劉源 楊風英
摘 要:老年肌少癥是指骨骼肌質(zhì)量和功能的增齡性下降,在肥胖者中,這種增齡性退變更為明顯。肥胖和肌肉衰減并存稱為肥胖性肌少癥,兩者相互促進,形成惡性循環(huán)。肥胖引發(fā)的機體局部和系統(tǒng)慢性低級炎癥反應(yīng),即脂肪組織炎癥反應(yīng),被認為是肥胖加重肌肉衰減的本質(zhì)原因。實踐證明運動可以有效抑制肥胖和緩解老年肌肉衰減,但運動是否可以通過影響脂肪組織炎癥反應(yīng)而達到緩解肥胖性肌肉衰減的作用是該研究關(guān)注的重點。該研究就目前脂肪組織炎癥與老年肌少癥的關(guān)系以及運動對脂肪組織炎癥反應(yīng)的影響的研究做系統(tǒng)性綜述,為進一步探討運動緩解老年肥胖性肌少癥的機制提供線索。
關(guān)鍵詞:肌少癥;肥胖;炎癥;脂肪組織;運動
中圖分類號:G804.2;R874?? 文獻標識碼:A? 文章編號:1006-2076(2022)01-0081-07
Role of Adipose Tissue Inflammation in Exercise Alleviating Obesity Sarcopenia
LIU Yuan1, YANG Fengying2
1.Dept. of P.E., Shandong Jianzhu University, Jinan 250101, Shandong, China; 2. College of Sports and Health, Shandong Sport University, Jinan 250102, Shandong, China
Abstract:
Sarcopenia refers to the age-related decline in skeletal muscle mass and function. In obese people, this age-related decline becomes more obvious and serious. The co-existence of obesity and muscle atrophy is called obese sarcopenia, and the two deteriorate each other. In obese people, adipose tissue can cause local and systemic chronic low grade inflammatory state, which is named adipose tissue inflammation, has been considered to be the essential cause of aggravating muscle decay. It has been proved that exercise can effectively inhibit obesity and alleviate muscle decay in the elderly. Whether exercise can alleviate obesity muscle decay by affecting the inflammatory response of adipose tissue is unknown. This paper reviews the relationship between adipose tissue inflammation and muscle decay in the elderly and the effect of exercise on adipose tissue inflammation in order to provide clues for further exploring the mechanism of exercise in alleviating obese sarcopenia.
Key words:sarcopenia; obese; inflammation; adipose tissue; exercise
肌少癥 (sarcopenia) 是指骨骼肌質(zhì)量和功能的增齡性下降,是引起老年人跌倒、骨折、體力下降等的直接原因。骨骼肌作為人體最大的代謝器官,其衰減亦成為肥胖、糖尿病、心腦血管病等衰老相關(guān)疾病的誘發(fā)因素[1];肥胖是老齡化社會非常嚴峻的公眾健康問題,肥胖造成的機體炎癥狀態(tài)被認為是老年人的最大威脅,尤其是近期關(guān)于新型冠狀病毒肺炎(COVID-19) 的研究發(fā)現(xiàn),肥胖老年人COVID-19易感并且更容易發(fā)展成為重癥患者的原因與肥胖導(dǎo)致炎癥狀態(tài)引發(fā)的內(nèi)皮細胞損害關(guān)系極為密切[2-3];更值得注意的是,肥胖和sarcopenia往往并存且兩者相互加重,共同誘發(fā)了多種與衰老相關(guān)疾病[1],其中肥胖者體內(nèi)脂肪組織 (adipose tissue, AT) 炎癥反應(yīng)亦被認為是肥胖加速sarcopenia的重要機制。實踐證明,運動是緩解sarcopenia發(fā)生和發(fā)展的有效手段,同時運動有效緩解肥胖已被大量實踐證實。運動是否可以通過影響脂肪組織炎癥反應(yīng)進而起到緩解sarcopenia的作用目前未見直接研究報道,但基于目前研究中關(guān)于脂肪組織炎癥反應(yīng)與sarcopenia的密切關(guān)系,以及運動對脂肪組織炎癥反應(yīng)的影響,我們有理由相信運動對脂肪組織炎癥反應(yīng)的有效調(diào)控是運動緩解肥胖性肌少癥的重要機制。
1 肥胖性肌少癥概念的提出及運動對其影響
