胡啟國,白熊,杜春超
(重慶交通大學機電與車輛工程學院,重慶 400074)
航空發(fā)動機在正常運行中發(fā)生事故,會造成巨大的經(jīng)濟與社會損失,為了保證航空發(fā)動機可靠、安全地運行,利用設備監(jiān)測數(shù)據(jù)對其進行剩余壽命預測顯得尤為重要,可以為設備提前檢修提供參考依據(jù)。
眾多研究者對剩余壽命預測進行了深入研究。裴洪等總結和分析了基于機器學習的設備剩余壽命(Remaining Useful Life,簡稱RUL)預測方法,通過分析基于機器學習的剩余壽命模型理論和模型內(nèi)部結構的層數(shù),將其分為淺層機器學習和深度學習的方法;武博等提出利用主成分分析建立不同程度判斷標尺構建導彈筒壽命預測模型,實現(xiàn)對導彈筒的全周期壽命評估;杜方舟等基于航空發(fā)動機排氣溫度裕度數(shù)據(jù),利用遺傳算法優(yōu)化基于支持向量機的剩余壽命預測模型,最終擬合出的壽命曲線與原廠數(shù)據(jù)高度切合,得到較好的預測效果;高峰等通過多域特征量對數(shù)據(jù)集進行擴充,并搭建了長短時記憶(Long Shortterm Memory,簡稱LSTM)神經(jīng)網(wǎng)絡壽命預測模型,最終利用C-MAPSS數(shù)據(jù)集驗證了該方法的可靠性;馬忠等通過改進卷積神經(jīng)網(wǎng)絡(Convolutional Neural Networks,簡稱CNN)解決了航空發(fā)動機多狀態(tài)變量下的非線性特征導致剩余壽命預測困難的問題,結果表明改進CNN進行壽命預測的準確性得到顯著提高;牟含笑等提出基于深度置信網(wǎng)絡與BLSTM神經(jīng)網(wǎng)絡的航空推進系統(tǒng)剩余壽命預測方法,該方法適用于時間序列的處理;李杰等等提出一種融合神經(jīng)網(wǎng)絡的剩余壽命預測方法,該方法精度高且具有良好的魯棒性;車暢暢等將一維卷積神經(jīng)網(wǎng)絡與BLSTM神經(jīng)網(wǎng)絡混合模型運用到航空發(fā)動機的剩余壽命預測中,準確地預測壽命變化的結果,相較于單一使用BLSTM或CNN網(wǎng)絡模型的預測精度有所提高;曾慧潔等通過模型對樣本集正反序列的訓練學習,建立了BLSTM網(wǎng)絡模型來預測航空發(fā)動機故障,并將結果與其他神經(jīng)網(wǎng)絡模型對比,表明雙向長短時記憶神經(jīng)網(wǎng)絡預測精度更高;宋亞等提出了一種基于自動編碼器和雙向LSTM的混合模型來預測渦輪發(fā)動機的RUL,并獲得了比LSTM模型更好的預測結果。針對航空發(fā)動機壽命預測問題,國外E.L.Ntantis等總結了航空發(fā)動機故障與提前維修預測方法,對比了物理建模、人工神經(jīng)網(wǎng)絡、貝葉斯神經(jīng)網(wǎng)絡、CNN等多種方法,得出基于神經(jīng)網(wǎng)絡的預測方法更加快速、準確;I.Remadna等考慮航空發(fā)動機退化數(shù)據(jù)特征提取困難的問題,利用CNN對復雜退化信息進行提取,再利用BLSTM神經(jīng)網(wǎng)絡對航空發(fā)動機剩余壽命進行了預測,通過C-MAPSS數(shù)據(jù)集驗證了該方法;C.Ordó?ez等提出一種由差分自回歸移動模型與支持向量機組成的混合模型對航空發(fā)動機RUL進行預測,通過航空發(fā)動機數(shù)據(jù)集驗證了該模型,并取得不錯的預測效果。
雖然眾多研究者所提出的RUL模型都取得了不錯的預測效果,但大多研究者在預測時并未考慮數(shù)據(jù)間的非線性關系及多信息冗余問題導致模型訓練時學習過多產(chǎn)生不必要的信息而使得預測精度大打折扣的問題。
