黃迎港,王桂英
食品流通與包裝
氣體傳感器在食品智能包裝中的應用研究進展
黃迎港,王桂英
(東北林業(yè)大學 a.工程技術學院 b.輕工技術與工程實驗室,哈爾濱 150000)
系統(tǒng)介紹氣體傳感器的種類和應用現狀,以期為氣體傳感器在不同食品智能包裝中的應用提供參考和借鑒。綜述氣體傳感器在水果、蔬菜、海鮮、肉類等智能包裝方面的應用研究進展,分析氣體傳感器在食品智能包裝中應用的局限性及其未來發(fā)展趨勢。當前消費者對食品安全和新鮮度的要求不斷提高決定了氣體傳感器的應用范圍將不斷擴大,并向安全、綠色、無污染的方向不斷發(fā)展。將氣體傳感器用于改善食品安全性和追溯性具有巨大的潛力,具有廣闊的發(fā)展前景,它能夠在食品保質期內跟蹤和監(jiān)測其新鮮度,保證食品的安全性,并有效地促進了食品包裝技術的快速發(fā)展。
食品包裝;氣體傳感器;保鮮包裝;實時監(jiān)測
智能包裝在產品的流通過程中承擔著信息傳遞、存儲和反饋的功能[1],傳感器作為智能包裝中至關重要組成部分已成為當前研究的熱點。李洪軍等[2]對智能包裝在動物源性食品質量與安全監(jiān)控中應用的研究進行了總結,但并沒有對傳感器在果蔬智能包裝中的應用進行詳細闡述。路玉鳳等[3]分析了傳感器在果蔬品質檢測上的應用,卻僅就電子鼻和圖像識別技術2個方面進行展開。廖愷芯等[4]結合果蔬檢測機理對傳感器在包裝上的應用進行研究歸納并對氣體傳感器進行了分類,但在傳感器研究的最新進展上不夠全面,因此,文中系統(tǒng)介紹氣體傳感器的種類和它在各種食品智能包裝中的應用現狀,以期為氣體傳感器在不同食品智能包裝中的應用提供參考和借鑒。
根據研究方向的不同,智能包裝技術可以分為信息型和功能控制型2種,氣體傳感器作為信息智能包裝中的一種有效載體,它能夠對包裝內環(huán)境中特定氣體敏感并發(fā)生反應,以監(jiān)測包裝內食品的新鮮度,消費者在選購商品時能夠通過包裝上氣體傳感器的變化得到產品的有效信息,以便做出正確選擇[5]。包裝材料的破損、微生物代謝等作用都會使包裝系統(tǒng)內氣體組分發(fā)生很大的變化,氣體傳感器可以通過化學或酶等反應,在標簽上發(fā)生顏色變化,從而起到監(jiān)測產品新鮮度的作用。根據所檢測氣體種類的不同,氣體傳感器可以分為二氧化碳、氧氣、揮發(fā)性含硫化合物、揮發(fā)性含氮化合物和乙烯綜合型氣體指示器等。
氣體傳感器可以通過監(jiān)測二氧化碳和氧氣含量的變化來計算果蔬的呼吸速率,或者通過監(jiān)測乙烯等氣體來分析果蔬的成熟度。它也可以通過識別魚類中產生的揮發(fā)性含氮化合物、肉制品產生的硫化氫等氣體來檢測生鮮類食品的新鮮度,目前氣體傳感器檢測產品新鮮度的機理主要分為以下2種。
1)通過將天然色素或者某種化學試劑制成可以與特定氣體反應的色素染料,染料與基材復合成指示標簽。將指示標簽置于包裝系統(tǒng)內,智能標簽和這些代謝產物進行化學反應,發(fā)生顏色改變等可視變化,起到提示作用。智能指示標簽能夠以成本低的優(yōu)勢應用于果蔬和肉類的品質監(jiān)測。
2)通過氣體傳感器可以識別包裝內的氣體組分,當氣體環(huán)境發(fā)生改變,傳感器能夠通過監(jiān)測轉換成信號反映出產品的新鮮特性,如電子鼻等設備。目前,電氣體傳感器雖然在產品新鮮度的指示領域中具有測試更準確等優(yōu)勢,但這類系統(tǒng)目前絕大多數結構很復雜,需要昂貴的儀器,大量應用在產品包裝中的成本會過高,因此暫時不適合用在銷售包裝中。
在果蔬的智能包裝系統(tǒng)中,氣體傳感器可對水果在成熟過程中釋放的各種特定氣體進行測定,從而判斷水果的成熟度等質量狀態(tài)?;跉怏w傳感器在水果新鮮度監(jiān)測方面的應用研究見表1。Mahajan等[6]開發(fā)了一種小型且靈活的基于傳感器的呼吸計,借助于呼吸計上的電化學傳感器和紅外傳感器,用于連續(xù)地測量草莓中氧氣的含量。早在2004年,新西蘭的P?P Enterprises超級市場推出了Ripe SenceTM洋梨智能包裝,當洋梨成熟后產生芳香氣體,包裝上的智能標簽由紅色變成黃色[7]。Kim等[8]開發(fā)了一種基于甲基紅的由功能油墨直接打印在紙介質上的柔性傳感器標簽,當蘋果成熟釋放出醛時,標簽顏色由黃色變成橙色,最后變成紅色。
表1 基于氣體傳感器在水果新鮮度監(jiān)測的研究
Tab.1 Research on fruit freshness monitoring based on gas sensors
電子鼻是由某種特定識別模式系統(tǒng)和氣體傳感器組成的儀器,由于電子鼻具有氣體選擇性,使得它不僅可以檢測單一氣體也可以檢測混合氣體。此外,電子鼻在監(jiān)測草莓在采后物流過程新鮮度、撞擊損傷程度等方面也得到了廣泛的研究。這些研究均表明,電子鼻技術能夠有效且智能地分析檢測水果的新鮮度。
王順[11]提出了基于視覺和嗅覺多傳感器融合技術的水果成熟度檢測系統(tǒng),將視覺系統(tǒng)獲取外觀信息和嗅覺傳感器獲取的氣味信息進行數據融合,從而準確無損地檢測水果成熟度。孫雪[12]構建了適用于葡萄冷鏈物流環(huán)境中檢測的氣體傳感器,通過測試物流冷鏈環(huán)境中CO2、O2和SO2氣體濃度來檢測葡萄的品質變化。Deng等[13]將殼聚糖、納米金顆粒等材料制成可對有機磷、甲基和硫磷農藥快速響應的生物傳感器,該傳感器能快速識別有害物質。近幾年也有很多研究者[14]通過提取天然色素制成新鮮度指示標簽對水果進行新鮮度的檢測。
由于蔬菜的呼吸作用會產生特殊性氣體使得包裝內氣氛環(huán)境發(fā)生變化,因此,可在包裝內使用可視化的指示材料來監(jiān)測生蔬的新鮮程度[15],基于氣體傳感器在蔬菜新鮮度監(jiān)測方面的應用研究見表2。Lee等[16]開發(fā)了一種以無紡布作為基材片,溴甲酚綠為變色層,低密度聚乙烯薄膜為外層固定染料的新鮮度指示器,該傳感器可有效地檢測二氧化碳的濃度變化,并能通過連接手機來讀取蔬菜的新鮮度。Chen等[17]通過在成膜液中混合甲基紅和溴百里酚藍溶液制備了辨別鮮切青椒新鮮度的智能標簽,隨著在儲存期間包裝中的二氧化碳的濃度增加,智能標簽從黃綠色變?yōu)槌壬?。Meng等[18]將使用化學染料作為指示劑,并與基材混合制備了CO2傳感器,研究發(fā)現隨著蔬菜產生CO2濃度的增加,標簽顏色發(fā)生明顯變化。
表2 基于氣體傳感器在蔬菜新鮮度監(jiān)測的研究
除了可以檢測二氧化碳氣體外,近幾年也有采用檢測硫化氣體[19]來測試蔬菜新鮮度的方法。此外電子鼻也能夠智能有效地監(jiān)測生蔬的新鮮度[20],并且氣體傳感器在蔬菜中的農藥殘留病變[21]等方面也有了部分研究,切實保障了食品的安全性。