因肥胖與sarcopenia往往共存,稱之為肥胖性肌少癥 (obese sarcopenia,OS),尤其是老年人,肥胖加速sarcopenia的同時,骨骼肌質(zhì)量和功能的低級狀態(tài)又使肥胖進一步惡化,也被稱之為肌肉衰減性肥胖 (sarcopenic obesity, SO),兩者形成惡性循環(huán)[1]。關(guān)于肥胖和sarcopenia間的串擾機制,目前認為肥胖者體內(nèi)過量的脂肪酸不僅儲存在脂肪組織,還可以轉(zhuǎn)運到骨骼肌變成肌肉內(nèi)脂肪組織 (intermuscular AT,IMAT) 和肌細胞內(nèi)三磷酸甘油脂質(zhì)(intramyocellular lipids,IMCLs) 以及脂肪酸衍生物[4]為兩者的串擾提供前提。肌內(nèi)脂肪成分妨礙了線粒體脂肪酸β氧化,使氧自由基生成增加進而誘發(fā)細胞凋亡[5],且影響骨骼肌胰島素敏感性,導(dǎo)致肌纖維收縮減弱和老年人體力降低[6]。另外,脂肪細胞和骨骼肌細胞雖然分屬不同組織,但具有高度同源性,且兩者呈現(xiàn)競爭性抑制狀態(tài)。對骨骼肌細胞和脂肪細胞共培養(yǎng),發(fā)現(xiàn)共培養(yǎng)的肌細胞體積更小,并且與肌萎縮相關(guān)的基因和蛋白表達增加[7];肌源性胰島素樣生長因子II (insulin-like growth factors-II, IGF-II)和其結(jié)合蛋白(IGF bind protein-5, IGFBP-5)均可以刺激肌細胞的增殖和分化,然而在棕櫚酸酯干預(yù)情況下,肌細胞IGF-II/IGFBP-5表達顯著減低[8]。上述研究結(jié)果均證明肌內(nèi)脂肪成分的過度沉積嚴重影響了骨骼肌的質(zhì)量和功能。在我們前期的人群研究中發(fā)現(xiàn),肥胖是老年人sarcopenia 的獨立危險因子[9],同時發(fā)現(xiàn)老年人肌衰征越明顯其包括肥胖、骨質(zhì)疏松、心腦血管疾病等代謝相關(guān)疾病的發(fā)病率就越高[10-11]。以上均構(gòu)成OS這一概念的有利證據(jù)。08F277FE-1812-42D5-97F5-6961A222F407
運動可以有效預(yù)防和緩解OS,其機制涉及多方面。運動可以通過增加能量消耗進而達到減肥效果已被大量研究證實,因此運動緩解由肥胖引起的骨骼肌質(zhì)量和功能下降存在著必然性;此外,運動促進同化類激素分泌,激活成肌因子、抑制肌萎縮因子的表達,激活肌衛(wèi)星細胞等方面,都被認為是運動預(yù)防和緩解sarcopenia的重要原因[12];同時,運動促進骨骼肌表面胰島素受體表達和其敏感性以及線粒體生物合成等方面的效果[13]均能夠緩解由于肥胖對骨骼肌代謝功能的損害,亦成為運動緩解OS的有力證據(jù)。值得注意的是,脂肪組織不僅由脂肪細胞構(gòu)成,還由成纖維細胞、內(nèi)皮細胞和免疫細胞(如,脂肪組織巨噬細胞)組成,亦被認為是重要的內(nèi)分泌器官,其分泌的被稱為脂肪因子的細胞因子樣激素,影響包括骨骼肌在內(nèi)的其他局部和系統(tǒng)炎性狀態(tài);同時衰老脂肪細胞的異位沉積將通過自分泌和旁分泌的形式導(dǎo)致炎癥細胞炎性因子產(chǎn)生失控,進而導(dǎo)致骨骼肌和系統(tǒng)性低度炎性狀態(tài),如Kalinkovich等人[14]的研究發(fā)現(xiàn),共培養(yǎng)的肌細胞體積和數(shù)量減少的主要原因就是脂肪組織誘導(dǎo)的IL-6和IL-1β增加進而導(dǎo)致肌鈣蛋白減低以及蛋白合成能力下降。上述脂肪組織炎癥反應(yīng)被認為與sarcopenia的發(fā)生發(fā)展存在本質(zhì)聯(lián)系[15-16]。運動對脂肪組織炎癥反應(yīng)的調(diào)控也是運動延緩OS的重要機制。
2 脂肪組織炎癥反應(yīng)及其與sarcopenia的關(guān)系
最初被認為是簡單的能量儲存器的脂肪組織,其本身就含有包括巨噬細胞在內(nèi)的免疫細胞,且還是活躍的內(nèi)分泌器官,能分泌瘦素 (leptin)、脂聯(lián)素 (adiponectin)、抵抗素等脂肪因子,參與影響多種免疫細胞的功能狀態(tài)和局部以及系統(tǒng)性炎癥反應(yīng)。脂肪組織的上述炎癥反應(yīng)可能是肥胖加速sarcopenia的本質(zhì)原因。
2.1 脂肪組織巨噬細胞極化與sarcopenia的關(guān)系
近年來在對骨骼肌胰島素抵抗 (insulin resistance, IR) 和2型糖尿病的免疫研究中認識到巨噬細胞在脂肪組織炎癥反應(yīng)中扮演重要角色。巨噬細胞在瘦人中占所有脂肪組織細胞的大約10,而在肥胖者中可達到50,并且瘦人脂肪組織的巨噬細胞以抗炎效應(yīng)的M2型為主,而肥胖者主要為前炎性效應(yīng)的M1型,但在不同內(nèi)環(huán)境下兩者可以相互轉(zhuǎn)化[17]。M2巨噬細胞可以參與脂肪細胞的胞葬作用 (efferocytosis),促進衰老脂肪細胞的凋亡以利于內(nèi)環(huán)境的穩(wěn)定;而M1巨噬細胞被發(fā)現(xiàn)圍繞在瀕危脂肪細胞周圍阻礙其與蛋白水解性脂肪細胞源抗原的結(jié)合,抑制其清除,從而進一步加重機體的炎癥狀態(tài)[18-19]。如Kratz等人研究顯示,當持續(xù)過度暴露于棕櫚酸酯等自由脂肪酸中時,巨噬細胞由M2向M1型轉(zhuǎn)變,引起炎癥反應(yīng)和IR[20]。