張 帥,李慶生
(南京工業(yè)大學(xué)機械與動力工程學(xué)院,南京 211816)
矩形箱體在化工、能源、電力及環(huán)保等領(lǐng)域得到廣泛應(yīng)用。在工業(yè)生產(chǎn)中,由于矩形箱體制造簡單,空間利用率高,故常使用矩形箱體盛裝液體工質(zhì),在箱體設(shè)計時,應(yīng)考慮到矩形箱體體積大,壁面承受液柱靜壓力的情況[1]。相對常規(guī)圓形或長圓形截面箱體,矩形箱體有著更復(fù)雜的受力情況,且承壓能力更弱,需要在箱體上進行加筋布置,以提高矩形箱體的強度與剛度。然而,對于矩形箱體的加筋選取和布置,以往都是憑借經(jīng)驗進行,會造成材料利用不合理的現(xiàn)象,導(dǎo)致產(chǎn)品的可靠性、經(jīng)濟性降低,故需要對矩形箱體加筋布置方案進行合理的優(yōu)化設(shè)計。
學(xué)者們對矩形箱體進行了理論計算、數(shù)值模擬、實驗研究等方面的研究。Blach A E[2]提出基于“大撓度”理論系數(shù)設(shè)計方法,考慮端蓋對矩形壓力容器應(yīng)力的影響,并通過實驗進行驗證,該方法得到理論與實驗結(jié)果擬合性較好。李其朋等[3]采用MATLAB優(yōu)化工具箱中的fmincon函數(shù)進行矩形箱體外加強件優(yōu)化分析,發(fā)現(xiàn)箱體焊接外加強圈能夠有效減薄箱體壁厚。孟利宏等[4]采用板殼理論的計算方法對受液體載荷的大型矩形箱體進行加強設(shè)計,實現(xiàn)了箱體加強件的合理布置。高明等[5]采用4因素4水平正交試驗對SF6氣箱加筋結(jié)構(gòu)布置進行了分析,通過綜合平衡法對加筋結(jié)構(gòu)參數(shù)進行優(yōu)選,有效降低了箱體結(jié)構(gòu)的應(yīng)力與變形。
本研究需對矩形箱體進行靜壓工況及試驗工況分析,采用ANSYS APDL語言進行靜壓工況下矩形箱體應(yīng)力及變形分析,并按照GB/T6451-2015[6]要求對該箱體進行出廠前PT=0.1 MPa試驗工況驗證。采用正交試驗分析靜壓工況下加強構(gòu)件間距、寬度以及厚度對矩形箱體應(yīng)力及變形的影響,并運用極限載荷分析法進行試驗工況驗證。以往正交試驗方案分析主要采用直觀分析法、方差分析法和效應(yīng)分析法進行綜合選優(yōu),這3種方法對于多目標多因素試驗方案最適宜組確定存在一定的困難,主觀性較大[7]。通過矩陣分析法分析側(cè)壁加強鐵間距A、寬度B及厚度C,端壁加強鐵間距D、寬度E及厚度F各試驗因素對最大一次應(yīng)力S1max、最大等效應(yīng)力S2max以及最大變形量Δmax影響的最優(yōu)結(jié)果;通過ANSYS優(yōu)化模塊一階優(yōu)化算法進行箱體結(jié)構(gòu)減重分析,為工程設(shè)計提供一定的參考。
以某工廠V=23 m3盛裝變壓器油的矩形箱體為研究對象,結(jié)構(gòu)主要由箱蓋、箱壁、加強鐵以及箱底等部件構(gòu)成,由于箱蓋上的升高座等器身結(jié)構(gòu)往往非對稱分布,且局部結(jié)構(gòu)對整體結(jié)果分析影響不大,故未在箱蓋上加升高座等結(jié)構(gòu),矩形箱體結(jié)構(gòu)及尺寸如圖1所示。其中,L1為側(cè)壁加強鐵間距,W1為側(cè)壁加強鐵寬度,t1為側(cè)壁加強鐵厚度,L2為端壁加強鐵間距,W2為端壁加強鐵寬度,t2為端壁加強鐵厚度,單位均為mm。
圖1 矩形箱體結(jié)構(gòu)及尺寸圖Fig.1 Structure and dimension of rectangular tank
矩形箱體工作壓力為液柱靜壓力,變壓器油密度ρ=895 kg·m-3,工作溫度為T=80 ℃,箱體材料為Q245R。根據(jù)GB150-2011《壓力容器》規(guī)范[8]查取,如表1所示。
表1 材料力學(xué)性能Table 1 Mechanical properties of materials