海鮮類產品含有豐富的蛋白質,營養(yǎng)豐富,但在加工、流通和銷售過程中極易發(fā)生腐敗,因此,研究海鮮類產品新鮮度監(jiān)測技術具有廣闊的發(fā)展前景。海產品的品質變化可以通過在檢測它產生的揮發(fā)性鹽基氮(Tolal Volatile Basic Nitrogen,TVBN)的濃度來判定,隨著TVBN的含量增加會改變環(huán)境的pH值,因此,pH指示劑在海產品的包裝應用中具有巨大的潛力[22]。
3.3.1 蝦類
基于天然色素的氣體傳感器在蝦類新鮮度監(jiān)測方面的應用研究見表3。Liu等[31]通過流延法制備了一種基于姜黃素、黑枸杞花青素和κ–卡拉膠基質的智能包裝膜。在蝦的儲存過程中,隨著TVBN值的升高,包裝膜顏色由淺灰色先變藍綠色再變黃。黃佳茵等[32]以改性聚乙烯醇(Polyvinyl Alcohol, PVA)和甲基纖維素(Methyl Cellulose, MC)作為成膜基材,甲基紅和溴甲酚紫作為指示劑制備指示膜,并對南美白對蝦進行新鮮度監(jiān)測。結果表明在儲存過程中指示膜由紅褐色轉為紫褐色最終變?yōu)楹谏?/p>
除了天然色素以外,Wang等[33]使用了具有高固態(tài)發(fā)射的香豆素氫衍生物來制作了新型比色傳感器。目前,采用電子鼻技術監(jiān)測鮮蝦新鮮度的研究較少[34],部分學者將熒光物質通過共價鍵鏈接在纖維素分子鏈上來制備熒光傳感器,研究表明該類傳感器具有很高的檢測精度,能夠有效監(jiān)測海鮮的腐敗程度[35]。
3.3.2 魚類
近幾年來,具有成本低、響應快等優(yōu)點的比色陣列傳感器在食品安全領域方面具有巨大的應用潛力。張一冉[36]通過溶膠–凝膠的方法來改善氣敏材料的防水特性并與濾紙結合制備成陣列傳感器來監(jiān)測鱸魚的新鮮度,實驗發(fā)現該傳感器能夠成功識別腐敗的鱸魚從而提高食品安全性。
由于花青素的來源廣泛,易于提取且無毒無害的優(yōu)點使其作為指示劑更容易被人們所接受。一些研究人員從玫瑰茄[37]、紫薯[38]等植物中提取花青素制備指示膜應用于魚類包裝,均起到了很好的指示作用。Zhai等[39]基于玫瑰茄花青素(Roselle Anthocyanins, RACNs)和淀粉/聚乙烯醇(Starch Polyvinyl Alcohol,SPVA)開發(fā)了用于實時監(jiān)測魚肉在冷藏溫度下的新鮮度。隨著魚變質過程中會產生多種堿性揮發(fā)性胺,比色膜隨時間呈現可見的顏色變化,見圖1。目前,基于天然色素作為染料的魚肉新鮮度的氣體傳感器也得到了廣泛的應用,表4列出了相關的研究。
表3 基于天然色素的氣體傳感器在蝦類新鮮度監(jiān)測的研究
Tab.3 Research on the freshness monitoring of shrimp by gas sensors based on natural pigment
除了天然色素外,也有很多化學染料可用于制備新鮮指示劑。Aghaei等[49]使用靜電紡絲技術制備含有茜素的玉米醇溶蛋白納米纖維傳感器來監(jiān)測在4 ℃冷藏條件下虹鱒魚片的品質變化,在儲存5~9 d后傳感器變?yōu)榈仙?,?0~12 d時傳感器的顏色變?yōu)檠蠹t色?;诨瘜W染料的氣體傳感器在魚類新鮮度監(jiān)測的研究見表5。
目前人們通過對數據進行主成分分析(Principal Components Regression, PCA)和線性判別分析(Linear Discriminant Analysis, LDA),并結合揮發(fā)性鹽基氮、菌落總數和三甲胺含量的變化進行分析,可以建立一種利用電子鼻技術判別魚類新鮮度的方法。這類技術在魚肉腐敗檢測中已有了不少的研究[56]。此外,Chung等[57]開發(fā)了一種使用高頻射頻識別(High Frequency Radio Frequency Identification, HF RFID)技術的近端無電池智能傳感器標簽,該系統(tǒng)可通過測量魚的儲存溫度和H2S或NH3氣體的濃度,能夠有效監(jiān)測魚肉的腐敗過程。
圖1 比色膜在4 ℃下165 h內貯藏鰱魚過程中的相應顏色變化
表4 基于天然色素的氣體傳感器在魚類新鮮度監(jiān)測的研究
Tab.4 Research on fish freshness monitoring by gas sensors based on natural pigment
表5 基于化學染料的氣體傳感器在魚類新鮮度監(jiān)測的研究
Tab.5 Research on fish freshness monitoring by gas sensors based on chemical dyes
肉類含有豐富的優(yōu)質的蛋白質、脂肪、碳水化合物等營養(yǎng)物質,是人們日常能量攝入的主要來源之一。新鮮肉類在運輸流通的環(huán)節(jié)中容易受到微生物的作用發(fā)生腐敗變質。目前消費者更易接受在流通過程中與肉類產生的微生物代謝特征產物發(fā)生反應的氣體傳感器,該傳感器能夠準確地提供肉類產品的新鮮度信息[58]。
3.4.1 豬肉
對鮮豬肉新鮮度指標的判定,主要從感官、理化和微生物等幾個方面的變化來評價豬肉的新鮮度[59]。在國內豬肉品質的監(jiān)測中已有了很多學者以化學染料作為pH指示劑來制備新鮮度指示卡。胡云峰等[60]選用溴甲酚紫作為pH指示劑,并以棉質纖維紙為基材制備了智能指示紙,研究發(fā)現隨著豬肉腐敗過程的加劇,指示紙的顏色由淺黃色變成深紫色。此外,Chen等[61]開發(fā)了一種由瓊脂(Agar, AG)和ZnTPPS4組成的豬肉新鮮度比色指示劑,室溫(25 ℃)試驗表明,隨著TVBN濃度的升高,標簽的顏色發(fā)生顯著變化。Li等[62]開發(fā)了一種基于釕納米顆粒的H2S納米仿生傳感器,該傳感器對H2S具有特定的快速響應,能夠在線性范圍(0~1 800 nM)內現場監(jiān)測豬肉的新鮮度?;谔烊簧氐臍怏w傳感器應用于豬肉新鮮度監(jiān)測的研究見表6,將花青素作為天然pH指示劑并結合不同的基材可以制備出多種純天然有效的豬肉新鮮度指示標簽。
表6 基于天然色素的氣體傳感器在豬肉新鮮度監(jiān)測的研究
Tab.6 Research on pork freshness monitoring by gas sensors based on natural pigments
電子鼻系統(tǒng)可以對豬肉進行揮發(fā)性鹽基總氮檢測,它可以快速準確地預測出豬肉在貯藏期間的品質變化,從而監(jiān)測豬肉的新鮮度[69]。此外,Song等[70]首次使用廢棄的蔥根作為生物模板制造了SnO2微管,它在低能耗的情況下便能準確檢測高濕大氣下的H2S氣體,因此該傳感器在鮮豬肉檢測方面極具應用價值。Shi等[71]基于二氧化鈦聚苯胺/絲素纖維開發(fā)了一種新型低成本微型傳感器,該傳感器的輸出響應值與豬肉中的TVBN水平顯示出良好的相關性。