瘦人脂肪組織的M2型巨噬細胞與抗炎癥反應(yīng)有關(guān),當被2型輔助性T細胞(T-helper type2, Th2) 介質(zhì)如白介素 (IL) 4,13激活后,產(chǎn)生抗炎癥細胞激酶IL-10和IL-1受體抗體(IL1Ra),且M2巨噬細胞可通過IL-10對抗腫瘤壞死因子α (Tumor Necrosis Factorα, TNFα) 誘導(dǎo)的IR[21];然而M1巨噬細胞可以被如γ干擾素 (Interferon γ, IFNγ)、1型輔助性T細胞 (Th1) 等激活,分泌前炎性分子,如TNFα、IL1-β、IL-6、單核細胞趨化蛋白1 (monocyte-chemoattractant protein-1, MCP-1/CCL2) [22]。研究證明TNFα、IL-6可直接促使肌環(huán)指蛋白-1(MuRF-1)、肌萎縮Fbox-1蛋白(muscle atrophy F-box-1,MAFbx,也稱作Atrogin-1)等肌萎縮因子表達,引起骨骼肌的溶解[23]。早期對于慢性肩袖損傷患者的研究已經(jīng)發(fā)現(xiàn),損傷部位骨骼肌會出現(xiàn)明顯的脂肪異位沉積以及炎性因子如IL-1β和巨噬細胞F4/80、CD68、CD11b聚集現(xiàn)象,促使MuRF-1、Atrogin-1等肌萎縮因子的表達[24]。此外,研究亦發(fā)現(xiàn)老年機體脂肪組織巨噬細胞M1/M2比例升高[25],是導(dǎo)致老年群體脂肪組織炎癥狀態(tài)更為嚴重的重要原因,也是肥胖老年機體更容易發(fā)生肌肉衰減的重要依據(jù)。
2.2 肥胖誘導(dǎo)的淋巴細胞免疫反應(yīng)對sarcopenia的影響
T淋巴細胞在脂肪細胞免疫功能中扮演著重要角色。瘦人脂肪組織富含抗炎性CD4+Th2和調(diào)控性T淋巴細胞 (T-regulatory cells, Tregs) 以及非MHC限制性的自然殺傷killer T (iNKT) 細胞,并通過分泌和誘導(dǎo)IL-10的合成來抑制前炎性Th1細胞的擴展[26]。肥胖狀態(tài)下T淋巴細胞從抗炎性Th2和Tregs向前炎性Th1和Th17細胞轉(zhuǎn)變,進而誘導(dǎo)M1巨噬細胞釋放TNFα和IL-6[27],促使肌萎縮因子的表達[24]。 此外,有研究發(fā)現(xiàn)高脂膳食可促使B細胞亞型產(chǎn)生,進而使前炎性IgG2c增加,促使巨噬細胞釋放TNFα以及通過激活I(lǐng)FNγ和IL-17進而誘發(fā)機體炎性狀態(tài)[28]。彌漫性大B細胞淋巴瘤導(dǎo)致機體淋巴細胞炎性失控,而多個研究證明骨骼肌功能狀態(tài)直接影響患者的預(yù)后,肌衰征成為大B細胞淋巴瘤病人預(yù)后的獨立危險因子[29],進一步說明骨骼肌的功能與淋巴細胞炎癥控制之間的相互制約關(guān)系。
2.3 脂肪因子的炎癥反應(yīng)及其對骨骼肌的影響
脂肪組織分泌的脂肪因子多種多樣,參與調(diào)控代謝和免疫,是脂肪組織炎癥反應(yīng)的重要組成部分,并可以通過與肌因子間的對話進而對肌蛋白合成和骨骼肌代謝起到或促進或抑制作用。脂肪因子炎癥反應(yīng)具有兩面性,肥胖者脂肪因子往往導(dǎo)致機體的低級炎癥狀態(tài),進而對機體產(chǎn)生不利影響。肌內(nèi)脂肪因子的大量分泌更直接導(dǎo)致骨骼肌合成障礙和功能低下,加速sarcopenia 的發(fā)生和發(fā)展。
2.3.1 瘦素和脂聯(lián)素的炎癥反應(yīng)及其對骨骼肌的影響08F277FE-1812-42D5-97F5-6961A222F407
瘦素和脂聯(lián)素主要由白色脂肪組織分泌,近期的研究發(fā)現(xiàn),補充外源性瘦素和脂聯(lián)素均可顯著升高哺乳期大鼠血漿IgG、IgM水平,使脾臟CD8 +淋巴細胞比例升高,以及出現(xiàn)胸腺體積增加等免疫成熟的表現(xiàn)[30],說明兩者均能全面參與機體的免疫調(diào)控。脂聯(lián)素的活性依賴肌小管分泌的脂聯(lián)素受體,而后激活A(yù)MP依賴的蛋白激酶(AMP-activated protein kinase, AMPK)和抑制核因子κB (nuclear factor kappa-B, NFκB)信號通路并與單核細胞、巨噬細胞產(chǎn)生TNFα和IFNγ量的降低以及IL-10和IL-1Ra的升高有關(guān)[31],如前所述,TNFα可直接損害人肌小管的分化,影響線粒體生物合成和成肌[24]。值得注意的是,脂聯(lián)素可通過激活A(yù)MPK信號通路的方式刺激骨骼肌和脂肪組織游離脂肪酸氧化和糖攝取,這一效應(yīng)在肥胖者被削弱[31];高脂膳食小鼠血清脂聯(lián)素下降伴隨Th1 CD4+T升高和Tregs降低以及脂肪組織IL-10的降低[32],這些炎癥特點均可誘導(dǎo)骨骼肌萎縮。人群研究發(fā)現(xiàn),肥胖者體內(nèi)血清脂聯(lián)素水平下降與肌生長抑素水平呈負相關(guān)[33]并可以作為肌生長抑素的獨立危險預(yù)測因子[34],這可能是肥胖加速sarcopenia 的又一重要因素。肌生長抑制素是TGF-β家族成員之一,由骨骼肌表達,并通過抑制IGF-I/Akt/哺乳動物雷帕霉素靶蛋白 (mammalian target of rapamycin, mTOR) 信號通路的活性進而抑制肌蛋白合成,并可以加速FOXO介導(dǎo)的肌萎縮以及影響葡萄糖轉(zhuǎn)移體4 (Glucose Transporter 4 ,GLUT4) 和 AMPK活性影響骨骼肌能量攝取和利用[35]。隨著年齡增加,肌生長抑素表達增加,尤其是肥胖人群血清肌生長抑素水平顯著高于體脂正常人群[36],動物實驗進一步證明這一現(xiàn)象與脂肪組織炎癥反應(yīng)密切相關(guān)[35]。