本文提出利用核主成分分析處理非線性數(shù)據(jù)的優(yōu)越性,對多維退化性息進行融合降維;針對BLSTM神經(jīng)網(wǎng)絡處理時間序列的能力提出一種基于KPCA-BLSTM神經(jīng)網(wǎng)絡的航空發(fā)動機多信息融合剩余壽命預測模型,并利用C-MAPSS航空發(fā)動機數(shù)據(jù)集進行對比驗證,并與SVR、CNN、BLSTM神經(jīng)網(wǎng)絡模型的預測結果進行對比。
航空發(fā)動機的退化過程是一個累積的過程,狀態(tài)變化不僅與當前時刻的監(jiān)測信息有關,而且某個歷史時刻的信息也會影響設備的狀態(tài)變化。國內(nèi)外研究者提出的LSTM神經(jīng)網(wǎng)絡,相對于普通循環(huán)神經(jīng)網(wǎng)絡(Recurrent Neural Networks,簡稱RNN),既可以更好地處理長時間序列的數(shù)據(jù)信息,又可以解決訓練過程中的梯度消失和梯度爆炸問題。
圖1 LSTM神經(jīng)單元示意圖Fig.1 Schematic diagram of LSTM neural unit
LSTM模型通過使用由上一層輸出的h和當前時間輸入的x組成的輸入向量計算遺忘門f來控制存儲單元的狀態(tài):
式中:W為輸入層的權重矩陣;b為偏置向量;(·)為激活函數(shù),即sigmoid函數(shù)。
式中:W,b分別為狀態(tài)更新層的權重和偏差。
信息傳遞到輸出層后,網(wǎng)絡通過輸出門o控制更新狀態(tài)的輸出。
式中:W,b分別為輸出層的權重和偏差。
雙向LSTM神經(jīng)網(wǎng)絡由LSTM層的兩個方向組成。在長時間序列的訓練過程中,可以從正反兩個方向捕獲整個序列的信息,具有比LSTM更高的性能。雙向LSTM結構如圖2所示。
圖2 雙向LSTM結構示意圖Fig.2 Schematic diagram of BLSTM structure
第一層LSTM結構計算當前輸入的正向序列信息,第二層LSTM結構反向計算相同的序列,兩層結構均存在相互獨立的隱含層。LSTM結構層間的隱含層輸出,不僅要傳遞給下一層的輸入層,而且通過雙向LSTM結構還需要傳遞給上一層的輸入結構中。在訓練過程中,通過對輸出單元的正反向傳播,完成對神經(jīng)網(wǎng)絡的權重更新。
航空發(fā)動機在投入到生產(chǎn)使用過程中受到內(nèi)部因素和外界環(huán)境的影響,其性能會發(fā)生退化,各項性能指標也會相應降低,直至失效完全失去工作能力。在實際試驗或運用中,會通過各種傳感器獲得這些設備的現(xiàn)場運行監(jiān)測數(shù)據(jù),這些數(shù)據(jù)可視為以設備運作為基礎的時間序列。
設一組設備的監(jiān)測數(shù)據(jù)可表示為
式中:X為第臺設備的所有運行狀態(tài)監(jiān)測數(shù)據(jù)集合。
式中:x為第臺設備的第個狀態(tài)監(jiān)測變量的時間序列。
因此,與第臺監(jiān)測設備的狀態(tài)數(shù)據(jù)相對應的剩余壽命集合表示為
基于以上思想,本文提出一種針對多狀態(tài)多維度退化特征的監(jiān)測數(shù)據(jù)RUL預測模型,整體流程如圖3所示。
圖3 RUL預測模型流程圖Fig.3 RUL prediction model flowchart
