途徑,見(jiàn)表3。
表2 具有氨基酸脫羧酶活性抑制功效的活性包裝用于生物胺控制
Tab.2 Application of active packaging with amino acid decarboxylase enzyme inhibiting effect in control of biogenic amines
表3 具有抑菌功效的活性包裝用于食品生物胺控制
Tab.3 Application of antibacterial active packaging in control of biogenic amines
殼聚糖是一類(lèi)具有廣譜抑菌性的生物大分子,其帶正電的分子結(jié)構(gòu)有助于其通過(guò)靜電作用破壞微生物細(xì)胞膜,進(jìn)而達(dá)到柔性殺菌的目的[67]。李苗苗等[60]比較了4種不同包裝方式(殼聚糖涂膜、氣調(diào)包裝、真空包裝和托盤(pán)包裝)對(duì)金槍魚(yú)中生物胺形成的影響,結(jié)果表明,殼聚糖涂膜組的菌落總數(shù)最少,對(duì)生物胺的抑制效果最佳,氣調(diào)包裝、真空包裝和托盤(pán)包裝抑制菌落生長(zhǎng)及生物胺生成的能力較弱。Wu等[61]采用沒(méi)食子酸–殼聚糖制備了太平洋鯖魚(yú)片的可食用涂膜,并觀察了它對(duì)冷藏儲(chǔ)存期間魚(yú)中生物胺生成量的影響,研究發(fā)現(xiàn),殼聚糖–沒(méi)食子酸涂膜能夠有效抑制微生物的生長(zhǎng),減緩組胺、腐胺和尸胺等生物胺的形成。Jamróz等[62]將含丙氨酸–酪氨酸二肽的叉紅藻膠/水解明膠活性雙層膜用于大西洋鯖魚(yú)的保鮮研究,研究發(fā)現(xiàn),活性雙層膜降低了大西洋鯖魚(yú)的假單胞菌數(shù)量,減緩了腐胺、尸胺、組胺、精胺、亞精胺和2–苯乙胺的形成,對(duì)于大西洋鯖魚(yú)的貯藏保鮮具有重要的現(xiàn)實(shí)意義。Topuz等[68]比較了不同涂膜材料(明膠、海藻酸鹽和果膠)對(duì)虹鱒魚(yú)肉中生物胺形成的影響,研究發(fā)現(xiàn),經(jīng)海藻酸鹽處理后虹鱒魚(yú)肉的生物胺含量最低。Hao等[63]研究了海藻酸鈉–竹葉提取物或迷迭香提取物涂層處理對(duì)冷藏條件下皺紋盤(pán)鮑生物胺含量的影響,結(jié)果表明,該涂層可有效抑制腐敗微生物假單胞菌、H2S產(chǎn)生菌、腸桿菌和乳酸菌的生長(zhǎng),改變鮑魚(yú)中的微生物組成,從而降低腐胺、尸胺和酪胺的含量。
生物胺是高蛋白食品發(fā)酵或儲(chǔ)藏過(guò)程中生成的常見(jiàn)有害物質(zhì)之一,由此引發(fā)的食品安全問(wèn)題引起了廣泛的關(guān)注。如何高效便捷地控制食品中生物胺的產(chǎn)生與積累是當(dāng)前的研究熱點(diǎn)。添加天然或化學(xué)物質(zhì),采用非熱物理處理等加工工藝是減少或抑制食品中生物胺形成的重要方法。然而,這些方法通常會(huì)導(dǎo)致食品組成和感官特性的變化,存在消費(fèi)者接受度低等局限性。食品包裝可以有效防止食品受到微生物等的侵染,有助于延長(zhǎng)食品的保質(zhì)期和貨架期,在生物胺控制領(lǐng)域展現(xiàn)出了巨大的應(yīng)用前景。真空包裝、有氧包裝和鹽溶液包裝等傳統(tǒng)包裝方式被證明具有一定的生物胺控制功效,但其控制效率有待提升。隨著技術(shù)的發(fā)展,氣調(diào)包裝和活性包裝逐漸成為生物胺控制領(lǐng)域的新興包裝方式。氣調(diào)包裝和活性包裝通過(guò)抑制產(chǎn)胺菌的生長(zhǎng)和脫羧酶的活性,實(shí)現(xiàn)了對(duì)生物胺的有效控制。
盡管食品包裝技術(shù)在生物胺控制領(lǐng)域展現(xiàn)出了較好的成效,但在今后的研究中,還應(yīng)加強(qiáng)對(duì)下述方面更為深入的探索。
1)大腸桿菌和乳酸桿菌在厭氧條件下仍會(huì)產(chǎn)生和積累酪胺,將氣調(diào)包裝與其他技術(shù)結(jié)合以抑制這類(lèi)產(chǎn)胺微生物的生長(zhǎng)是今后的研究方向之一。
2)活性包裝已在水產(chǎn)品、肉制品等食品的生物胺控制中取得了一定的成效,然而在發(fā)酵食品的生物胺控制方面的探索較少,相關(guān)研究較為匱乏。
3)目前,有關(guān)活性包裝抑制生物胺的機(jī)理研究較少,加強(qiáng)相關(guān)的機(jī)理研究可為今后開(kāi)發(fā)高效的食品生物胺控制包裝技術(shù)提供理論支撐。
4)目前,活性包裝主要通過(guò)抑制微生物的生長(zhǎng)來(lái)間接抑制生物胺的產(chǎn)生,未來(lái)可開(kāi)發(fā)更有針對(duì)性的生物胺抑制活性包裝,以減少對(duì)有益菌群的影響。