與脂聯(lián)素不同,瘦素與體脂含量呈正相關(guān),瘦素可通過升高單核細胞分泌TNFα,IL-6,IL-12而促進前炎性反應(yīng)[37],也被發(fā)現(xiàn)可使CD4+細胞分化成能產(chǎn)生IL-17的細胞,并升高IL-17A的水平同是抑制Tregs的形成[38],如前所述瘦素的這些炎性效應(yīng)均可通過介導(dǎo)淋巴細胞炎癥反應(yīng)引起骨骼肌衰減[22]。同時肥胖者體內(nèi)瘦素水平的增加抑制鳶尾素的表達[39]。鳶尾素主要由骨骼肌誘導(dǎo)分泌,可與過氧化物酶體增殖物激活受體γ輔激活因子1α (peroxisome proliferator-activated receptor γ coactiva-tor-1 , PGC1α) 互相激活,進而提高小鼠骨骼肌肌管細胞線粒體數(shù)量和攝氧能力,同時可激活I(lǐng)GF-1/Akt/mTOR通路與骨骼肌面積,與肌肉力量和代謝能力呈正相關(guān)[40],被認為是肌生長抑素的拮抗因子。另外,肥胖者體內(nèi)高瘦素水平削弱了鳶尾素降低TNFα和IL-6水平以及誘導(dǎo)M2型巨噬細胞分化的效應(yīng)[41],也可能是瘦素促使sarcopenia的另一機制。
2.3.2 骨橋蛋白的炎癥反應(yīng)及其對骨骼肌的影響
骨橋蛋白 (osteopontin, OPN) 可在免疫細胞、脂肪組織和骨骼肌中表達,并調(diào)控單核細胞附著轉(zhuǎn)移和分化以及吞噬作用,并且能募集前炎性Th1和Th17細胞轉(zhuǎn)移到脂肪組織[42]。高脂膳食和基因性肥胖小鼠脂肪組織中OPN表達分別升高40和80倍,同時高脂膳食可使OPN在巨噬細胞的表達升高并轉(zhuǎn)運至脂肪組織[43],提示其參與肥胖相關(guān)的脂肪組織炎癥反應(yīng)。多種肌營養(yǎng)不良患者和免疫性肌病患者骨骼肌OPN表達均增加[44-45]。OPN還被發(fā)現(xiàn)可誘導(dǎo)巨噬細胞極化,加速骨骼肌炎癥進而抑制肌細胞的增殖和分化[42]以及通過介導(dǎo)免疫使肌肉內(nèi)TGF-β的生成增加進而抑制Duchenne 型肌營養(yǎng)不良基因鼠的肌肉再生[46]。
2.3.3 抵抗素、化學(xué)趨化因子和色素上皮源性因子的炎癥反應(yīng)與骨骼肌胰島素抵抗
抵抗素 (resistin) 因為其介導(dǎo)了肥胖誘導(dǎo)的IR而得名,并可激活NFκB信號通路,升高單核細胞、巨噬細胞以及肝臟干細胞中TNFα、IL-6、IL-12和MCP-1表達。抵抗素不僅在脂肪細胞表達,在骨骼肌中也被檢測到,并且當注射IL-6后人體骨骼肌和脂肪組織的抵抗素水平均增加,同時明顯影響骨骼肌的氧化代謝能力誘導(dǎo)IR[47]。說明抵抗素對骨骼肌功能具有顯著抑制作用,肥胖者脂肪細胞分泌抵抗素水平增加將成為肥胖性肌衰征的又一誘導(dǎo)因素。化學(xué)趨化因子 (Chemerin)可在脂肪細胞、巨噬細胞、骨骼肌細胞等分泌,屬于脂肪因子家族成員,參與調(diào)控脂肪細胞分裂增殖和骨骼肌IR等過程,其表達水平與瘦素呈正相關(guān)同時受脂聯(lián)素水平的抑制。在對C2C12肌管細胞培養(yǎng)實驗中發(fā)現(xiàn),Chemerin誘導(dǎo)C2C12細胞向脂肪細胞分化[48]。人群研究發(fā)現(xiàn),Chemerin可誘導(dǎo)骨骼肌胰島素抵抗,無論是手術(shù)減肥還是低熱量飲食或運動減肥后血清Chemerin水平均下降[49]。另外Chemerin與TNFα, IL-6等炎性因子間互相誘導(dǎo),加重局部和整體的炎性狀態(tài)[50]。上述研究均提示抵抗素和chemerin與炎癥、肥胖、骨骼肌病理之間的密切聯(lián)系。另一個與肥胖、炎癥和肌肉病理聯(lián)系起來的因素是色素上皮源性因子 (pigment epithelium-derived factor, PEDF),它屬于絲氨酸蛋白酶抑制劑家族的脂肪因子,在骨骼肌和脂肪細胞以及巨噬細胞中均有表達且在肥胖、T2MD、高脂血癥患者血清PEDF水平均顯著高于正常人群[49]。PEDF與NF-κB、TNFα、 IL-6等免疫因子間均具有相互誘導(dǎo)效應(yīng),被認為是其誘導(dǎo)骨骼肌胰島素抵抗的重要炎性因素[51]。最新一項對T2MD合并慢性腎病患者的8年追蹤實驗研究發(fā)現(xiàn),患者PEDF水平升高與漸進性骨骼肌質(zhì)量下降存在直接關(guān)系[52]。
以上研究表明,脂肪因子在調(diào)控包括骨骼肌在內(nèi)的局部和系統(tǒng)免疫中發(fā)揮重要作用,正常情況下各個系統(tǒng)相互制約達成機體免疫的平衡和協(xié)調(diào),但是當機體過度肥胖時,上述平衡出現(xiàn)紊亂,進而導(dǎo)致肥胖——骨骼肌衰減——肥胖加重的惡性循環(huán)。08F277FE-1812-42D5-97F5-6961A222F407
3 運動對脂肪組織炎癥反應(yīng)的影響
運動可有效減脂和緩解sarcopenia已經(jīng)被普遍證明和認可,但是關(guān)于運動防治sarcopenia 的機制非常復(fù)雜,對其機制的探討從未停止。雖然目前缺乏運動通過脂肪組織炎癥反應(yīng)的影響進而緩解sarcopenia的直接證據(jù),但鑒于前述脂肪組織炎癥反應(yīng)在肥胖性sarcopenia中的作用,運動對脂肪組織炎癥反應(yīng)的良性調(diào)控,將成為運動減肥和防治sarcopenia的有力證據(jù)。
3.1 運動的免疫調(diào)節(jié)作用