3.4.2 雞肉
基于氣體傳感器在雞肉新鮮度監(jiān)測的研究見表7。早在1995年,Otto等[72]在雞肉的包裝材料上涂覆作為指示劑的硝酸鉛乳液,指示劑會與雞肉腐敗產生的H2S發(fā)生反應,由棕色變?yōu)楹谏?。Liang等[73]使用沙蒿膠、紅甘藍花青素和羧甲基纖維素鈉制備了一種智能指示膜,該薄膜隨著NH3濃度的升高,顏色由黃綠色變?yōu)辄S色。
表7 基于氣體傳感器在雞肉新鮮度監(jiān)測的研究
Tab.7 Research on chicken freshness monitoring based on gas sensors
Koskela等[76]利用柔性印制電路板的技術,以醋酸銅印刷紙為原料,在基板上制成了一種用于監(jiān)測雞肉新鮮度的氣體傳感器。實驗證明,氣體傳感器對雞肉腐敗產生的H2S具有良好的響應。Lee等[77]開發(fā)了一種由內部聚醚嵌段酰胺、8種聚合物固定的pH染料變色層和外部聚對苯二甲酸乙二醇酯組成的比色陣列新鮮度指示器,為雞肉新鮮度的監(jiān)測提供一種低成本的方法。
3.4.3 牛肉
基于氣體傳感器在牛肉新鮮度監(jiān)測的研究見表8。Mehdizadeh等[78]以石榴皮提取物、百里香精油和殼聚糖–淀粉制備了復合膜,并探究智能膜對4 ℃下儲藏21 d牛肉貨架期的影響,發(fā)現制得的復合薄膜具備更好的抗菌和力學性能,并能夠延長牛肉的貨架期。Ezati等[79]通過在纖維素–殼聚糖膜中摻入茜素制成了比色指示膜,當牛肉腐敗時的總揮發(fā)性堿性氮(TVBN)達到臨界值時,指示膜顯示出從棕色到紫色的顏色變化。
翟曉東[81]利用熒光共振能量轉移效應,制備了具有雙發(fā)射特點的硅量子點–銀納米簇智能指示膜,在牛肉的腐敗過程中,指示膜與硫化氫和甲硫醇發(fā)生反應,顏色由紅色變成藍色。此外電子鼻技術在監(jiān)測牛肉新鮮度、分析燉煮牛肉的風味[82]、辨別摻假牛肉[83]等方面也有了部分研究。
3.4.4 羊肉
基于氣體傳感器在羊肉新鮮度監(jiān)測的研究見表9。孫武亮[84]將染料通過靜電紡絲技術制備了能夠響應羊肉新鮮度的納米纖維膜,發(fā)現其對冷鮮羊肉貯藏期間的品質有了很好的監(jiān)測。Alizadeh-sani等[85]通過將伏牛花花色苷與甲基纖維素/殼聚糖納米纖維復合膜混合制備了pH指示膜,當羊肉腐敗時,薄膜由粉色變成無色。
表8 基于氣體傳感器在牛肉新鮮度監(jiān)測的研究
Tab.8 Research on beef freshness monitoring based on gas sensors
表9 基于氣體傳感器在羊肉新鮮度監(jiān)測的研究
Tab.9 Research on mutton freshness monitoring based on gas sensors
此外王綪等[90]、張宗國等[91]將電子鼻結合頂空氣相色譜–離子遷移譜(Gas Chromatographyion Mobility Spectrometry,GC-IMS)技術對摻了鴨肉的假羊肉進行定性辨別,實驗表明電子鼻能夠準確地區(qū)分不同摻假比例的羊肉樣品,說明該技術可為摻了鴨肉的假羊肉的檢測提供良好的技術支撐。
3.5.1 泡菜
泡菜這類發(fā)酵類產品中,CO2是微生物生長過程中的主要代謝產物,因此,CO2含量的上升標志著食品新鮮度的下降[92]。Hong等[93]制備了用于指示韓國泡菜的新鮮度的pH指示薄膜,研究發(fā)現在泡菜發(fā)酵的過程中,二氧化碳濃度逐漸升高,從而使包裝內環(huán)境的酸性增強,薄膜顏色會發(fā)生明顯變化,對泡菜的品質起到了監(jiān)測的作用。Baek等[94]制備并表征了具有pH依賴性的聚醚嵌段酰胺膜型CO2指示器,其中包含了甲基紅和溴百里酚藍指示劑染料。在泡菜初始發(fā)酵階段,指示器為藍色,最佳發(fā)酵期間為黃色,發(fā)酵結束時為紅色,實現了在儲存期間對包裝內泡菜的實時監(jiān)控。
3.5.2 甜品
Nopwinyuwong等[95]通過在尼龍/線性低密度聚乙烯膜上流延并涂覆溴麝香草酚藍和甲基紅,制備用于實時監(jiān)測甜點新鮮度的指示標簽,隨著甜品中二氧化碳濃度的不斷增加,指示標簽從綠色變?yōu)槌壬ňG色表示新鮮、橙色表示變質),見圖2。邢月等[96]開發(fā)了一種基于聚乳酸、溴百里香酚藍和甲基紅的新鮮度指示卡,用于監(jiān)測饅頭、面包等面食的新鮮度。當食品發(fā)生腐敗時,指示卡由綠色變?yōu)辄S色,最終變?yōu)槌燃t色。Pisuchpen[97]研制了一種基于甲基紅和溴百里酚藍混合染料的CO2指示標簽,用來監(jiān)測和指示泰國傳統(tǒng)甜品Thong–EK的保質期。在儲存過程中隨著CO2含量的增加,指示標簽由藍色逐漸變成綠黃色、綠色,最后變成黃色。
圖2 Nopwinyuwong開發(fā)的用于實時監(jiān)測甜食新鮮度的指示標簽
3.5.3 乳類食品
在乳類食品中,乳酸菌的發(fā)酵會產生CO2,因此乳類食品的新鮮度監(jiān)測主要也是通過pH指示劑監(jiān)測包裝內的CO2的濃度來實現的。當食品腐敗過程釋放出CO2時,包裝上的pH指示劑會隨著包裝內環(huán)境pH值的降低發(fā)生明顯的顏色變化[98]?;谔烊簧氐臍怏w傳感器在牛奶新鮮度監(jiān)測的研究見表10。
表10 基于天然色素的氣體傳感器在牛奶新鮮度監(jiān)測的研究
Tab.10 Research on milk freshness monitoring by gas sensors based on natural pigments
王帥等[105]開發(fā)了一種基于無線射頻識別技術的低功率pH傳感器,該傳感器可應用于對O2和CO2氣體敏感的牛奶和肉類的包裝中,以實時監(jiān)測其新鮮度的變化。此外,具有高靈敏性和客觀性的電子鼻技術在牛奶的風味檢測[106]、安全性檢測[107]和貨架期預測[108]中均有了很多的研究應用,電子鼻技術在實現奶類制品的檢測的同時保證了奶類制品的品質。
氣體傳感器作為智能包裝的分支能夠在提高包裝智能化和信息化的同時也滿足了人們對于食品安全性的需求。目前,氣體傳感器在不同的食品上已有了廣泛的應用,它的應用與發(fā)展為產品的質量和安全提供了可靠的保障,但是對智能包裝中的活性與智能成分的毒理學的研究還不夠全面,許多應用在氣體傳感器中的化學成分較為復雜,也存在很多人工合成的物質成分,它的安全性還不能得到保證,智能包裝的高成本也阻礙了氣體傳感器的應用,因此,需要更多地去探究低成本的天然物質應用于氣體傳感器的可行性,以發(fā)揮氣體傳感器在改善食品安全性和可追溯性的巨大潛力,推動該項智能技術的發(fā)展,使智能包裝技術具有更廣闊的前景。
[1] 王志偉. 智能包裝技術及應用[J]. 包裝學報, 2018, 10(1): 27-33.
