張文艷
摘 要:分?jǐn)?shù)應(yīng)用題是六年級數(shù)學(xué)中較為重要也是最難的知識,同時也是變化最多的知識點。學(xué)生在學(xué)習(xí)過程中錯題是經(jīng)常出現(xiàn)的,有些常見錯題是每屆學(xué)生都反復(fù)出錯,如何減少錯題、預(yù)防錯題的發(fā)生是教學(xué)工作的難點。
關(guān)鍵詞:分?jǐn)?shù);應(yīng)用題;案例分析
易錯的分?jǐn)?shù)應(yīng)用題,題型廣博,變化多端。在教學(xué)中,我們應(yīng)適當(dāng)?shù)亟探o學(xué)生一些解題方法,以拓寬思路,提高解題能力。
一、從確定對應(yīng)入手找出解題方法
分?jǐn)?shù)應(yīng)用題中有一個“量率對應(yīng)”的明顯特點,對一個單位“1”來說,每個分率都對應(yīng)著一個具體的數(shù)量,而每一個具體的數(shù)量,也同樣對應(yīng)著一個分率,因此,正確地確定“量率對應(yīng)”是解題的關(guān)鍵。我們要引導(dǎo)學(xué)生學(xué)會和掌握“明確對應(yīng),找準(zhǔn)對應(yīng)分率”的解題方法。
例:小明看一本童話書,第一天看了總頁數(shù)的1/4,第二天看了總頁數(shù)的1/2,還剩68頁沒有看,這本故事書共有多少頁?
把這本童話書的總頁數(shù)看作單位“1”,要求這本童話書共有多少頁,就要求出剩下的68頁的對應(yīng)分率。根據(jù)已知條件,第一、二天看了總頁數(shù)的(1/4+1/2),還剩下68頁的對應(yīng)分率是(1-1/4-1/2),求這本童話書共有多少頁,就是已知單位“1”的(1-1/4-1/2)是68頁,求單位“1”。于是列式為:
68÷(1-1/4-1/2)=156(頁)
二、通過統(tǒng)一標(biāo)準(zhǔn)量找出解題方法
在一道分?jǐn)?shù)應(yīng)用題中,如果出現(xiàn)了幾個分率,而且這些分率的標(biāo)準(zhǔn)量不同,量的性質(zhì)相異,在解題時,必須以題中的某一個量為標(biāo)準(zhǔn)量,將其余量的對應(yīng)分率統(tǒng)一到這個標(biāo)準(zhǔn)量上來,才可列式解答。
例:果園里有蘋果樹和梨樹共420棵,蘋果樹棵數(shù)的1/3等于梨樹的4/9,問這兩種果樹各有多少棵?
題中的1/3是以蘋果樹為標(biāo)準(zhǔn)量,4/9是以梨樹為標(biāo)準(zhǔn)量,解題時必須統(tǒng)一成一個標(biāo)準(zhǔn)量。
若以蘋果樹為單位“1”,則有1×1/3=梨樹×4/9,那么梨樹就相當(dāng)于單位“1”的1/3÷4/9,兩種果樹的總棵數(shù)就相當(dāng)于單位“1”的(1+1/3÷4/9),于是列式為:
420÷(1+1/3÷4/9)=240(棵)……蘋果樹
240÷(1/3÷4/9)=180(棵)……梨樹
也可以把梨樹看作單位“1”,或把兩種果樹的總棵數(shù),或者相差棵數(shù)看作單位“1”。
三、通過假設(shè)推算找出解題方法
有些分?jǐn)?shù)應(yīng)用題,如果按題中所給條件直接去思考,就難以找到解題方法,如果在解題時先假設(shè)一個主觀上所需要的條件,然后按照題目里的數(shù)量關(guān)系推算,所得的結(jié)果則發(fā)生與題目條件不同的矛盾,再進(jìn)行適當(dāng)?shù)恼{(diào)整,即可找到正確的答案。
例:紅花村修一條水渠,第一周修了全長的2/5多10米,第二周修了全長的1/4少5米,還剩下282米沒有修。這條水渠長多少米?