近期研究顯示,中等強度有氧運動可以通過促使巨噬細胞極化 (M2-M1) 進而緩解脂肪組織炎癥狀態(tài),減輕肥胖[53]。如前所述,肥胖者脂肪組織M1/M2巨噬細胞比例增加是包括肌衰征在內(nèi)的衰老相關(guān)疾病發(fā)生的危險因子[18-20]。因此雖然目前缺乏直接證據(jù),但運動對巨噬細胞極化的這種影響必然成為運動緩解sarcopenia 的重要機制。運動誘導(dǎo)的免疫調(diào)節(jié)作用早已被證實,并且受運動強度、持續(xù)時間和頻率影響。在人類和動物模型中,長時間運動和/或劇烈運動被發(fā)現(xiàn)導(dǎo)致促炎性細胞因子如IL-6,IL-8,TNF-α和IL-1等增加,NK細胞、T和B淋巴細胞以及嗜中性粒細胞活性降低[54]。因此無論是從能量代謝角度還是免疫調(diào)節(jié)角度,長時間劇烈運動對于減肥控體和骨骼肌質(zhì)量及功能均具有不利影響,這也是運動實踐中長時間劇烈運動不可取的重要原因;相反,長時間中低強度運動可起到明顯的免疫防御作用。近期研究發(fā)現(xiàn),中低強度運動可以增強中性粒細胞氧化活性和巨噬細胞的吞噬能力,增加TCD4淋巴細胞的百分比和IL- 1β含量,減少循環(huán)中的TNF-α和IL-6水平[52],這很重要,因為IL-6和TNF-α的降低會增加抗炎細胞因子的釋放,進而抑制過度活躍的免疫反應(yīng),促進組織修復(fù)[55],同時對骨骼肌代謝和肌蛋白合成均具有促進作用[31,40];另外,中低強度的鍛煉也會增加T細胞產(chǎn)生的抗炎細胞因子IL-4和IL-10等[56]。因此長期中低強度的運動對骨骼肌質(zhì)量和功能的促進作用與其上述良性的免疫調(diào)節(jié)效果存在相關(guān)性,但是目前尚缺乏直接數(shù)據(jù)支持,有待進一步研究證實。
3.2 運動對脂肪因子的影響
如前所述,肥胖者脂肪因子的促炎效應(yīng)是肥胖性肌萎縮的重要原因,在運動減肥的大量研究中發(fā)現(xiàn)運動可有效調(diào)控脂肪因子趨于炎癥穩(wěn)態(tài),因此運動通過對脂肪因子的影響以及通過肌因子和脂肪因子之間的對話進而起到緩解sarcopenia的作用存在必然性。近期研究指出,長期低強度有氧運動有效提高肥胖者和體重正常者脂聯(lián)素/瘦素比值,緩解肥胖者胰島素抵抗[57-58]。Jandova等人最新發(fā)表的Meta分析結(jié)果詳實闡述了長期運動對血清鳶尾素水平的提高以及對機體的效應(yīng),指出運動導(dǎo)致的鳶尾素水平的提升不僅對骨骼肌代謝功能和肌蛋白合成具有促進作用,并且也是運動改善認知功能的重要靶點[59]。在早期運動減肥機制探討中發(fā)現(xiàn)運動可降低血清骨橋蛋白的濃度[60],近期在探討運動對腎衰模型小鼠的心功能影響研究中亦發(fā)現(xiàn)運動對心肌收縮功能的促進作用與運動降低骨橋蛋白含量有關(guān)[61]。肥胖者體內(nèi)抵抗素和Chemerin以及PEDF的增加是引起胰島素抵抗等骨骼肌代謝功能異常的重要原因[47,49]。運動可降低血清抵抗素、Chemerin和PEDF的濃度已經(jīng)被大量研究證實[62-63]。如,近期對7-9歲肥胖女孩的研究發(fā)現(xiàn),12周的有氧加抗阻運動使血清抵抗素顯著下降,脂聯(lián)素顯著升高,并且在停止訓(xùn)練4周后血清脂聯(lián)素和抵抗素迅速反轉(zhuǎn),其減肥效果也出現(xiàn)反彈[64]。
上述研究提示,運動可以通過調(diào)節(jié)脂肪組織炎癥反應(yīng)進而起到緩解肥胖和胰島素抵抗等作用,雖然未見有運動調(diào)控脂肪組織炎癥反應(yīng)進而緩解sarcopenia 的直接證據(jù),但是鑒于脂肪組織炎癥反應(yīng)與sarcopenia間的密切聯(lián)系,其成為運動緩解肥胖性肌少癥的重要介導(dǎo)機制存在必然性。但這種必然性需要我們開展進一步研究來證實。
4 小 結(jié)
肥胖性肌少癥是老齡化社會嚴峻的公共衛(wèi)生問題,盡管前人已經(jīng)做了大量研究,但其機制及防控手段的研究任重道遠,對于我們探索防治衰老相關(guān)疾病的措施具有重要意義。已有的研究提示,脂肪組織炎癥反應(yīng)通過異位IMAT和IMCLs激發(fā)骨骼肌炎癥反應(yīng),除誘發(fā)sarcopenia之外,還激發(fā)了全身系統(tǒng)性慢性炎癥狀態(tài)。這種炎癥狀態(tài)的危害涉及多個方面,如,世衛(wèi)組織報告中提出,肥胖的老年人尤其是合并糖尿病、心血管疾病等慢性疾病人群是新型冠狀病毒肺炎的易感者并且更容易發(fā)展成重癥患者,與該人群普遍存在的低級炎癥狀態(tài)誘發(fā)的內(nèi)皮細胞損害密切相關(guān)[2-3]。衰老是生命的自然規(guī)律,具有不可逆性,但肥胖和肌少癥可通過合理的生活方式進行干預(yù),科學(xué)運動鍛煉是關(guān)鍵,運動在防治肥胖癥的同時還可促進骨骼肌的質(zhì)量和功能,實現(xiàn)良性循環(huán)。雖然運動防治肥胖性肌少癥的機制復(fù)雜,但已有的研究提示運動對脂肪組織炎癥反應(yīng)的影響在運動防治肥胖性肌少癥過程中的作用不容忽視,并亟需進一步探討。
參考文獻:
[1]Hong SH, Choi KM. Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences [J]. Int J Mol Sci,2020,21(2):494.
[2]Ekiz T, Pazarl ?AC. Relationship between COVID-19 and obesity [J]. Diabetes Metab Syndr,2020,14(5):761-763.
