亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        例談構(gòu)造函數(shù)解一類(lèi)導(dǎo)數(shù)題

        2021-09-10 07:22:44李俊
        關(guān)鍵詞:解題

        李俊

        摘 要:構(gòu)造函數(shù)法是指通過(guò)一定方式,設(shè)計(jì)并構(gòu)造一個(gè)與有待解答問(wèn)題相關(guān)的函數(shù),通過(guò)觀察分析,借助函數(shù)本身的性質(zhì),如單調(diào)性或利用運(yùn)算結(jié)果,解決原問(wèn)題的方法.構(gòu)造函數(shù)法解題是一種創(chuàng)造性思維過(guò)程,具有較大的靈活性和技巧性.在運(yùn)用過(guò)程中,應(yīng)有目的、有意識(shí)地進(jìn)行構(gòu)造,始終“盯住”要解決的目標(biāo).

        關(guān)鍵詞:構(gòu)造函數(shù);導(dǎo)數(shù)

        中圖分類(lèi)號(hào):G632文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1008-0333(2021)10-0065-03

        近幾年各地高考數(shù)學(xué)試卷中,許多涉及函數(shù)選擇題或填空題的題目,可采用構(gòu)造函數(shù)法進(jìn)行解答.所謂構(gòu)造函數(shù)法是指通過(guò)一定方式,設(shè)計(jì)并構(gòu)造一個(gè)與有待解答問(wèn)題相關(guān)的函數(shù),通過(guò)觀察分析,借助函數(shù)本身的性質(zhì),如單調(diào)性或利用運(yùn)算結(jié)果,解決原問(wèn)題的方法.簡(jiǎn)而言之就是構(gòu)造函數(shù)解答問(wèn)題.如何合理地構(gòu)造函數(shù)就成為了問(wèn)題的關(guān)鍵,這里我們就這方面問(wèn)題探討一下.

        例1 已知函數(shù)f(x)的定義域?yàn)镽,f(-1)=2,且對(duì)任意x∈R,都有f ′(x)>2,則f(x)>2x+4的解集為().

        A.(-1,1)B.(-1,+∞)

        C.(-∞,-1)D.(-∞,+∞)

        解析 構(gòu)造函數(shù)h(x)=f(x)-2x-4,所以h′(x)=f ′(x)-2,由于對(duì)任意x∈R,f ′(x)>2,所以h′(x)=f ′(x)-2>0恒成立,所以h(x)=f(x)-2x-4是R上的增函數(shù),又由于h(-1)=f(-1)-2×(-1)-4=0,所以h(x)=f(x)-2x-4>0,即f(x)>2x+4的解集為(-1,+∞),故選B.

        點(diǎn)評(píng) 對(duì)于f ′x>aa≠0,可構(gòu)造函數(shù)hx=fx-ax.

        例2 設(shè)f(x)是R上的可導(dǎo)函數(shù),且f ′(x)≥-f(x),f(0)=1,f(2)=1e2,則f(1)的值為.

        解析 由f ′(x)≥-f(x)得f ′(x)+f(x)≥0,構(gòu)造函數(shù)hx=exfx,則h′x=exfx+exf ′x=ex(fx+f ′x)≥0,所以函數(shù)hx=exfx是R上的增函數(shù),此時(shí)有1=h2≥h0=1,故hx=exfx=1,所以f(1)=1e.

        點(diǎn)評(píng) 對(duì)于f ′(x)+f(x)>0,可構(gòu)造函數(shù)

        hx=exfx.

        例3 已知f(x)>0為f(x)<0上的可導(dǎo)函數(shù),且

        f(x)>x,均有f(x)<x,則有().

        A.e2016f(-2016)<f(0),f(2016)>e2016f(0)

        B.e2016f(-2016)<f(0),f(2016)<e2016f(0)

        C.e2016f(-2016)>f(0),f(2016)>e2016f(0)

        D.e2016f(-2016)>f(0),f(2016)<e2016f(0)

        解析 構(gòu)造函數(shù)h(x)=f(x)ex,則h′(x)=f ′(x)ex-exf(x)(ex)2=f ′(x)-f(x)ex,因?yàn)閤∈R,均有f(x)>f ′(x),并且ex>0,所以g′(x)<0,

        故函數(shù)h(x)=f(x)ex在R上單調(diào)遞減,所以h(-2016)>h(0),h(2016)<h(0),

        即f(-2016)e-2016>f(0),f(2016)e2016<f(0),即

        e2016f(-2016)>f(0),f(2016)<e2016f(0),故選D.