[1] 劉紅, 李傳勇, 曾志杰, 等. 水產(chǎn)品中生物胺的檢測(cè)與控制技術(shù)研究進(jìn)展[J]. 食品安全質(zhì)量檢測(cè)學(xué)報(bào), 2015, 6(11): 4516-4523.
LIU Hong, LI Chuan-yong, ZENG Zhi-jie, et al. Research Progress on the Determination Methods and Control Technology of Biogenic Amines in Seafood[J]. Journal of Food Safety & Quality, 2015, 6(11): 4516-4523.
[2] GALLI S J, TSAI M. IgE and Mast Cells in Allergic Disease[J]. Nature Medicine, 2012, 18(5): 693-704.
[3] GUIZANI N, AL-BUSAIDY M A, AL-BELUSHI I M, et al. The Effect of Storage Temperature on Histamine Production and the Freshness of Yellowfin Tuna ()[J]. Food Research International, 2005, 38(2): 215-222.
[4] 劉亞楠, 李歡, 連仁杰, 等. 水產(chǎn)品生物胺控制技術(shù)研究進(jìn)展[J]. 食品科學(xué), 2022, 43(11) 246-253.
LIU Ya-nan, LI Huan, LIAN Ren-jie, et al. Research Progress of Biogenic Amine Control Techniques in Aquatic Products[J]. Food Science, 2022, 43(11): 246-253.
[5] 姚倩儒, 陳歷水, 李慧, 等. 冷鮮肉保鮮包裝技術(shù)現(xiàn)狀和發(fā)展趨勢(shì)[J]. 包裝工程, 2021, 42(9): 194-200.
YAO Qian-ru, CHEN Li-shui, LI Hui, et al. Current Situation and Development Trend of Packaging Technology for Chilled Fresh Meat[J]. Packaging Engineering, 2021, 42(9): 194-200.
[6] JIA Ruo-nan, TIAN Wei-guo, BAI Hao-tian, et al. Amine-Responsive Cellulose-Based Ratiometric Fluorescent Materials for Real-Time and Visual Detection of Shrimp and Crab Freshness[J]. Nature Communications, 2019, 10: 795.
[7] SANTOS M H S. Biogenic Amines: Their Importance in Foods[J]. International Journal of Food Microbiology, 1996, 29(2/3): 213-231.
[8] ?ZDESTAN ?, üREN A. Biogenic Amine Content of Tarhana: A Traditional Fermented Food[J]. International Journal of Food Properties, 2013, 16(2): 416-428.
[9] 黃笠原, 毛順, 李蕊婷, 等. 大蒜精油對(duì)熏馬腸中德氏乳桿菌產(chǎn)腐胺的影響機(jī)制[J]. 食品科學(xué), 2019, 40(5): 17-23.
HUANG Li-yuan, MAO Shun, LI Rui-ting, et al. Effect and Mechanism of Garlic Essential Oil on Putrescine Accumulation byIsolated from Smoked Horse Meat Sausages[J]. Food Science, 2019, 40(5): 17-23.
[10] ANL? R E, BAYRAM M. Biogenic Amines in Wines[J]. Food Reviews International, 2008, 25(1): 86-102.