[3]Cepon-Robins TJ, Gildner TE. Old friends meet a new foe. A potential role for immune-priming parasites in mitigating COVID-19 morbidity and mortality [J]. Evol Med Public Health,2020(1):234-248.08F277FE-1812-42D5-97F5-6961A222F407
[4]Stinkens R, Goossens GH, Jocken JW, et al. Targeting fatty acidmetabolism to improve glucose metabolism [J]. Obes Rev, 2015, 16(9):715-57.
[5]Heo JW, Yoo SZ, No MH, et al. Exercise Training Attenuates Obesity-Induced Skeletal Muscle Remodeling and Mitochondria-Mediated Apoptosis in the Skeletal Muscle [J]. Int J Environ Res Public Health. 2018,15(10): 2301.
[6]St-Jean-Pelletier F, Pion CH, Leduc-Gaudet JP, et al. The impact of ageing, physical activity, and pre‐frailty on skeletal muscle phenotype, mitochondrial content, and intramyocellular lipids in men [J]. J Cachexia Sarcopenia Muscle,2017,8(2):213-228.
[7]Pellegrinelli V, Rouault C, Rodriguez-Cuenca S, et al. Human adipocytes induce inflammation and atrophy in muscle cells during obesity [J]. Diabetes,2015,64(9):3121-34.
[8]Deshmukh AS, Cox J, Jensen LJ, etal. Secretome analysis of lipid-Induced insulin resistance in skeletal muscle cells by acombined experimental and bioinformatics workflow[J].J Proteome Res, 2015,14(11):4885-4895.
[9]Han P, Kang L, Guo Q, et al. Prevalence and Factors Associated with Sarcopenia in Suburb-Dwelling Older Chinese using the Asian Working Group for Sarcopenia Definition [J]. J Gerontol A Biol Sci Med Sci,2016,71(4):529-535.
[10]Yu X, Hou L, Guo J, et al. Combined Effect of Osteoporosis and Poor Dynamic Balance on the Incidence of Sarcopenia in Elderly Chinese Community Suburban-Dwelling Individuals [J]. J Nutr Health Aging. 2020,24(1):71-77.
[11]Chen X, Guo J, Han P, et al. Twelve-Month Incidence of Depressive Symptoms in Suburb-Dwelling Chinese Older Adults: Role of Sarcopenia [J]. J Am Med Dir Assoc,2019,20(1):64-69.
[12]Bilski J,Pierzchalski P,Szczepanik M, et al. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines[J].Cells,2022,11(1):160.
[13]Erlich, AT, Tryon, LD, Crilly, MJ, et al. Function of specialized regulatory proteins and signaling pathways in exercise-induced muscle mitochondrial biogenesis[J]. Integr. Med.Res,2016(5):187-197.
[14]Kalinkovich A, Livshits G. Sarcopenia-the search for emerging biomarkers [J]. Ageing Res Rev,2015(22):58-71.
[15]Collins KH, Herzog W, MacDonald GZ, et al. Obesity, Metabolic Syndrome, and Musculoskeletal Disease: Common Inflammatory Pathways Suggest a Central Role for Loss of Muscle Integrity Front [J]. Physiol,2018,9(112):1-25.