假設(shè)第一周修的恰好是全長的2/5,這樣第一、二周修后剩下的282米中就要增加10米;假設(shè)第二周修的恰好是全長的1/4,這樣第一、二周修后剩下的282米中又要減少5米,于是條件變?yōu)椤暗谝恢苄蘖巳L的2/5,第二周修了全長的1/4,還剩下(282+10-5)米沒有修。把這條水渠全長看作單位“1”,那么(282+10-5)米的對應(yīng)分率就是(1-2/5-1/4)。于是列式為:
(282+10-5)÷(1-2/5-1/4)=8201(米)
四、通過逆推找出解題方法
有些分?jǐn)?shù)應(yīng)用題,如果按從始至終的先后順序去分析,很難達(dá)到解決問題的目的,甚至陷入絕境。不妨“反過來想一想”進(jìn)行逆推,便容易打開思路,順利解題。
例:有一個油桶里的油,第一次倒出1/3后加入20千克,第二次倒出這時油的1/6多5千克,這時桶里剩下油95千克。問原來桶里有油多少千克?
從最后條件出發(fā)思考:95+5=100(千克),即為現(xiàn)存油的5/6,故現(xiàn)在桶里有油100÷5/6=120,再從第一個條件思考,120-20=100(千克),即為原存油的2/3,因此,原來桶里有油100÷2/3=150(千克)。綜合算式:
〔(95+5)÷(1-1/6)-20〕÷(1-1/3)=150(千克)
五、借助線段圖找出解題方法
分?jǐn)?shù)應(yīng)用題的數(shù)量關(guān)系比較抽象、隱蔽,如果根據(jù)題意畫出線段圖,可使抽象變具體,隱蔽明朗化,從而借助線段圖揭示的數(shù)量關(guān)系可直觀地找出解題方法,甚至有的題還可找到簡捷的解法。
例:甲乙兩人共存人民幣若干元,其中甲占3/5,若乙給甲60元后,則乙余下的錢占總數(shù)的1/4,甲乙兩人各存人民幣多少元?根據(jù)題意畫線段圖:附圖{圖}
從線段圖上一目了然,60元的對應(yīng)分率是(1-3/5-1/4),于是可求出甲乙兩人共存人民幣多少元,進(jìn)而可求出甲乙兩人各存人民幣多少元。
60÷(1-3/5-1/4)=3200(元)……甲乙兩人共存
3200×3/5=1920(元)……甲
3200×(1-3/5)=1280(元)……乙或3200-1920=1280(元)
六、抓住不變量找出解題方法
對于標(biāo)準(zhǔn)量不統(tǒng)一的分?jǐn)?shù)應(yīng)用題,如果我們能從題中找到一個不變量,就以不變量為突破口,便能夠很快找到解題方法。
例:一個車間有工人360人,其中女工占3/5,后來又招進(jìn)一批女工,這時女工人數(shù)占全車間工人總?cè)藬?shù)的5/8,又招進(jìn)女工多少人?
從題中可知,女工人數(shù)起了變化,引起全車間工人總?cè)藬?shù)起了變化,但是男工人數(shù)始終沒有增減,因此,抓住男工人數(shù)沒有變化這個不變量來分析。當(dāng)全車間工人為360人時,女工占3/5,則男工占1-3/5=2/5,為360×2/5=144(人)。又招進(jìn)一批女工后,女工人數(shù)占這時全車間工人總?cè)藬?shù)的5/8,則男工人數(shù)占這時全車間工人總?cè)藬?shù)的1-5/8=3/8,因此,這時全車間有工人144÷3/8=3849(人)。原來全車間有工人360人,現(xiàn)在增加到384人,增加的原因是由于招進(jìn)了一批女工,故又招進(jìn)女工384-360=24(人)。綜合算式:
360×(1-3/5)÷(1-5/8)-360=24(人)
相關(guān)文獻(xiàn):
[1]學(xué)生解應(yīng)用題時的常見障礙『J』萬尚林
[2]常見應(yīng)用題錯例分析 『J』陳秀英