采用ANSYS APDL語言對箱體結(jié)構(gòu)尺寸進行參數(shù)化建模。矩形箱體為薄壁對稱結(jié)構(gòu),故建立1/2有限元模型,選取shell181單元進行上箱體有限元模型網(wǎng)格劃分,采用自動網(wǎng)格劃分,為驗證網(wǎng)格無關(guān)性要求,表2給出了網(wǎng)格尺寸在8~28 mm范圍內(nèi),網(wǎng)格尺寸對應(yīng)的S1max和S2max值,圖2給出了矩形箱體有限元模型。
圖2 矩形箱體有限元模型Fig.2 Finite element model of rectangular tank
由表2可知,當(dāng)網(wǎng)格尺寸等于28 mm,S1max值為225.98 MPa,S2max值為313.67 MPa,當(dāng)網(wǎng)格尺寸等于16 mm,S1max值為300.89 MPa,S2max值為366.57 MPa,S1max相對誤差值達到33%,S2max相對誤差值達到16.9%;當(dāng)網(wǎng)格尺寸等于8 mm,S1max值為303.07 MPa,S2max值為368.49 MPa,與16 mm網(wǎng)格尺寸S1max、S2max應(yīng)力值比較,S1max相對誤差值僅有0.7%,S2max相對誤差值僅有0.5%。本研究選取16 mm網(wǎng)格大小進行網(wǎng)格劃分,網(wǎng)格質(zhì)量符合網(wǎng)格無關(guān)性檢驗要求。
表2 網(wǎng)格尺寸對應(yīng)S1max和S2max值Table 2 Grid size and corresponding values of S1max and S2max
對文獻[2]中實驗數(shù)據(jù)進行數(shù)值模擬,按照文獻方法選取不同壓力載荷作用下壁面中點D的最大變形進行模擬及實驗對比驗證,圖3給出了模擬方法驗證。
圖3 模擬方法驗證Fig.3 Verification of simulation method
由圖3可知,模擬值與實驗值的在不同載荷作用下D點最大變形變化規(guī)律相似,最大誤差為7.63%,平均誤差為5.49%。誤差在可接受范圍,驗證了本模型的可靠性。
根據(jù)矩形箱體實際情況,在相應(yīng)位置對矩形箱體有限元模型進行約束,對底面施加全約束,在對稱面上施加對稱約束,矩形箱體內(nèi)表面結(jié)點施加液柱靜壓力,考慮矩形箱體自身質(zhì)量。
采用應(yīng)力分類法[9]將截面主應(yīng)力分解為沿厚度方向的薄膜應(yīng)力以及彎曲應(yīng)力,對中面的膜應(yīng)力數(shù)據(jù)進行一次局部薄膜應(yīng)力(PL)評價,即應(yīng)力值應(yīng)小于1.5Sm,內(nèi)外表面的最大等效應(yīng)力進行一次加二次應(yīng)力(PL+Pb+Q)評價,應(yīng)力值應(yīng)小于3Sm,其中,Pb表示一次彎曲應(yīng)力、Q表示二次應(yīng)力,參照企業(yè)標準Q/BM626.001對矩形箱體進行變形評定,最大變形不超過8 mm。
圖4為矩形箱體應(yīng)力變形云圖。圖4(a)給出了矩形箱體整體一次應(yīng)力的分布情況,在側(cè)壁、端壁加強鐵上應(yīng)力分布均勻,一次應(yīng)力最大點出現(xiàn)在側(cè)壁加強鐵根部,最大值為58.26 MPa≤1.5Sm,應(yīng)力分布合理;圖4(b)給出了矩形箱體整體等效應(yīng)力的分布情況,加強鐵間未加強區(qū)域等效應(yīng)力值大于加強區(qū)域,符合應(yīng)力分布規(guī)律,等效應(yīng)力最大點出現(xiàn)在側(cè)壁加強鐵根部,最大值為68.95 MPa≤3Sm,應(yīng)力分布合理;圖4(c)給出了矩形箱體整體變形分布情況,變形區(qū)域分布規(guī)律和等效應(yīng)力分布規(guī)律大致相同,最大變形量出現(xiàn)在近側(cè)箱壁中部的未加強區(qū)域,最大值為1.24 mm。