[11] RUIZ-CAPILLAS C, HERRERO A M. Impact of Biogenic Amines on Food Quality and Safety[J]. Foods (Basel, Switzerland), 2019, 8(2): 62.
[12] RUIZ-CAPILLAS C, JIMéNEZ-COLMENERO F. Biogenic Amines in Meat and Meat Products[J]. Critical Reviews in Food Science and Nutrition, 2005, 44(7/8): 489-599.
[13] 王翔, 盧士玲, 徐幸蓮, 等. 發(fā)酵肉制品中生物胺的形成及影響因素研究進(jìn)展[J]. 食品與發(fā)酵工業(yè), 2010, 36(11): 133-136.
WANG Xiang, LU Shi-ling, XU Xing-lian, et al. Review of Biogenic Amines Formation and Influencing Factors in Fermented Meat Products[J]. Food and Fermentation Industries, 2010, 36(11): 133-136.
[14] HALáSZ A, BARáTH á, SIMON-SARKADI L, et al. Biogenic Amines and Their Production by Microorganisms in Food[J]. Trends in Food Science & Technology, 1994, 5(2): 42-49.
[15] 莫星憂, 呂柏東, 伍彬, 等. 發(fā)酵食品中組胺危害及控制研究進(jìn)展[J]. 現(xiàn)代食品, 2020(7): 46-48.
MO Xing-you, LYU Bai-dong, WU Bin, et al. Research Progress on Hazard and Control of Histamine in Fermented Food[J]. Modern Food, 2020(7): 46-48.
[16] 班雨函, 朱明坤, 董晶晶, 等. 發(fā)酵水產(chǎn)品中生物胺控制技術(shù)研究進(jìn)展[J]. 食品研究與開(kāi)發(fā), 2022, 43(3): 199-206.
BAN Yu-han, ZHU Ming-kun, DONG Jing-jing, et al. Research Progress on Control Technology of Biogenic Amines in Fermented Aquatic Products[J]. Food Research and Development, 2022, 43(3): 199-206.
[17] 趙慶志. 水產(chǎn)品中生物胺的變化規(guī)律及風(fēng)險(xiǎn)評(píng)估[D]. 上海: 上海海洋大學(xué), 2018: 8.
ZHAO Qing-zhi. Change Rule and Risk Assessment of Biogenic Amines in Aquatic Products[D]. Shanghai: Shanghai Ocean University, 2018: 8.
[18] 王波, 肖珊, 蔡燕雪, 等. 發(fā)酵食品中生物胺的研究現(xiàn)狀[J]. 食品安全質(zhì)量檢測(cè)學(xué)報(bào), 2020, 11(16): 5614-5619.
WANG Bo, XIAO Shan, CAI Yan-xue, et al. Research Status of Biogenic Amines from Fermented Foods[J]. Journal of Food Safety & Quality, 2020, 11(16): 5614-5619.
[19] BARBIERI F, MONTANARI C, GARDINI F, et al. Biogenic Amine Production by Lactic Acid Bacteria: A Review[J]. Foods, 2019, 8(1): 17.
[20] LI Huan, GAN Jia-cheng, YANG Qing, et al. Colorimetric Detection of Food Freshness Based on Amine-Responsive Dopamine Polymerization on Gold Nanoparticles[J]. Talanta, 2021, 234: 122706.
[21] WECHSLER J B, SZABO A, HSU C L, et al. Histamine Drives Severity of Innate Inflammation via Histamine 4 Receptor in Murine Experimental Colitis[J]. Mucosal Immunology, 2018, 11(3): 861-870.
[22] HASSAN A H A, SAPPIA L, MOURA S L, et al. Biomimetic Magnetic Sensor for Electrochemical Determination of Scombrotoxin in Fish[J]. Talanta, 2019, 194: 997-1004.
[23] 蔣紅玲, 向軍儉. 食物過(guò)敏中肥大細(xì)胞釋放組胺的研究進(jìn)展[J]. 醫(yī)學(xué)理論與實(shí)踐, 2007, 20(3): 269-271.
JIANG Hong-ling, XIANG Jun-jian. Research Progress of Histamine Release from Mast Cells in Food Allergy[J]. The Journal of Medical Theory and Practice, 2007, 20(3): 269-271.
[24] 范青霞, 孔亞明, 馬洪喜. 一起因食用鯖魚(yú)引起的組胺過(guò)敏慢性食物中毒[J]. 醫(yī)學(xué)動(dòng)物防制, 2006, 22(4): 295-296.