WANG Zhi-wei. Intelligent Packaging Technology and Its Application[J]. Packaging Journal, 2018, 10(1): 27-33.
[2] 李洪軍, 王俊鵬, 賀稚非, 等. 智能包裝在動物源性食品質量與安全監(jiān)控中應用的研究進展[J]. 食品與發(fā)酵工業(yè), 2019, 45(21): 272-279.
LI Hong-jun, WANG Jun-peng, HE Zhi-fei, et al. Research Progress on Intelligent Packaging in Quality and Safety Monitoring of Animal Derived Food Products[J]. Food and Fermentation Industries, 2019, 45(21): 272-279.
[3] 路玉鳳, 閆娟, 茅健, 等. 基于傳感器的果蔬品質檢測研究[J]. 物流科技, 2021, 44(4): 38-41.
LU Yu-feng, YAN Juan, MAO Jian, et al. Research on Sensor-Based Quality Detection of Fruits and Vegetables[J]. Logistics Sci-Tech, 2021, 44(4): 38-41.
[4] 廖愷芯, 夏宇軒, 王軍. 果蔬可視化新鮮度檢測智能包裝研究進展[J]. 湖南包裝, 2021, 36(2): 35-37.
LIAO Kai-xin, XIA Yu-xuan, WANG Jun. Research Progress of Intelligent Packaging for Visual Freshness Detection of Fruits and Vegetables[J]. Hunan Packaging, 2021, 36(2): 35-37.
[5] 廖雨瑤, 陳丹青, 李偉, 等. 智能包裝研究及應用進展[J]. 綠色包裝, 2016(2): 39-46.
LIAO Yu-yao, CHEN Dan-qing, LI Wei, et al. Intelligent Packaging Research and Application Progress[J]. Green Packaging, 2016(2): 39-46.
[6] MAHAJAN P V, LUCA A, EDELENBOS M. Development of a Small and Flexible Sensor-Based Respirometer for Real-Time Determination of Respiration Rate, Respiratory Quotient and Low O2Limit of Fresh Produce[J]. Computers and Electronics in Agriculture, 2016, 121: 347-353.
[7] 許文才, 付亞波, 李東立, 等. 食品活性包裝與智能標簽的研究及應用進展[J]. 包裝工程, 2015, 36(5): 1-10.
XU Wen-cai, FU Ya-bo, LI Dong-li, et al. Research and Application Progress of Food Active Packaging and Smart Labels[J]. Packaging Engineering, 2015, 36(5): 1-10.
[8] KIM Y H, YANG Y J, KIM J S, et al. Non-Destructive Monitoring of Apple Ripeness Using an Aldehyde Sensitive Colorimetric Sensor[J]. Food Chemistry, 2018, 267: 149-156.
[9] LIU Q, ZHAO N, ZHOU D, et al. Discrimination and Growth Tracking of Fungi Contamination in Peaches Using Electronic Nose[J]. Food Chemistry, 2018, 262: 226-234.
[10] 張雨辰. 基于揮發(fā)物無損測量技術的草莓新鮮度及機械傷快速檢測研究[D]. 杭州: 浙江大學, 2020: 10-23.
ZHANG Yu-chen. Rapid Determination of Freshness and Mechanical Damage of Strawberry Based on Nondestructive Volatile Compound Detection Techniques[D]. Hangzhou: Zhejiang University, 2020: 10-23.
[11] 王順. 水果成熟度檢測的機器視覺和嗅覺可視化技術研究[D]. 鎮(zhèn)江: 江蘇大學, 2018: 23-40.
WANG Shun. Study on the Machine Vision and Olfactory Visualization for Fruit Maturity Detecting[D]. Zhenjiang: Jiangsu University, 2018: 23-40.
[12] 孫雪. 基于傳感器陣列的鮮食葡萄冷鏈微環(huán)境氣體檢測方法研究[D]. 煙臺: 山東工商學院, 2018: 6-15.
SUN Xue. Researches on Micro-Environment Gas Detection Method of Fresh Grape Cold Chain Based on Sensor Array[D]. Yantai: Shandong Institute of Business and Technology, 2018: 6-15.
[13] DENG Y, LIU K, LIU Y, et al. An Novel Acetylcholinesterase Biosensor Based on Nano-Porous Pseudo Carbon Paste Electrode Modified with Gold Nanoparticles for Detection of Methyl Parathion[J]. Journal of Nanoscience &Nanotechnology, 2016, 16(9): 9460-9467.
[14] 馮剛. 藍莓智能包裝新鮮度指示劑研究[D]. 哈爾濱: 東北林業(yè)大學, 2019: 16-55.
FENG Gang. Blueberry Intelligent Packaging Freshness Indicator Research[D]. Harbin: Northeast Forestry University, 2019: 16-55.
[15] 高琳, 易凱, 蔡鋒, 等. 可視化智能包裝在減少食物浪費中的應用[J]. 包裝工程, 2020, 41(7): 125-133.
GAO Lin, YI Kai, CAI Feng, et al. Application of Visible Intelligent Packaging in Reducing Food Waste[J]. Packaging Engineering, 2020, 41(7): 125-133.
[16] LEE S, JUNG S, LEE S. Air-Activation of Printed Time-Temperature Integrator: A Sandwich Package Case Study[J]. Food Control, 2019, 101(1): 89-96.
[17] CHEN Hui-zhi, ZHANG Min, BHANDARI B, et al. Applicability of a Colorimetric Indicator Label for Monitoring Freshness of Fresh-Cut Green Bell Pepper[J]. Postharvest Biology and Technology, 2018, 140: 85-92.
[18] MENG Xiang-peng, LEE K, KANG T Y, et al. An Irreversible Ripeness Indicator to Monitor the CO2Concentration in the Headspace of Packaged Kimchi during Storage[J]. Food Science and Biotechnology, 2015, 24(1): 91-97.
[19] SACHDEV D, KUMAR V, MAHESHWARI P H, et al. Silver Based Nanomaterial, as a Selective Colorimetric Sensor for Visual Detection of Post Harvest Spoilage in Onion[J]. Sensors & Actuators: B Chemical, 2016, 228: 471-479.
[20] 王敏, 高凡, 張鈞煜, 等. 基于智能電子鼻的冰箱冷藏食品新鮮度原位檢測技術[J]. 傳感技術學報, 2019, 32(2): 161-166.