圖4 矩形箱體應(yīng)力變形云圖Fig.4 Cloud diagram of stress and deformation of rectangular tank
表3為各部件應(yīng)力及變形結(jié)果評定。端壁加強鐵最大變形0.40 mm大于側(cè)壁加強鐵最大變形0.34 mm,但最大一次應(yīng)力PL=12.67 MPa<66.77 MPa,最大等效應(yīng)力PL+Pb+Q=16.15 MPa<68.95 MPa,應(yīng)力值均小于側(cè)壁加強鐵;箱壁最大變形量為端壁加強鐵的3.1倍,為側(cè)壁加強鐵的3.6倍,可見加強鐵能有效控制變形。端壁加強鐵、側(cè)壁加強鐵及箱壁的最大一次應(yīng)力PL分別為12.67、66.77及 16.54 MPa,均小于等于 1.5Sm=220.875 MPa;最大等效應(yīng)力PL+Pb+Q分別為16.15、68.95及65.70 MPa均小于等于3.0Sm=441.75 MPa;最大變形分別為0.40、0.34及1.24 mm,均小于等于8 mm。經(jīng)應(yīng)力及變形評定發(fā)現(xiàn),應(yīng)力及變形都遠小于評定標準,側(cè)壁加強鐵數(shù)量過多導(dǎo)致加強效應(yīng)顯著,應(yīng)減少側(cè)壁加強鐵數(shù)量;箱壁變形及應(yīng)力集中區(qū)域主要位于箱壁,應(yīng)對箱壁組合件進行重點分析。
表3 各部件應(yīng)力及變形評定Table 3 Strength and deformation evaluation of components
基于以上模擬結(jié)果,為方便后續(xù)的正交試驗設(shè)計,先對加強鐵數(shù)量進行探討。研究端壁加強鐵數(shù)量對矩形箱體各指標的影響時,端壁加強鐵數(shù)量與原模型一致為2;研究側(cè)壁加強鐵數(shù)量對矩形箱體各指標的影響時,側(cè)壁加強鐵數(shù)量與原模型一致為5。
圖5為側(cè)壁、端壁加強鐵數(shù)量對矩形箱體各指標影響。由圖5(a)、圖5 (b)和圖5 (c)可知,當(dāng)側(cè)壁加強鐵數(shù)量等于2時,矩形箱體出現(xiàn)應(yīng)力集中現(xiàn)象,導(dǎo)致最大一次應(yīng)力上升;側(cè)壁加強鐵數(shù)量為1~5時,矩形箱體最大一次應(yīng)力和等效應(yīng)力始終滿足應(yīng)力強度要求,但變形量直到加強鐵數(shù)量為4時,才滿足矩形箱體變形要求。由圖5(d)、圖5 (e)和圖5 (f)可知,端壁加強鐵數(shù)量從1變到2時,矩形箱體各指標值下降明顯;加強鐵數(shù)量從2變到3時,各指標值變化很小。通過上述分析選取側(cè)壁加強鐵數(shù)量為4,端壁加強鐵數(shù)量為2。
圖5 側(cè)壁、端壁加強鐵數(shù)量對矩形箱體各指標影響Fig.5 Influence of the quantity of side wall and endwall reinforcing iron on the indexes of rectangular tank
3.2.1 正交試驗因素及水平
在確定加強鐵數(shù)量后,采用正交試驗法對加強鐵其余結(jié)構(gòu)參數(shù)進行分析,結(jié)構(gòu)參數(shù)為圖1所示的L1(A)、W1(B)、t1(C)、L2(D)、W2(E)和t2(F),因素水平表如表4所示。
表4 因素水平表Table 4 Factor level table
3.2.2 試驗結(jié)果分析
根據(jù)正交試驗因素和水平情況,采用6因素5水平正交表L25(56),不考慮正交試驗的交互作用,正交試驗評價指標為矩形箱體最大一次應(yīng)力S1max、最大等效應(yīng)力S2max及最大變形Δmax。利用ANSYS APDL語言,通過改變各因素各水平參數(shù)值大小,得到各指標試驗結(jié)果如表5所示。