[16]Abete I, Konieczna J, Zulet MA, et al. Association of lifestyle factors and inflammation with sarcopenic obesity: data from the PREDIMED‐Plus trial [J]. J Cachexia Sarcopenia Muscle,2019,10(5):974-984.08F277FE-1812-42D5-97F5-6961A222F407
[17]Kalinkovich A, Livshits G. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis [J]. Ageing Res Rev,2017(35):200-221.
[18]Fitzgibbons TP, Czech MP. Czech Emerging evidence for beneficial macrophage functions in atherosclerosis and obesity-induced insulin resistance [J].J Mol Med (Berl),2016(94):267-275.
[19]Sághy T, Krskényi K, Hegeds K, et al. Loss of transglutaminase 2 sensitizes for diet-induced obesity-related inflammation and insulin resistance due to enhanced macrophage c-Src signaling [J]. Cell Death Dis,2019,10(6):439.
[20]Kratz M, Coats BR, Hisert KB, et al. Metabolic dysfunction drivesa mechanistically distinct proinflammatory phenotype in adipose tissue macrophages [J]. Cell Metab, 2014, 20(4):614-625.
[21]Chistiakov DA, Myasoedova VA, Revin VV, et al. The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2 [J]. Immunobiology, 2018,223(1):101-111.
[22]Castoldi A, Naffah de Souza C, C mara NO, et al. The macrophage switch in obesity development [J]. Front Immunol,2016(6):637.
[23]Li Y, Zhang F, Modrak S, et al. Chronic Alcohol Consumption Enhances Skeletal Muscle Wasting in Mice Bearing Cachectic Cancers: The Role of TNFα/Myostatin Axis [J]. Alcohol Clin Exp Res,2020,44(1):66-77.
[24]Gumucio JP, Korn MA, Saripalli AL, et al. Aging-associated exacerbation in fatty degeneration and infiltration after rotator cuff tear [J]. J Shoulder Elbow Surg,2014,23(1):99-108.
[25]Baek KW, Lee DI, Jeong MJ, et al. Effects of lifelong spontaneous exercise on the M1/M2 macrophage polarization ratio and gene expression in adipose tissue of super-aged mice [J]. Exp Gerontol. 2020,141(11):111091.
[26]Rodríguez A, Ezquerro S, Méndez-Giménez L, et al. Revisiting the adipocyte: a model for integration of cytokine signaling in the regulation of energy metabolism [J]. Am J Physiol Endocrinol Metab, 2015,309(8):691-714.
[27]Eljaafari A, Robert M, Chehimi M, et al. Adipose tissue-derived stem cells from obese subjects contribute to inflammation and reduced insulin response in adipocytes through differential regulation of the Th1/Th17 balance and monocyte activation [J]. Diabetes,2015,64(7):2477-2488.
[28]Kim B, Kim MS, Hyun CK. Syringin attenuates insulin resistance via adiponectin-mediated suppression of low-grade chronic inflammation and ER stress in high-fat diet-fed mice [J]. Biochem Biophys Res Commun,2017,488(1):40-45.08F277FE-1812-42D5-97F5-6961A222F407
[29]Go SI, Kim HG, Kang MH, et al. Prognostic model based on the geriatric nutritional risk index and sarcopenia in patients with diffuse large B-cell lymphoma [J]. BMC Cancer,2020, 20(1):439.
[30]Grases-Pintó B, Abril-Gil M, Castell M, et al. Enhancement of immune maturation in suckling rats by leptin and adiponectin supplementation [J]. Sci Rep,2019(9):1786.
[31]Dong Z, Zhuang Q, Ye X,, etal. Adiponectin Inhibits NLRP3 Inflammasome Activation in Nonalcoholic Steatohepatitis via AMPK-JNK/ErK1/2-NFκB/ROS Signaling Pathways [J]. Front Med (Lausanne),2020(7):546445.
[32]La Russa D, Marrone A, Mandalà M, et al. Antioxidant/Anti-Inflammatory Effects of Caloric Restriction in an Aged and Obese Rat Model: The Role of Adiponectin[J]. Biomedicines, 2020, 8(12): 532.
[33]Kurose S, Onishi K, Takao N, et al. Association of serum adiponectin and myostatin levels with skeletal muscle in patients with obesity: A cross-sectional study [J]. PLoS One,2021 Jan 19;16(1):e0245678.
[34]Takao N, Kurose S, Miyauchi T, et al. The relationship between changes in serum myostatin and adiponectin levels in patients with obesity undergoing a weight loss program [J]. BMC Endocr Disord,2021,21(1):147.
[35]Consitt LA, Clark BC. The vicious cycle of myostatin signaling in sarcopenic obesity: myostatin role in skeletal muscle growth, insulin signaling and implications for clinical trials [J]. J Frailty Aging, 2018,7(1):21-27.
[36]Amor M, Itariu B, Moreno-Viedma V, et al. Serum myostatin is upregulated in obesity and correlates with insulin resistance in humans[J].Exp Clin Endocrinol Diabetes,2019(127):550-556.
[37]Tazawa R, Uchida K, Fujimaki H, et al. Elevated leptin levels induce inflammation through IL-6 in skeletal muscle of aged female rats [J]. BMC Musculoskelet Disord,2019,20(1):199.
[38]Reis BS, Lee K, Fanok MH, et al. Leptin receptor signaling in T cells is required for Th17 differentiation[J].J Immunol,2015,194(11):5253-5260.
[39]Ozcan S, Ulker N, Bulmus O, et al. The modulatory effects of irisin on asprosin, leptin, glucose levels and lipid profile in healthy and obese male and female rats [J]. Arch Physiol Biochem.,2020(6):1-8.