FAN Qing-xia, KONG Ya-ming, MA Hong-xi. A Case of Histamine Allergy and Chronic Food Poisoning Caused by Mackerel Consumption[J]. Chinese Journal of Pest Control, 2006, 22(4): 295-296.
[25] LYTE M. The Biogenic Amine Tyramine Modulates the Adherence ofO157: H7 to Intestinal Mucosa[J]. Journal of Food Protection, 2004, 67(5): 878-883.
[26] DEL RIO B, REDRUELLO B, LINARES D M, et al. The Biogenic Amines Putrescine and Cadaverine ShowCytotoxicity at Concentrations that can be Found in Foods[J]. Scientific Reports, 2019, 9: 120.
[27] IGNATENKO N A, BESSELSEN D G, ROY U K B, et al. Dietary Putrescine Reduces the Intestinal Anticarcinogenic Activity of Sulindac in a Murine Model of Familial Adenomatous Polyposis[J]. Nutrition and Cancer, 2006, 56(2): 172-181.
[28] SHAH P, SWIATLO E. A Multifaceted Role for Polyamines in Bacterial Pathogens[J]. Molecular Microbiology, 2008, 68(1): 4-16.
[29] GB 2733—2015, 食品安全國(guó)家標(biāo)準(zhǔn)鮮、凍動(dòng)物性水產(chǎn)品[S].
GB 2733—2015, National Food Safety Standard — Fresh and Frozen Marine Products of Animal Origin[S].
[30] KALAYC?O?LU Z, ERIM F B. Nitrate and Nitrites in Foods: Worldwide Regional Distribution in View of Their Risks and Benefits[J]. Journal of Agricultural and Food Chemistry, 2019, 67(26): 7205-7222.
[31] ZHAO Nan, LAI Hai-mei, HE Wei, et al. Reduction of Biogenic Amine and Nitrite Production in Low-Salt Paocai by Controlled Package during Storage: A Study Comparing Vacuum and Aerobic Package with Conventional Salt Solution Package[J]. Food Control, 2021, 123: 107858.
[32] BEARTH A, SIEGRIST M. "As Long as It is not Irradiated"-Influencing Factors of US Consumers' Acceptance of Food Irradiation[J]. Food Quality and Preference, 2019, 71: 141-148.
[33] LENEVEU-JENVRIN C, CHARLES F, BARBA F J, et al. Role of Biological Control Agents and Physical Treatments in Maintaining the Quality of Fresh and Minimally-Processed Fruit and Vegetables[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(17): 2837-2855.
[34] 侯曉陽(yáng). 新型食品包裝材料的發(fā)展概況及趨勢(shì)[J]. 食品安全質(zhì)量檢測(cè)學(xué)報(bào), 2018, 9(24): 6400-6405.
HOU Xiao-yang. Development and Tendency of Novel Food Packaging Materials[J]. Journal of Food Safety & Quality, 2018, 9(24): 6400-6405.
[35] 姜曉娜. 模擬物流過(guò)程中黃鰭金槍魚(yú)品質(zhì)變化的研究[D]. 杭州: 浙江工商大學(xué), 2018: 9-26.
JIANG Xiao-na. Study on the Quality Change of Yellowfin Tuna in Simulated Logistics Process[D]. Hangzhou: Zhejiang Gongshang University, 2018: 9-26.
[36] RODRIGUES B L, ALVARES T D S, SAMPAIO G S L, et al. Influence of Vacuum and Modified Atmosphere Packaging in Combination with UV-C Radiation on the Shelf Life of Rainbow Trout () Fillets[J]. Food Control, 2016, 60: 596-605.
[37] SUN Qin-xiu, SUN Fang-da, ZHENG Dong-mei, et al. Complex Starter Culture Combined with Vacuum Packaging Reduces Biogenic Amine Formation and Delays the Quality Deterioration of Dry Sausage during Storage[J]. Food Control, 2019, 100: 58-66.
[38] 蔡秋杏, 李來(lái)好, 陳勝軍, 等. 液熏羅非魚(yú)片在25 ℃貯藏過(guò)程中生物胺的變化[J]. 南方水產(chǎn), 2010, 6(5): 1-6.