WANG Min, GAO Fan, ZHANG Jun-yu, et al. In-Situ Refrigerator Food Freshness Detection Based on Smart Electronic Nose[J]. Chinese Journal of Sensors and Actuators, 2019, 32(2): 161-166.
[21] GARCíA-TOJAL J, CUEVAS J V, ROJO M J, et al. Synthesis of Fluorogenic Arylureas and Amides and Their Interaction with Amines: A Competition between Turn-on Fluorescence and Organic Radicals on the Way to a Smart Label for Fish Freshness[J]. Molecules (Basel, Switzerland), 2021, 26(5): 1404.
[22] LIU Jing-rong, WANG Hua-lin, GUO Min, et al. Extract from Lycium Ruthenicum Murr. Incorporating Κ-Carrageenan Colorimetric Film with a Wide PH-Sensing Range for Food Freshness Monitoring[J]. Food Hydrocolloids, 2019, 94: 1-10.
[23] CHAYAVANICH K, THIRAPHIBUNDET P, IMYIM A. Biocompatible Film Sensors Containing Red Radish Extract for Meat Spoilage Observation[J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2020, 226: 117601.
[24] ZHANG K, HUANG T S, YAN H, et al. Novel PH-Sensitive Films Based on Starch/Polyvinyl Alcohol and Food Anthocyanins as a Visual Indicator of Shrimp Deterioration[J]. International Journal of Biological Macromolecules, 2020, 145: 768-776.
[25] MERZ B, CAPELLO C, LEANDRO G C, et al. A Novel Colorimetric Indicator Film Based on Chitosan, Polyvinyl Alcohol and Anthocyanins from Jambolan (Syzygium Cumini) Fruit for Monitoring Shrimp Freshness[J]. International Journal of Biological Macromolecules, 2020, 153: 625-632.
[26] WU L T, TSAI I L, HO Y C, et al. Active and Intelligent Gellan Gum-Based Packaging Films for Controlling Anthocyanins Release and Monitoring Food Freshness[J]. Carbohydrate Polymers, 2021, 254: 117410.
[27] MOHAMMADALINEJHAD S, ALMASI H, MORADI M. Immobilization of Echium Amoenum Anthocyanins into Bacterial Cellulose Film: A Novel Colorimetric pH Indicator for Freshness/Spoilage Monitoring of Shrimp[J]. Food Control, 2020, 113: 107169.
[28] EZATI P, RHIM J W. PH-Responsive Pectin-Based Multifunctional Films Incorporated with Curcumin and Sulfur Nanoparticles[J]. Carbohydrate Polymers, 2020, 230: 115638.
[29] QIN Yan, LIU Yun-peng, ZHANG Xin, et al. Development of Active and Intelligent Packaging by Incorporating Betalains from Red Pitaya (Hylocereus Polyrhizus) Peel into Starch/Polyvinyl Alcohol Films[J]. Food Hydrocolloids, 2020, 100: 105410.
[30] JASIM Z, GIORGIO M, MATTEO B, et al. Porous pH natural indicators for acidic and basic vapor sensing[J]. Chemical Engineering Journal, 2021, 403(1): 126373.
[31] LIU Jing-rong, WANG Hua-lin, WANG Peng-fei, et al. Films Based on Κ-Carrageenan Incorporated with Curcumin for Freshness Monitoring[J]. Food Hydrocolloids, 2018, 83: 134-142.
[32] 黃佳茵, 周雅琪, 陳美玉, 等. 基于甲基纖維素改性聚乙烯醇指示膜的制備、表征及對南美白對蝦的鮮度指示[J]. 食品科學, 2021, 42(3): 194-203.
HUANG Jia-yin, ZHOU Ya-qi, CHEN Mei-yu, et al. Preparation and Characterization of Indicator Films Based on Polyvinyl Alcohol Modified by Methyl Cellulose and PH-Sensitive Dyes for Shrimp Freshness Monitoring[J]. Food Science, 2021, 42(3): 194-203.
[33] WANG Chen-xia, YU Zian, ZHAO Xiao-wei, et al. Rapid Response to Amine Vapor Based on Fluorescent Light-Up Sensor for Real-Time and Visual Detection of Crawfish and Fish Freshness[J]. Dyes and Pigments, 2021, 189(1): 109228.
[34] 王曉龍, 馬華威, 譚日健, 等. 電子鼻-主成分分析-線性回歸擬合法檢測江平蝦冷藏過程中的新鮮度[J]. 肉類研究, 2017, 31(6): 40-44.
WANG Xiao-long, MA Hua-wei, TAN Ri-jian, et al. Rapid Detection of the Freshness of Jiangping Shrimp by Electronic Nose, Principal Component Analysis and Linear Regression Fitting Model[J]. Meat Research, 2017, 31(6): 40-44.
[35] QUAN Zong-yan, HE Hui, ZHOU Hang, et al. Designing an Intelligent Nanofiber Ratiometric Fluorescent Sensor Sensitive to Biogenic Amines for Detecting the Freshness of Shrimp and Pork[J]. Sensors and Actuators: B Chemical, 2021, 333: 129535.
[36] 張一冉. 基于氣敏傳感的魚肉新鮮度指示卡紙的制備[D]. 無錫: 江南大學, 2020: 23-54.
ZHANG Yi-ran. Preparation of Paper Indicator Card of Fish Freshness Based on Gas Sensors[D]. Wuxi: Jiangnan University, 2020: 23-54.
[37] 盧立新, 賈代濤, 潘嘹. 基于改性玫瑰茄花青素的新鮮度指示膜研制及其在鯧魚包裝中的應用[J]. 包裝工程, 2020, 41(3): 1-6.
LU Li-xin, JIA Dai-tao, PAN Liao. Development of Freshness Indicator Film Based on Modified Roselle Anthocyanin and Its Application in Catfish Packaging[J]. Packaging Engineering, 2020, 41(3): 1-6.
[38] JIANG G, HOU X, ZENG X, et al. Preparation and Characterization of Indicator Films from Carboxymethyl- Cellulose/Starch and Purple Sweet Potato (Ipomoea Batatas (L.) Lam) Anthocyanins for Monitoring Fish Freshness[J]. International Journal of Biological Macromolecules, 2020, 143: 359-372.
[39] ZHAI Xiao-dong, SHI Ji-yong, ZOU Xiao-bo, et al. Novel Colorimetric Films Based on Starch/Polyvinyl Alcohol Incorporated with Roselle Anthocyanins for Fish Freshness Monitoring[J]. Food Hydrocolloids, 2017, 69: 308-317.
[40] KANATT S R. Development of Active/Intelligent Food Packaging Film Containing Amaranthus Leaf Extract for Shelf Life Extension of Chicken/Fish during Chilled Storage[J]. Food Packaging and Shelf Life, 2020, 24: 100506.
[41] SANI M A, TAVASSOLI M, HAMISHEHKAR H, et al. Carbohydrate-Based Films Containing PH-Sensitive Red Barberry Anthocyanins: Application as Biodegradable Smart Food Packaging Materials[J]. Carbohydrate Polymers, 2021, 255: 117488.
[42] CHEN Hui-zhi, ZHANG Min, BHANDARI B, et al. Novel PH-Sensitive Films Containing Curcumin and Anthocyanins to Monitor Fish Freshness[J]. Food Hydrocolloids, 2020, 100: 105438.
[43] LI Y, WU K, WANG B, et al. Colorimetric Indicator Based on Purple Tomato Anthocyanins and Chitosan for Application in Intelligent Packaging[J]. International Journal of Biological Macromolecules, 2021, 174: 370-376.