3.2.3 矩陣分析法
通過矩陣分析法對表5試驗結(jié)果數(shù)據(jù)進行分析,以側(cè)壁、端壁加強鐵建立3層數(shù)據(jù)結(jié)構(gòu)模型,從下至上依次為:水平層、因素層和指標層,數(shù)據(jù)結(jié)構(gòu)模型如圖6所示。
圖6 數(shù)據(jù)結(jié)構(gòu)模型Fig.6 Data structure model
表5 各指標試驗結(jié)果Table 5 Test results of each index
假設(shè)正交試驗中有a個因素,a個因素對應(yīng)的水平有b個,因素Ai在j水平上試驗指標計算出的算數(shù)平均值為kij,若需要試驗指標越大,則令Kij= kij,試驗指標越小,則令Kij= 1/kij,即建立與算數(shù)平均值相關(guān)的指標層矩陣N,矩陣N表達式為:
建立與因素層相關(guān)的矩陣,即F矩陣,令Fi=1/,矩陣F表達式為:
建立與水平層相關(guān)的矩陣C,即與因素Ai對應(yīng)的極差為,矩陣C表達式為:
由公式(1)、(2)和(3)可得到與指標值相關(guān)的權(quán)矩陣M,矩陣M表達式為:
根據(jù)表5正交試驗結(jié)果列出極差分析表,由于篇幅限制,僅列出表6中最大一次應(yīng)力S1max的極差分析表。
表6 S1max極差分析表Table 6 Range analysis table of S1max
表7中α、β和ω分別代表S1max、S2max及Δmax矩陣分析的指標結(jié)果。本研究考查的指標越小越好,根據(jù)極差分析表6以及上述計算公式,即可求出S1max的權(quán)矩陣M,權(quán)矩陣M中元素的數(shù)值為α值:
表7為側(cè)壁、端壁加強鐵矩陣分析結(jié)果,單個指標結(jié)果下各參數(shù)之和應(yīng)等于1。表中指標參數(shù)均值等于同一行參數(shù)之和的均值,指標因素總和等于同一因素影響下指標參數(shù)均值之和,即各因素對指標綜合影響程度,指標因素總和越大,則影響程度越大。由表6可知側(cè)壁、端壁加強鐵最優(yōu)布筋方案為:A4B5C5D1,2E5F2,3,各因素對指標值影響重要性排序為:C>A>B>D>E>F,對比D1、D2,D為端壁加強鐵間距,在實際模型中,考慮到需要在端壁下方開視察窗,為了加強開孔處的強度,加強鐵應(yīng)靠近開孔處,即選擇D2;對比F2、F3,F為端壁加強鐵厚度,應(yīng)選擇厚度較小者,故選F2。故矩形箱體最適宜布筋方案為:A4B5C5D2E5F2。
表7 側(cè)壁、端壁加強鐵矩陣分析結(jié)果Table 7 Analysis results of sidewall and end wall reinforced iron matrix
3.2.4 方案驗證
選取最適宜方案進行有限元分析,優(yōu)化后的結(jié)果如圖7所示。
圖7為優(yōu)化后模型結(jié)果,矩形箱體最大一次應(yīng)力為44.26 MPa,最大等效應(yīng)力為59.88 MPa,最大變形為1.31 mm,與初始方案相比,減少側(cè)壁加強鐵數(shù)量并未導(dǎo)致指標值上升,相反,矩形箱體的最大一次應(yīng)力、最大等效應(yīng)力下降明顯,矩形箱體受力情況得到了一定的改善,應(yīng)力區(qū)域分布更為均勻,變形量與初始變形相比,有略微的增加,但遠小于廠家規(guī)定的標準。
圖7 優(yōu)化后模型結(jié)果Fig.7 Model results after optimization
通過矩陣分析法得到了矩形箱體加筋布置的最適宜組合A4B5C5D2E5F2,優(yōu)化過后的矩形箱體最大一次應(yīng)力、最大等效應(yīng)力得到進一步的降低,最大變形量也遠遠小于變形標準。因此,在滿足加筋結(jié)構(gòu)最優(yōu)布置的前提下,采用ANSYS APDL語言及優(yōu)化模塊中一階算法對矩形箱體箱壁及加強鐵厚度進行減重優(yōu)化分析。