CAI Qiu-xing, LI Lai-hao, CHEN Sheng-jun, et al. Changes of Biogenic Amines in Liquid-Smoked Tilapia Stored at 25 ℃[J]. South China Fisheries Science, 2010, 6(5): 1-6.
[39] 劉義, 張?jiān)瓷? 周幸, 等. 真空貼體包裝對(duì)鱘魚(yú)片冷藏過(guò)程中品質(zhì)變化的影響[J]. 食品科學(xué), 2019, 40(15): 218-224.
LIU Yi, ZHANG Yuan-shan, ZHOU Xing, et al. Effect of Vacuum Skin Packaging on Quality Changes of Sturgeon() Fillets during Cold Storage[J]. Food Science, 2019, 40(15): 218-224.
[40] KANIOU I, SAMOURIS G, MOURATIDOU T, et al. Determination of Biogenic Amines in Fresh Unpacked and Vacuum-Packed Beef during Storage at 4 ℃[J]. Food Chemistry, 2001, 74(4): 515-519.
[41] LARANJO M, GOMES A, AGULHEIRO-SANTOS A C, et al. Impact of Salt Reduction on Biogenic Amines, Fatty Acids, Microbiota, Texture and Sensory Profile in Traditional Blood Dry-Cured Sausages[J]. Food Chemistry, 2017, 218: 129-136.
[42] GARDINI F, ?ZOGUL Y, SUZZI G, et al. Technological Factors Affecting Biogenic Amine Content in Foods: A Review[J]. Frontiers in Microbiology, 2016, 7: 1218.
[43] ?ZOGUL F, ?ZOGUL Y. Biogenic Amine Content and Biogenic Amine Quality Indices of Sardines () Stored in Modified Atmosphere Packaging and Vacuum Packaging[J]. Food Chemistry, 2006, 99(3): 574-578.
[44] YEW C C, BAKAR F A, RAHMAN R A, et al. Effects of Modified Atmosphere Packaging with Various Carbon Dioxide Composition on Biogenic Amines Formation in Indian Mackerel () Stored at (5±1)℃ [J]. Packaging Technology and Science, 2014, 27(3): 249-254.
[45] RODRIGUEZ M B R, CONTE-JUNIOR C A, CARNEIRO C S, et al. Biogenic Amines as a Quality Index in Shredded Cooked Chicken Breast Fillet Stored under Refrigeration and Modified Atmosphere[J]. Journal of Food Processing and Preservation, 2015, 39(6): 2043-2048.
[46] FRAQUEZA M J, ALFAIA C M, BARRETO A S. Biogenic Amine Formation in Turkey Meat under Modified Atmosphere Packaging with Extended Shelf Life: Index of Freshness[J]. Poultry Science, 2012, 91(6): 1465-1472.
[47] ROKKA M, EEROLA S, SMOLANDER M, et al. Monitoring of the Quality of Modified Atmosphere Packaged Broiler Chicken Cuts Stored in Different Temperature Conditions[J]. Food Control, 2004, 15(8): 601-607.
[48] 徐思雨. 調(diào)理鴨肉制品制品工藝及保鮮技術(shù)研究[D]. 寧波: 寧波大學(xué), 2013: 29-37.
XU Si-yu. Study on Processing Technology and Fresh-Keeping Technology of Duck Meat Products[D]. Ningbo: Ningbo University, 2013: 29-37.
[49] YASSORALIPOUR A, BAKAR J, RAHMAN R A, et al. Biogenic Amines Formation in Barramundi () Fillets at 8 ℃ Kept in Modified Atmosphere Packaging with Varied CO2Concentration[J]. LWT - Food Science and Technology, 2012, 48(1): 142-146.
[50] RUIZ-CAPILLAS C, MORAL A. Sensory and Biochemical Aspects of Quality of Whole Bigeye Tuna () during Bulk Storage in Controlled Atmospheres[J]. Food Chemistry, 2005, 89(3): 347-354.
[51] 唐亞麗, 盧立新, 呂淑勝. 抗菌涂膜與氣調(diào)包裝對(duì)生鮮凈魚(yú)保鮮的影響[J]. 北京工商大學(xué)學(xué)報(bào)(自然科學(xué)版), 2011, 29(6): 58-62.
TANG Ya-li, LU Li-xin, LYU Shu-sheng. Preservative Effect of Antimicrobial Film and Modified Atmosphere Packaging on Fish ()[J]. Journal of Beijing Technology and Business University (Natural Science Edition), 2011, 29(6): 58-62.