[44] ZHAI Xiao-dong, ZOU Xiao-bo, SHI Ji-yong, et al. Amine-Responsive Bilayer Films with Improved Illumination Stability and Electrochemical Writing Property for Visual Monitoring of Meat Spoilage[J]. Sensors and Actuators: B Chemical, 2020, 302: 127130.
[45] WANG Hong-xia, LI Bing, DING Fu-yuan, et al. Improvement of Properties of Smart Ink via Chitin Nanofiber and Application as Freshness Indicator[J]. Progress in Organic Coatings, 2020, 149: 105921.
[46] EZATI P, BANG Y J, RHIM J W. Preparation of a Shikonin-Based PH-Sensitive Color Indicator for Monitoring the Freshness of Fish and Pork[J]. Food Chemistry, 2021, 337: 127995.
[47] YAN Jia-tong, CUI Rui, QIN Yu-yue, et al. A pH Indicator Film Based on Chitosan and Butterfly Pudding Extract for Monitoring Fish Freshness[J]. International Journal of Biological Macromolecules, 2021, 177: 328-336.
[48] GE Yu-jun, LI Yuan, BAI Yan, et al. Intelligent Gelatin/Oxidized Chitin Nanocrystals Nanocomposite Films Containing Black Rice Bran Anthocyanins for Fish Freshness Monitorings[J]. International Journal of Biological Macromolecules, 2020, 155: 1296-1306.
[49] AGHAEI Z, GHORANI B, EMADZADEH B, et al. Protein-Based Halochromic Electrospun Nanosensor for Monitoring Trout Fish Freshness[J]. Food Control, 2020, 111: 107065.
[50] 王佳燕, 劉秀英, 李學鵬, 等. 雙重指示標簽對鯉魚新鮮度的實時監(jiān)測[J]. 食品工業(yè)科技, 2020, 41(12): 197-200.
WANG Jia-yan, LIU Xiu-ying, LI Xue-peng, et al. On-Package Dual Indicating Label for Real-Time Monitoring the Freshness of Cyprinus Carpio[J]. Science and Technology of Food Industry, 2020, 41(12): 197-200.
[51] EZATI P, TAJIK H, MORADI M, et al. Intelligent PH-Sensitive Indicator Based on Starch-Cellulose and Alizarin Dye to Track Freshness of Rainbow Trout Fillet[J]. International Journal of Biological Macromolecules, 2019, 132: 157-165.
[52] LIU Xiu-ying, WANG Yu, ZHU Li-jie, et al. Dual-Mode Smart Packaging Based on Tetraphenylethylene-
Functionalized Polyaniline Sensing Label for Monitoring the Freshness of Fish[J]. Sensors and Actuators: B Chemical, 2020, 323: 128694.
[53] LIU X, CHEN K, WANG J, et al. An On-Package Colorimetric Sensing Label Based on a Sol-Gel Matrix for Fish Freshness Monitoring[J]. Food Chem, 2020, 307: 125580.
[54] DOMíNGUEZ-ARAGóN A, OLMEDO-MARTíNEZ J A, ZARAGOZA-CONTRERAS E A. Colorimetric Sensor Based on a Poly(Ortho -Phenylenediamine- Co -Aniline) Copolymer for the Monitoring of Tilapia (Orechromis Niloticus) Freshness[J]. Sensors & Actuators: B Chemical, 2018, 259: 170-176.
[55] WELLS N, YUSUFU D, MILLS A. Colourimetric Plastic Film Indicator for the Detection of the Volatile Basic Nitrogen Compounds Associated with Fish Spoilage[J]. Talanta, 2019, 194: 830-836.
[56] LUO Qian, ZHANG Ya-qin, ZHOU Yan, et al. Portable Functional Hydrogels Based on Silver Metallization for Visual Monitoring of Fish Freshness[J]. Food Control, 2021, 123: 107824.
[57] CHUNG W Y, LE G T, TRAN T V, et al. Novel Proximal Fish Freshness Monitoring Using Batteryless Smart Sensor Tag[J]. Sensors & Actuators: B Chemical, 2017, 248: 910-916.
[58] 王芳, 陳滿儒, 趙郁聰, 等. 冷鮮肉新鮮度指示標簽的研究及應用進展[J]. 包裝工程, 2020, 41(5): 83-90.
WANG Fang, CHEN Man-ru, ZHAO Yu-cong, et al. Progress in Study and Application of Chilled Meat Freshness Indicator[J]. Packaging Engineering, 2020, 41(5): 83-90.
[59] 王樹慶, 范維江, 郭風軍. 冷鮮豬肉新鮮度檢測的特征性化合物[J]. 食品工業(yè), 2015, 36(11): 40-42.
WANG Shu-qing, FAN Wei-jiang, GUO Feng-jun. The Characteristic Compounds of Freshness of Chilled Pork[J]. The Food Industry, 2015, 36(11): 40-42.
[60] 胡云峰, 王雅迪, 唐裕軒. pH敏感型指示紙的制備及在豬肉品質檢測中的應用[J]. 包裝工程, 2019, 40(1): 49-56.
HU Yun-feng, WANG Ya-di, TANG Yu-xuan. Preparation of pH Sensitive Indicator Paper and Its Application in Pork Quality Detection[J]. Packaging Engineering, 2019, 40(1): 49-56.
[61] CHEN L, CHEN L, HU X, et al. A Novel Colorimetric Label Based on ZnTPPS4/AG Indicating Pork Freshness[J]. Journal of Porphyrins and Phthalocyanines, 2021, 25(3): 181-187.
[62] LI H, GENG W, SUN X, et al. Fabricating a Nano-Bionic Sensor for Rapid Detection of H2S during Pork Spoilage Using Ru NPs Modulated Catalytic Hydrogenation Conversion[J]. Meat Science, 2021, 177: 108507.
[63] 王芳. 基于花青素的豬肉新鮮度智能指示包裝膜的制備與研究[D]. 西安: 陜西科技大學, 2020: 12-45.
WANG Fang. Preparation and Exploration of Intelligent Indication Packaging Film for Anthocyanin-Based Pork Freshness[D]. Xi'an: Shaanxi University of Science & Technology, 2020: 12-45.
[64] LIU D, CUI Z, SHANG M, et al. A Colorimetric Film Based on Polyvinyl Alcohol/Sodium Carboxymethyl Cellulose Incorporated with Red Cabbage Anthocyanin for Monitoring Pork Freshness[J]. Food Packaging and Shelf Life, 2021, 28(4): 100641.
[65] QIN Y, LIU Y, YONG H, et al. Preparation and Characterization of Active and Intelligent Packaging Films Based on Cassava Starch and Anthocyanins from Lycium Ruthenicum Murr[J]. Int J Biol Macromol, 2019, 134: 80-90.
[66] CHI Wen-rui, CAO Le-le, SUN Guo-hou, et al. Developing a Highly pH-Sensitive ?-Carrageenan-Based Intelligent Film Incorporating Grape Skin Powder Via a Cleaner Process[J]. Journal of Cleaner Production, 2020, 244(1): 118862.
[67] ZHANG C, SUN G, LI J, et al. A Green Strategy for Maintaining Intelligent Response and Improving Antioxidant Properties of Κ-Carrageenan-Based Film via Cork Bark Extractive Addition[J]. Food Hydrocolloids, 2021, 113(9): 106470.
[68] 曹樂樂. 具有可視pH感應功能決明子膠基膜的制備與性能研究[D]. 哈爾濱: 東北林業(yè)大學, 2020: 10-37.