由于整個模型的輸入為多狀態(tài)監(jiān)測數(shù)據(jù),首先進行數(shù)據(jù)預處理,并采用KPCA對預處理后的多維狀態(tài)數(shù)據(jù)進行融合降維;其次添加RUL標簽,按照時間窗大小對低維監(jiān)測數(shù)據(jù)的時間序列進行劃分,并建立雙向LSTM深度學習網(wǎng)絡模型;然后分別設置批量(batch)從20開始,以10個批量為間隔數(shù)增加,根據(jù)每個迭代次數(shù)的平均損失函數(shù)與更改模型權重參數(shù)選取最佳批量,直至損失減小并趨于穩(wěn)定;最后將測試數(shù)據(jù)導入模型進行驗證,通過評價模型判斷模型訓練的效果。
在進行預測之前,需要對多狀態(tài)監(jiān)測數(shù)據(jù)進行預處理,為了使設備的真實值和預測值在訓練時表現(xiàn)出差異性,需要對數(shù)據(jù)集添加RUL標簽。退化過程是退化量累積的過程,在航空發(fā)動機運行初期,退化特征并不明顯,一段時間后設備能夠平穩(wěn)運作,直到運行到某一階段,設備開始進入加速退化階段,并出現(xiàn)故障,因此采用分段線性模型進行預測,如圖4所示。
圖4 分段線性模型Fig.4 Piecewise linear model
為了消除傳感器參數(shù)范圍的差異,對每組傳感器監(jiān)測的數(shù)據(jù)進行線性歸一化處理,使得處理后的參數(shù)值在[0,1]的范圍內(nèi)。其表達式為
經(jīng)過數(shù)據(jù)預處理后,采用KPCA進行降維,然后根據(jù)方差貢獻量選擇適當?shù)木S數(shù)。在模型訓練過程中,為了防止模型出現(xiàn)過擬合現(xiàn)象,在雙向LSTM層與全連接層中添加一個Dropout層,并且設置一定的丟棄率去掉隱含層部分輸出值,確保神經(jīng)元在正向傳播中不被影響。根據(jù)時間步長對訓練集和測試集進行分割,并將分割后的訓練集輸入到雙向LSTM模型中。選擇均方誤差作為損失函數(shù),其表達式為
利用同樣處理訓練集的方法對測試集進行數(shù)據(jù)處理,并輸入到訓練后的神經(jīng)網(wǎng)絡模型中,輸出RUL預測值。為了定量評價模型預測能力,采用均方根誤差和非對稱評分函數(shù)作為評價依據(jù)。
均方根誤差可以反映預測誤差的大小,其表達式為
非對稱評分函數(shù)能夠通過判斷預測值是否大于或小于真實值而給出截然不同的計算結果,其中評分正比于誤差,其函數(shù)表達式為
本文采用C-MAPSS數(shù)據(jù)集進行仿真驗證,數(shù)據(jù)集由四個子集組成,包含6種不同的工作條件和4種故障形式,每個子集記錄了在不同工作條件和故障類型下航空發(fā)動機的健康狀況退化數(shù)據(jù)。CMAPSS數(shù)據(jù)集中包含的全部信息如表1所示。
表1 航空發(fā)動機監(jiān)測數(shù)據(jù)Table 1 Aero engine monitoring data
選用FD003子集作為實驗數(shù)據(jù)集,F(xiàn)D003數(shù)據(jù)集包括3個工作條件參數(shù):飛行高度,馬赫數(shù)和油門旋轉(zhuǎn)變壓器角度,它們可以組合成六個對發(fā)動機性能有重大影響的工作條件。數(shù)據(jù)還包括21個發(fā)動機傳感器,例如風扇入口處的壓力,燃燒器的燃料空氣比和旁路比。FD003的故障模式為HPC退化和風扇退化失效。
為了減小訓練模型的復雜度,增強其穩(wěn)定性,選用KPCA對發(fā)動機高維數(shù)據(jù)進行降維,KPCA是一種常用的數(shù)據(jù)融合和維數(shù)約簡方法,即構造高維特征空間,把原始變量轉(zhuǎn)化為空間內(nèi)積矩陣,并利用原始變量空間的核函數(shù)代替內(nèi)積函數(shù)。為了確定目標降維量,將累計方差貢獻量作為目標降維量選取的標準,經(jīng)計算得出各特征的方差貢獻量如圖5所示,前10維累計方差貢獻量達到0.95,由此選定10維作為目標降維量。