[52] 黃明明, 喬維維, 章建浩, 等. 低溫等離子體冷殺菌對(duì)生鮮牛肉主要腐敗菌及生物胺抑制效應(yīng)研究[J]. 食品科學(xué)技術(shù)學(xué)報(bào), 2018, 36(4): 17-23.
HUANG Ming-ming, QIAO Wei-wei, ZHANG Jian-hao, et al. Effects of Cold Plasma Cold Sterilization on Major Spoilage Bacteria and Biogenic Amines in Beef[J]. Journal of Food Science and Technology, 2018, 36(4): 17-23.
[53] WENDAKOON C N, SAKAGUCHI M. Inhibition of Amino Acid Decarboxylase Activity ofby Active Components in Spices[J]. Journal of Food Protection, 1995, 58(3): 280-283.
[54] 張永生, 劉冬敏, 王建輝, 等. 植源性天然產(chǎn)物在食品中降生物胺作用研究進(jìn)展[J]. 食品科學(xué), 2022, 43(3): 315-324.
ZHANG Yong-sheng, LIU Dong-min, WANG Jian-hui, et al. Advances of Plant-Derived Natural Products' Effects on Reducing Biogenic Amines in Food[J]. Food Science, 2022, 43(3): 315-324.
[55] 肖乃玉, 盧曼萍, 陳少君, 等. 阿魏酸?膠原蛋白抗菌膜在臘腸保鮮中的應(yīng)用[J]. 食品與發(fā)酵工業(yè), 2014, 40(4): 210-215.
XIAO Nai-yu, LU Man-ping, CHEN Shao-jun, et al. Application of Ferulic Acid-Collagen Protein Antibacterial Membrane in Fresh-Keeping of Meat[J]. Food and Fermentation Industries, 2014, 40(4): 210-215.
[56] CAO Jun, WANG Qi, MA Ting-ting, et al. Effect of EGCG-Gelatin Biofilm on the Quality and Microbial Composition of Tilapia Fillets during Chilled Storage[J]. Food Chemistry, 2020, 305: 125454.
[57] ZHOU Qian-qian, LI Pei-yun, FANG Shi-yuan, et al. Preservative Effects of Gelatin Active Coating Containing Eugenol and Higher CO2Concentration Modified Atmosphere Packaging on Chinese Sea Bass () during Superchilling (?0.9 ℃) Storage[J]. Molecules, 2020, 25(4): 871.
[58] 薛林林, 王遠(yuǎn), 李彬彬, 等. 阿魏酸對(duì)糞腸球菌和屎腸球菌產(chǎn)酪胺機(jī)制的影響[J]. 食品科學(xué), 2019, 40(22): 33-38.
XUE Lin-lin, WANG Yuan, LI Bin-bin, et al. Mechanistic Study of the Effect of Ferulic Acid on Tyramine Production byand[J]. Food Science, 2019, 40(22): 33-38.
[59] 高永生, 金斐, 朱麗云, 等. 植物精油及其活性成分的抗菌機(jī)理[J]. 中國(guó)食品學(xué)報(bào), 2022, 22(1): 376-388.
GAO Yong-sheng, JIN Fei, ZHU Li-yun, et al. Antimicrobial Mechanism of Plant Essential Oils and Its Active Ingredients[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(1): 376-388.
[60] 李苗苗, 王江峰, 徐大倫, 等. 4種保鮮處理對(duì)冰溫貯藏金槍魚(yú)片生物胺的影響[J]. 中國(guó)食品學(xué)報(bào), 2015, 15(2): 111-119.
LI Miao-miao, WANG Jiang-feng, XU Da-lun, et al. Effects of 4 Packaging Methods on Biogenic Amines Formation in Yellowfin Tuna() Fillets under Controlled Freezing-Point Temperature[J]. Journal of Chinese Institute of Food Science and Technology, 2015, 15(2): 111-119.
[61] WU Chun-hua, LI Yuan, WANG Li-ping, et al. Efficacy of Chitosan-Gallic Acid Coating on Shelf Life Extension of Refrigerated Pacific Mackerel Fillets[J]. Food and Bioprocess Technology, 2016, 9(4): 675-685.
[62] JAMRóZ E, KULAWIK P, TKACZEWSKA J, et al. The Effects of Active Double-Layered Furcellaran/Gelatin Hydrolysate Film System with Ala-Tyr Peptide on Fresh Atlantic Mackerel Stored at ?18 ℃[J]. Food Chemistry, 2021, 338: 127867.