CAO Le-le. Study on the Preparation and Properties of Cassia Gum Based Films with Visual-pH Sensing Function[D]. Harbin: Northeast Forestry University, 2020: 10-37.
[69] 蒙萬隆, 鄭麗敏, 楊璐, 等. 電子鼻技術對豬肉揮發(fā)性鹽基氮的預測研究[J]. 食品工業(yè)科技, 2018, 39(7): 243-248.
MENG Wan-long, ZHENG Li-min, YANG Lu, et al. Research on Prediction of the Total Volatile Basic Nitrogen in Pork by Electronic Nose Technique[J]. Science and Technology of Food Industry, 2018, 39(7): 243-248.
[70] SONG Bao-yu, ZHANG Meng, TENG Yang, et al. Highly Selective PPB-Level H2S Sensor for Spendable Detection of Exhaled Biomarker and Pork Freshness at Low Temperature: Mesoporous SnO2Hierarchical Architectures Derived from Waste Scallion Root[J]. Sensors and Actuators: B. Chemical, 2020, 307(7): 127662.
[71] SHI Y, LI Z, SHI J, et al. Titanium Dioxide-Polyaniline/Silk Fibroin Microfiber Sensor for Pork Freshness Evaluation[J]. Sensors & Actuators: B. Chemical, 2018, 260(1): 465-474.
[72] OTTO S W, HELMUT L. Method for Quality Controlof Packaged Organic Substances and Packaging Material for Use with This Method: US, 5407829[P]. 1995-04-18.
[73] LIANG T, SUN G, CAO L, et al. Film Based on Artemisia Sphaerocephala Krasch. Gum and Red Cabbage Anthocyanins Anchored by Carboxymethyl Cellulose Sodium Added as a Host Complex[J]. Food Hydrocolloids, 2019, 87(2): 858-868.
[74] ZHAI Xiao-dong, LI Zhi-hua, SHI Ji-yong, et al. A Colorimetric Hydrogen Sulfide Sensor Based on Gellan Gum-Silver Nanoparticles Bionanocomposite for Monitoring of Meat Spoilage in Intelligent Packaging[J]. Food Chem, 2019, 290: 135-143.
[75] KIM D, LEE S, LEE K, et al. Development of a pH Indicator Composed of High Moisture-Absorbing Materials for Real-Time Monitoring of Chicken Breast Freshness[J]. Food Science and Biotechnology, 2017, 26(1): 37-42.
[76] KOSKELA J, SARFRAZ J, IHALAINEN P, et al. Monitoring the Quality of Raw Poultry by Detecting Hydrogen Sulfide with Printed Sensors[J]. Sensors and Actuators B: Chemical, 2015, 218(6): 89-96.
[77] LEE K, PARK H, BAEK S, et al. Colorimetric Array Freshness Indicator and Digital Color Processing for Monitoring the Freshness of Packaged Chicken Breast[J]. Food Packaging and Shelf Life, 2019, 22(7): 100408.
[78] MEHDIZADEH T, TAJIK H, LANGROODI A M, et al. Chitosan-Starch Film Containing Pomegranate Peel Extract and Thymus Kotschyanus Essential Oil can Prolong the Shelf Life of Beef[J]. Meat Science, 2020, 163: 108073.
[79] EZATI P, TAJIK H, MORADI M. Fabrication and Characterization of Alizarin Colorimetric Indicator Based on Cellulose-Chitosan to Monitor the Freshness of Minced Beef[J]. Sensors & Actuators: B Chemical, 2019, 285: 519-528.
[80] KUSWANDI B, NURFAWAIDI A. On-Package Dual Sensors Label Based on pH Indicators for Real-Time Monitoring of Beef Freshness[J]. Food Control, 2017, 82: 91-100.
[81] 翟曉東. 基于比色型智能指示標簽的典型冷鮮肉新鮮度實時監(jiān)測研究[D]. 鎮(zhèn)江: 江蘇大學, 2020: 13-42.
ZHAI Xiao-dong. Real-Time Monitoring of Typical Chilled Meat and Freshness Based on Colorimetric Intelligent Indicator Label[D]. Zhenjiang: Jiangsu University, 2020: 13-42.
[82] 王偉靜, 張松山, 謝鵬, 等. 電子鼻和電子舌快速檢測燉制下牛肉的品質[J]. 食品研究與開發(fā), 2017, 38(17): 124-128.
WANG Wei-jing, ZHANG Song-shan, XIE Peng, et al. Quick Detection of the Quality of Wtewed Beef Using E-Nose and E-Tongue[J]. Food Research and Development, 2017, 38(17): 124-128.
[83] 張申. 電子鼻基于數據處理方法對摻假牛肉檢測研究[D]. 咸陽: 西北農林科技大學, 2016: 24-53.
ZHANG Shen. Rapid Identification Adulteration Beef by Electronic Nose Based on Data Processing Methods[D]. Xianyang: Northwest Sci-Tech University of Agriculture and Forestry, 2016: 24-53.
[84] 孫武亮. 花青素基納米纖維標簽的制備及可視化監(jiān)測羊肉新鮮度[D]. 呼和浩特: 內蒙古農業(yè)大學, 2020: 12-42.
SUN Wu-liang. Preparation of Anthocyanin-Based Nanofiber Tags and Usage in Visualized Testing in Freshness of Lamb[D]. Hohhot: Inner Mongolia Agricultural University, 2020: 12-42.
[85] ALIZADEH-SANI M, TAVASSOLI M, MOHAMMADIAN E, et al. PH-Responsive Color Indicator Films Based on Methylcellulose/Chitosan Nanofiber and Barberry Anthocyanins for Real-Time Monitoring of Meat Freshness[J]. International Journal of Biological Macromolecules, 2021, 166: 741-750.
[86] PRIETTO L, MIRAPALHETE T C, PINTO V Z, et al. PH-Sensitive Films Containing Anthocyanins Extracted from Black Bean Seed Coat and Red Cabbage[J]. LWT-Food Science and Technology, 2017, 80: 492-500.
[87] KUREK M, GAROFULI? I E, BAKI? M T, et al. Development and Evaluation of a Novel Antioxidant and pH Indicator Film Based on Chitosan and Food Waste Sources of Antioxidants[J]. Food Hydrocolloids, 2018, 84: 238-246.
[88] 郭素娟, 盧士玲, 李開雄, 等. 基于TTI的冷鮮羊肉新鮮度研究[J]. 食品工業(yè)科技, 2014, 35(13): 112-116.
GUO Su-juan, LU Shi-ling, LI Kai-xiong, et al. Study of Freshness of Chilled Mutton Based on of the Temperature-Time Indication System[J]. Science and Technology of Food Industry, 2014, 35(13): 112-116.
[89] 劉靜靜, 李志剛, 張旭, 等. 基于聚類–RBF神經網絡的家庭冷藏羊肉新鮮度的評價方法[J]. 石河子大學學報(自然科學版), 2020, 38(4): 403-408.
LIU Jing-jing, LI Zhi-gang, ZHANG Xu, et al. Freshness Evaluation of Home Refrigerated Lamb Based on Clustering-Rbf Neural Network[J]. Journal of Shihezi University (Natural Science), 2020, 38(4): 403-408.
[90] 王綪, 李璐, 王佳奕, 等. 電子鼻結合氣相色譜-質譜法對寧夏小尾寒羊肉中鴨肉摻假的快速檢測[J]. 食品科學, 2017, 38(20): 222-228.
WANG Qian, LI Lu, WANG Jia-yi, et al. Rapid Detection of Ningxia Small-Tailed Han Sheep Meat Adulterated with Duck by Electronic Nose Combined with GC-MS[J]. Food Science, 2017, 38(20): 222-228.