圖5 KPCA方差貢獻量Fig.5 KPCA variance contribution
經(jīng)KPCA降維后,根據(jù)時間步長對訓練集和測試集的時間序列進行劃分。輸入模型的3D張量為(24 720,50,10)。在將數(shù)據(jù)輸入模型之前,需要設置模型的各種參數(shù)。模型參數(shù)直接影響模型的性能,選擇合適的神經(jīng)網(wǎng)絡參數(shù)對模型的訓練成功與否起著至關重要的作用,經(jīng)反復調(diào)試參數(shù)后,確定模型的主要參數(shù),如表2所示。
表2 BLSTM神經(jīng)網(wǎng)絡參數(shù)設置Table 2 BLSTM neural network parameter settings
將輸入模型的數(shù)據(jù)集以9∶1的比例劃分為訓練集和驗證集。設置“提前停止”的參數(shù),如果在10個周期內(nèi)驗證集的誤差無下降趨勢,則將停止訓練。利用驗證集(即100組發(fā)動機)驗證模型準確度,驗證結果如圖6所示,可以看出:預測值與真實值的擬合度較高,說明模型的預測效果較好。
圖6 模型預測結果Fig.6 Model prediction results
為了進一步驗證所建立模型的預測效果,對C-MAPSS數(shù)據(jù)集的FD003中1、9、24、35號發(fā)動機剩余壽命進行預測擬合,其中部分發(fā)動機數(shù)據(jù)擬合結果如圖7所示。
圖7 不同型號發(fā)動機預測對比Fig.7 Comparison of predictions for different types of engines
從圖7可以看出:無論發(fā)動機處于循環(huán)周期的前、中、后期,該模型得到的預測值和真實值的擬合程度都較為準確,預測值分布在真實值附近。由此可以得出本模型針對發(fā)動機這類復雜設備具有較高的預測精度,為提升發(fā)動機的可靠性和安全性提供了依據(jù)。
為了證明模型的準確度,選用FD003中1號發(fā)動機數(shù)據(jù),分別搭建支持向量機回歸(SVR),CNN,LSTM以及BLSTM預測模型,并與KPCABLSTM預測結果相對比,對比結果如表3所示。
表3 多模型預測結果對比Table 3 Comparison of multi-model prediction results
從表3可以看出:KPCA-BLSTM模型在誤差和得分上均優(yōu)于單個模型,三種深度學習模型預測結果優(yōu)于傳統(tǒng)機器學習方法SVR;BLSTM比LSTM具有更好的性能,這表明BLSTM在處理較長時間序列時可以結合歷史和將來的信息來充分表征狀態(tài)監(jiān)視數(shù)據(jù)的內(nèi)部關系。
(1)利用KPCA對航空發(fā)動機多監(jiān)測信息進行降維與融合,通過方差貢獻量判斷10維為最佳目標降維量,最終得到一個低維信息融合數(shù)據(jù)集。
(2)搭建了BLSTM神經(jīng)網(wǎng)絡預測模型,利用經(jīng)信息融合后的數(shù)據(jù)集對其進行訓練,最終模型預測值對真實值擬合程度較高,表明模型的預測效果較好。
(3)選取所提出的剩余壽命預測模型,將預測結果與SVR、CNN以及雙向LSTM預測模型進行對比,KPCA-BLSTM模型的均方根誤差與得分皆優(yōu)于其他三種模型。