[40]Reza MM, Subramaniyam N, Sim CM, et al. Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy [J]. Nat Commun,2017,8(1):1104.
[41]Dong J, Dong Y, Dong Y, et al.Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talkbetween muscle and adipose tissues [J]. Int J Obes (Lond),2016,40(3):434-442.08F277FE-1812-42D5-97F5-6961A222F407
[42]Capote J, Kramerova I, Martinez L, et al. Osteopontin ablation ameliorates muscular dystrophy by shifting macrophages to a pro-regenerative phenotype[J].J Cell Biol,2016,213(2):275-288.
[43]Kiefer FW, Zeyda M, Gollinger K, et al. Neutralization of osteopontin inhibits obesity-induced inflammation and insulin resistance [J]. Diabetes,2010,59(4):935-946.
[44]Zanotti S,Gibertini S,Di BC,et al.Osteopontin is highly expressed in severely dystrophic muscle and seems to play a role in muscle regeneration and fibrosis [J].Histopathology,2011,59(6):1215-1528.
[45]Xiao F,Tan JZ,Xu X,et al.Increased osteopontin in muscle and serum from patients with idiopathic inflammatory myopathies [J].Clin Exp Rheumatol,2015,33(3):399-404.
[46]Kuraoka M, Kimura E, Nagata T, et al. Serum Osteopontin as a Novel Biomarker for Muscle Regeneration in Duchenne Muscular Dystrophy[J].Am J Pathol,2016,186(5):1302-1312.
[47]Santoro A,Guidarelli G,Ostan R, et al.Gender-specific association of body composition with inflammatory and adipose-related markers in healthy elderly Europeans from the NU-AGE study[J].Eur Radiol,2019,29(9):4968-4979.
[48]Li HX,Chen KL,Wang HY,et al.Chemerin inhibition of myogenesis and induction of adipogenesis in C2C12 myoblasts[J].Mol Cell Endocrinol,2015(414):216-223.
[49]Kalinkovich A,Livshits G.Sarcopenic obesity or obese sarcopenia:A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis [J].Ageing Res Rev,2017(35):200-221.
[50]Tarabeih N,Shalata A,Trofimov S,et al.Growth and differentiation factor 15 is a biomarker for low back pain-associated disability[J].Cytokine,2019(117):8-14.
[51]Farr OM,Gavrieli A,Mantzoros CS.Leptin applications in 2015:what have we learned about leptin and obesity [J]?Curr Opin Endocrinol Diabetes Obes,2015,22(5):353-359.
[52]Low S,Pek S,Moh A,et al.Low muscle mass is associated with progression of chronic kidney disease and albuminuria - An 8-year longitudinal study in Asians with Type 2 Diabetes[J].Diabetes Res Clin Pract,2021(174):108777.
[53]Baek KW,Lee DI,Kang SA,et al.Differences in macrophage polarization in the adipose tissue of obese mice under various levels of exercise intensity [J].J Physiol Biochem,2020,76(1):159-168.
[54]Simpson RJ,ampbell JP,Gleeson M,et al.Can exercise affect immune function to increase susceptibility to infection[J].Exerc Immunol Rev,2020(26):8-22.08F277FE-1812-42D5-97F5-6961A222F407
[55]Cao X. COVID-19: immunopathology and its implications for therapy [J].Nat Rev Immunol,2020,20(5):269-270.
[56]Da Silveira MP,da Silva Fagundes KK,Bizuti MR,et al.Physical exercise as a tool to help the immune system against COVID-19:an integrative review of the current literature [J]. Clin Exp Med,2021,21(1):15-28.
[57]Kao HH,Hsu HS,Wu TH,et al.Effects of a single bout of short-duration high-intensity and long-duration low-intensity exercise on insulin resistance and adiponectin/leptin ratio[J].Obes Res Clin Pract,2021,15(1):58-63.
[58]Dundar A,Kocahan S,Sahin L.Associations of apelin, leptin, irisin, ghrelin, insulin, glucose levels, and lipid parameters with physical activity during eight weeks of regular exercise training[J].Arch Physiol Biochem,2021,127(4):291-295.
[59]Jandova T,Buendía-Romero A,Polanska H,et al.Long-Term Effect of Exercise on Irisin Blood Levels-Systematic Review and Meta-Analysis [J].Healthcare (Basel),2021,9(11):1438-1455.
[60]You JS,Ji HI,Chang KJ,et al.Serum osteopontin concentration is decreased by exercise-induced fat loss but is not correlated with body fat percentage in obese humans[J].Mol Med Rep,2013,8(2):579-584.
[61]Dunkley JC,Irion CI,Yousefi K,et al.Carvedilol and exercise combination therapy improves systolic but not diastolic function and reduces plasma osteopontin in Col4a3-/- Alport mice [J].Am J Physiol Heart Circ Physiol,2021,320(5):H1862-H1872.
[62]Lakhdar N,Landolsi M,Bouhlel E,et al.Effect of diet and diet combined with chronic aerobic exercise on chemerin plasma concentrations and adipose tissue in obese women[J].Neuro Endocrinol Lett,2019,40(6):262-270.
[63]Cobbold C.Type 2 diabetes mellitus risk and exercise:is resistin involved?[J].J Sports Med Phys Fitness,2019,59(2):290-297.
[64]Shokri E,Heidarianpour A,Razavi Z.Positive effect of combined exercise on adipokines levels and pubertal signs in overweight and obese girls with central precocious puberty[J].Lipids Health Dis,2021,20(1):152-166.08F277FE-1812-42D5-97F5-6961A222F407