[91] 張宗國, 陳東杰, 孟一, 等. 基于頂空氣相色譜-離子遷移譜與電子鼻技術快速檢測寧夏灘羊肉中摻假鴨肉[J]. 肉類研究, 2020, 34(12): 43-48.
ZHANG Zong-guo, CHEN Dong-jie, MENG Yi, et al. Rapid Detection of Ningxia Tan Sheep Meat Adulteration with Duck Meat Using Gas Chromatography-Ion Mobility Spectrometry and Electronic Nose[J]. Meat Research, 2020, 34(12): 43-48.
[92] 李洋, 馮剛, 王磊明, 等. 新鮮度指示型智能包裝的研究進展[J]. 現代食品科技, 2018, 34(4): 287-293.
LI Yang, FENG Gang, WANG Lei-ming, et al. Review: Freshness Indicator Intelligent Packaging[J]. Modern Food Science and Technology, 2018, 34(4): 287-293.
[93] HONG Si, PARK W. Use of Color Indicators as an Active Packaging System for Evaluating Kimchi Fermentation[J]. Journal of Food Engineering, 2000, 46(3): 67-72.
[94] BAEK S, MARUTHUPANDY M, LEE K, et al. Freshness Indicator for Monitoring Changes in Quality of Packaged Kimchi during Storage[J]. Food Packaging and Shelf Life, 2020, 25: 100528.
[95] NOPWINYUWONG A, TREVANICH S, SUPPAKUL P. Development of a Novel Colorimetric Indicator Label for Monitoring Freshness of Intermediate-Moisture Dessert Spoilage[J]. Talanta, 2010, 81(3):1126-1132.
[96] 邢月. 以CO2為特征氣體的新鮮度比色指示卡的研究[D]. 天津: 天津科技大學, 2015: 16-34.
XING Yue. Study on Freshness Colorimetric Indicates Cards of Characterized Gas by CO2[D]. Tianjin: Tianjin University of Science & Technology, 2015: 16-34.
[97] PISUCHPEN S. Development of Color Indicator Tag for Monitoring Freshness of intermediate-Moisture Dessert[J]. Italian Journal of Food Science, 2012, 24(4): 178-182.
[98] 李田田, 李洋, 王磊明. 智能包裝指示器在食品工業(yè)中的研究進展[J]. 食品研究與開發(fā), 2019, 40(15): 190-199.
LI Tian-tian, LI Yang, WANG Lei-ming. Research Progress of Intelligent Packaging Indicators in Food Industry[J]. Food Research and Development, 2019, 40(15): 190-199.
[99] YONG Hui-min, WANG Xing-chi, ZHANG Xin, et al. Effects of Anthocyanin-Rich Purple and Black Eggplant Extracts on the Physical, Antioxidant and PH-Sensitive Properties of Chitosan Film[J]. Food Hydrocolloids, 2019, 94: 93-104.
[100]MA Qian-yun, WANG Li-juan. Preparation of a Visual PH-Sensing Film Based on Tara Gum Incorporating Cellulose and Extracts from Grape Skins[J]. Sensors & Actuators: B Chemical, 2016, 235: 401-407.
[101]WESTON M, PHAN M A T, ARCOT J, et al. Anthocyanin-Based Sensors Derived from Food Waste as an Active Use-by Date Indicator for Milk[J]. Food Chemistry, 2020, 326: 127017.
[102]LUCHESE C L, GARRIDO T, SPADA J C, et al. Development and Characterization of Cassava Starch Films Incorporated with Blueberry Pomace[J]. International Journal of Biological Macromolecules, 2018, 106: 834-839.
[103]EBRAHIMI TIRTASHI F, MORADI M, et al. Cellulose/Chitosan PH-Responsive Indicator Incorporated with Carrot Anthocyanins for Intelligent Food Packaging[J]. International Journal of Biological Macromolecules, 2019, 136: 920-926.
[104]PAKEEZA M, MUHAMMAD B K, ZAIB J, et al. PVA/Starch/Propolis/Anthocyanins Rosemary Extract Composite Films as Active and Intelligent Food Packaging Materials[J]. Journal of Food Safety, 2019, 40(1): 12725.
[105]王帥, 呂玉祥. 面向食品質量檢測的低功耗射頻pH傳感器設計[J]. 傳感技術學報, 2017, 30(6): 956-961.
WANG Shuai, LYU Yu-xiang. Design of a Low-Power Radio Frequency pH Sensor for Food Quality Monitoring[J]. Chinese Journal of Sensors and Actuators, 2017, 30(6): 956-961.
[106]宋慧敏, 蘆晶, 呂加平, 等. 基于電子鼻和電子舌對牛奶加熱程度及風味變化的評價[J]. 中國乳品工業(yè), 2016, 44(2): 12-15.
SONG Hui-min, LU Jing, LYU Jia-ping, et al. Evaluation of the Degree of Heating Milk and Flavor Changes Using Electronic Nose and Electronic Tongue[J]. China Dairy Industry, 2016, 44(2): 12-15.
[107]馬利杰, 劉占東, 楊春杰, 等. 電子鼻對原料羊乳中摻假過期復原乳的檢測[J]. 乳業(yè)科學與技術, 2014, 37(5): 17-20.
MA Li-jie, LIU Zhan-dong, YANG Chun-jie, et al. Rapid Detection of Raw Goat Milk Adulterated with Expired Reconstituted Milk Using Electronic Nose[J]. Journal of Dairy Science and Technology, 2014, 37(5): 17-20.
[108]張虹艷, 丁武. 電子鼻對不同溫度下生鮮羊奶貯藏時間的判定[J]. 食品科學, 2011, 32(16): 257-260.
ZHANG Hong-yan, DING Wu. Discrimination of Storage Time and Volatile Compositions of Raw Goat Milk by Electronic Nose[J]. Food Science, 2011, 32(16): 257-260.
Research Progress of Gas Sensors in Smart Food Packaging
HUANG Ying-gang, WANG Gui-ying
(a. College of Engineering and Technology b. Light Industry Technology and Engineering Laboratory,Northeast Forestry University, Harbin 150000, China)
The work aims to sysmetaically introduce the type and application status of gas sensors, so as to provide experience and reference for the application of gas sensors in different smart food packaging. The application research progress of gas sensors in smart packaging of fruits, vegetables, seafood, meat, etc. was reviewed and the limitations of the application of gas sensors in smart food packaging and the future development trends were analyzed. The current consumers’ increasing requirements for food safety and freshness determined the wide application of gas sensors and made them continue to develop in a safe, green, and pollution-free direction. The application of gas sensors in improving food safety and traceability has great potential and broad development prospects. The gas sensors can track and monitor the freshness of food during the shelf life, ensure food safety, and effectively promote the development of food packaging technology.
food packaging; gas sensors; fresh-keeping packaging; real-time monitoring
TS206
A
1001-3563(2022)15-0137-13
10.19554/j.cnki.1001-3563.2022.15.016
2021–12–29
國家自然科學基金面上項目(32071685);黑龍江省自然科學基金資助項目(LH2019E001);黑龍江省自然科學基金聯(lián)合引導項目(LH2019C002)
黃迎港(1997—),女,東北林業(yè)大學碩士生,主攻智能包裝材料成型技術。
王桂英(1968—),女,博士,東北林業(yè)大學副教授,主要研究方向為輕工技術裝備及自動化、智能包裝技術。
責任編輯:曾鈺嬋