分別選取側(cè)壁厚度T1、端壁厚度T2、側(cè)壁加強鐵厚度t1以及端壁加強鐵厚度t2為設(shè)計變量,以應(yīng)力標準1.5Sm、3Sm以及最大變形作為約束條件,變量取值范圍及約束條件如表8所示。
表8 變量取值范圍及約束條件Table 8 Variable range and constraints
目標函數(shù)為質(zhì)量最輕,而質(zhì)量與體積成正比,在ANSYS優(yōu)化中一般以體積最小作為目標函數(shù)。
利用ANSYS APDL語言進行一階優(yōu)化,設(shè)置優(yōu)化迭代20次,當(dāng)?shù)?6次時,結(jié)果收斂,矩形箱體優(yōu)化前的體積由初始3.7×108mm3減小至優(yōu)化后的2.7×108mm3,質(zhì)量減小了27%。各參數(shù)優(yōu)化后的結(jié)果如表9所示,將優(yōu)化后的模型進行應(yīng)力、變形評定,評定結(jié)果如表10所示。
表9 優(yōu)化后參數(shù)取整后結(jié)果Table 9 Rounding results of optimized parameters
表10 優(yōu)化后評定結(jié)果Table 10 Evaluation results after optimization
通過對矩形箱體的應(yīng)力及變形進行評定,應(yīng)力及變形均符合要求。
采用分析設(shè)計標準JB 4732-1995《鋼制壓力容器—分析設(shè)計標準》(2005年確認)5.4.2.1節(jié)及表5-1作為依據(jù)[9],對減重后的箱體進行試驗工況PT=0.1 MPa極限載荷分析,采用雙切線準則得到試驗極限載荷值,箱體極限載荷曲線如圖8所示。
由圖8可知,試驗極限載荷值為0.3 MPa,試驗極限載荷取安全系數(shù)為2/3,計算得到安全的許可極限載荷PU=0.2 MPa>PT=0.1 MPa,滿足極限載荷條件。
圖8 箱體極限載荷曲線Fig.8 Limit load curve of tank
應(yīng)用ANSYS APDL語言對矩形箱體進行應(yīng)力及變形分析,發(fā)現(xiàn)矩形箱體的應(yīng)力與變形值都很小,故對加強鐵數(shù)量進行優(yōu)化,對加強鐵結(jié)構(gòu)和位置進行調(diào)整,結(jié)果如下。
1)對加強鐵數(shù)量進行分析,側(cè)壁加強鐵數(shù)量為2時,出現(xiàn)最大一次應(yīng)力上升現(xiàn)象,直到加強鐵數(shù)量為4時,才滿足矩形箱體變形要求。端壁加強鐵數(shù)量從1變到2時,矩形箱體各指標值下降明顯;加強鐵數(shù)量從2變到3時,各指標值變化很小。分析后選擇側(cè)壁加強鐵數(shù)量為4,端壁加強鐵數(shù)量為2。
2)對側(cè)壁、端壁加強鐵結(jié)構(gòu)和位置的6個因素進行正交試驗研究,再通過矩陣分析法對正交試驗結(jié)果進行分析,得到側(cè)壁、端壁加強鐵最適宜布筋方案為:A4B5C5D2E5F2,各因素對指標值影響重要性排序為:C>A>B>D>E>F。
3)矩形箱體優(yōu)化后模型結(jié)果最大一次應(yīng)力為44.26 MPa,最大等效應(yīng)力為59.88 MPa,最大變形為1.31 mm,與初始方案相比,側(cè)壁加強鐵數(shù)量雖由5減為4,但通過對加強鐵結(jié)構(gòu)和位置進行調(diào)整,矩形箱體最大一次應(yīng)力、最大等效應(yīng)力均下降明顯。
4)利用ANSYS一階優(yōu)化算法對優(yōu)筋布置后的矩形箱體進行優(yōu)化,優(yōu)化后的結(jié)果顯示矩形箱體的質(zhì)量減小了27%,應(yīng)力及變形評定滿足標準要求。
5)采用極限載荷分析法對優(yōu)筋布置后的矩形箱體進行試驗工況驗證,箱體安全的許可極限載荷PU=0.2 MPa>PT=0.1 MPa,滿足極限載荷條件。