[63] HAO Ruo-yi, LIU Yang, SUN Li-ming, et al. Sodium Alginate Coating with Plant Extract Affected Microbial Communities, Biogenic Amine Formation and Quality Properties of Abalone () during Chill Storage[J]. LWT - Food Science and Technology, 2017, 81: 1-9.
[64] 余達(dá)威. 殼聚糖涂膜對(duì)冷藏草魚(yú)片的品質(zhì)影響研究[D]. 無(wú)錫: 江南大學(xué), 2019: 65-70.
YU Da-wei. Study on Effect of Chitosan-Based Coating on the Quality of Refrigerated Grass Carp () Fillets[D]. Wuxi: Jiangnan University, 2019: 65-70.
[65] 吳雪麗. 生物保鮮劑對(duì)扇貝保鮮效果的研究及貨架期模型的建立與評(píng)價(jià)[D]. 保定: 河北農(nóng)業(yè)大學(xué), 2014: 24-46.
WU Xue-li. Study on Freshness Preservation of Biological Preservatives and Shelf-Life Model Establishment and Evaluation for Scallop[D]. Baoding: Hebei Agricultural University, 2014: 24-46.
[66] 甘暉, 米強(qiáng), 韋愷麗, 等. 殼聚糖-茶多酚復(fù)合物對(duì)冷藏南美白對(duì)蝦的微生物區(qū)系與品質(zhì)的影響[J]. 食品科學(xué), 2020, 41(23): 212-220.
GAN Hui, MI Qiang, WEI Kai-li, et al. Effect of Chitosan-Tea Polyphenols Composite on Microbiota Composition and Quality ofduring Refrigerated Storage[J]. Food Science, 2020, 41(23): 212-220.
[67] PRANOTO Y, RAKSHIT S K, SALOKHE V M. Enhancing Antimicrobial Activity of Chitosan Films by Incorporating Garlic Oil, Potassium Sorbate and Nisin[J]. LWT-Food Science and Technology, 2005, 38(8): 859-865.
[68] TOPUZ O K, YATMAZ H A, ALP A C, et al. Biogenic Amine Formation in Fish Roe in under the Effect of Drying Methods and Coating Materials[J]. Journal of Food Processing and Preservation, 2021, 45(1): e15052.
Research Progress in Packaging Technologies for Safety Control of Food Biogenic Amines
LIU Ya-nan1, LI Tian-shu1, WANG Yan-bo1, FU Ling-lin1, ZHANG De-quan2, LI Huan1
(1. School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; 2. National Risk Assessment Laboratory of Agro-Products Processing Quality and Safety under the Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China)
The work aims to investigate the research status and application progress of packaging technologies in safety control of food biogenic amines, so as to provide references for the research and development of new and efficient food biogenic amines control packaging and contribute to the implementation of the national strategy on food safety. Through the collection and analysis of relevant literature, the formation mechanism and hazard of food biogenic amines were reviewed to discuss the effectiveness and limitations of the traditional food packaging in controlling the formation of biogenic amines. Then, the new biogenic amines control packaging technologies (modified atmosphere packaging, decarboxylase enzyme inhibiting active packaging, and antibacterial packaging) and their research progress in recent years were summarized, and their future development directions were prospected. Food packaging can realize the safety control of biogenic amines, which is of great practical significance to develop a new and efficient packaging technology for safety control of biogenic amines to ensure the food safety of consumers.
food packaging; biogenic amines control; modified atmosphere packaging; enzyme inhibiting active packaging; antibacterial packaging
TS206.6
A
1001-3563(2022)15-0150-10
10.19554/j.cnki.1001-3563.2022.15.017
2022–01–26
農(nóng)業(yè)農(nóng)村部農(nóng)產(chǎn)品質(zhì)量安全收貯運(yùn)管控重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題(S2020KFKT–07)
劉亞楠(1995—),女,博士研究生,主要研究方向?yàn)槭称焚|(zhì)量與安全。
張德權(quán)(1972—),男,博士,研究員,主要研究方向?yàn)槿馄房茖W(xué)與技術(shù);李歡(1991—),女,博士,講師,主要研究方向?yàn)槭称焚A藏與保鮮技術(shù)。
責(zé)任編輯:彭颋