        點(diǎn)評(píng) 對(duì)于f ′(x)-f(x)>0,可構(gòu)造函數(shù)h(x)=f(x)ex.

        例4 若函數(shù)y=f(x)在R上可導(dǎo)且滿(mǎn)足不等式

        xf ′(x)+f(x)>0恒成立,對(duì)任意正數(shù)a、b,若a<b,則必有().

        A.af(b)<bf(a) B.bf(a)<af(b)

        C.af(a)<bf(b)D.bf(b)<af(a)

        解析 由已知xf ′(x)+f(x)>0可構(gòu)造函數(shù)hx=xfx,則h′x=xf ′(x)+f(x)>0,從而h(x)在R上為增函數(shù).因?yàn)閍<b,所以h(a)<h(b),

        即af(a)<bf(b),故選C.

        點(diǎn)評(píng) 對(duì)于xf ′x+fx>0,可構(gòu)造函數(shù)hx=xfx.

        例5 已知f(x)是定義在(0,+∞)上的非負(fù)可導(dǎo)函數(shù),且滿(mǎn)足xf ′(x)-f(x)≤0,對(duì)任意正數(shù)a、b,若a<b,則必有().

        A.af(b)≤bf(a) B.bf(a)≤af(b)

        C.af(a)≤bf(b)D.bf(b)≤af(a)

        解析 構(gòu)造函數(shù)hx=fxx,則h′x=xf ′(x)-f(x)x2≤0,從而hx=fxx在R上為減函數(shù).因?yàn)閍<b,所以h(a)≥h(b),f(a)a≥f(b)b,即af(b)≤bf(a).

        故選A.

        點(diǎn)評(píng) 對(duì)于xf ′x-fx>0,可構(gòu)造函數(shù)hx=fxx.

        例6 設(shè)函數(shù)f(x)在R上的導(dǎo)函數(shù)為f ′(x),且2f(x)+xf ′(x)>x2,下面不等式恒成立的是().

        A.f(x)>0 B.f(x)<0 C.f(x)>x D.f(x)<x

        解析 由已知,首先令x=0得f(x),排除B,D.

        令h(x)=x2f(x),則h′(x)=x[2f(x)+xf ′(x)]

        ①當(dāng)x>0時(shí),有2f(x)+xf ′(x)=h′(x)x>x2,所以h′(x)>0,所以函數(shù)h(x)單調(diào)遞增,當(dāng)x>1時(shí),h(x)>h(0)=0,h(x)=x2f(x)>0,從而f(x)>0.

        ②當(dāng)x<0時(shí),有2f(x)+xf ′(x)=h′(x)x>x2,所以h′(x)<0,所以函數(shù)h(x)單調(diào)遞減,當(dāng)x<0時(shí),h(x)>h(0)=0,h(x)=x2f(x)>0,從而f(x)>0.

        綜上f(x)>0,故選A.

        點(diǎn)評(píng) 對(duì)于xf ′(x)+nf(x)≥0,可構(gòu)造函數(shù)h(x)=xnf(x).

        例7 設(shè)函數(shù)f(x)是(0,+SymboleB@)上的非負(fù)可導(dǎo)函數(shù),且xf ′(x)-2f(x)>0,下列不等式成立的是().

        A.2f(3)<3f(2)B.2f(3)>3f(2)

        C.2f(3)=3f(2) D.非上述答案

        解析 構(gòu)造函數(shù)h(x)=f(x)x2,則h′(x)=x[xf ′(x)-2f(x)]x4>0,函數(shù)h(x)在(0,+SymboleB@)單調(diào)遞增,因?yàn)?<3,所以f(2)(2)2<f(3)(3)2,即3f(2)<2f(3),故選B.

        點(diǎn)評(píng) xf ′(x)-nf(x)≥0,可構(gòu)造函數(shù)h(x)=f(x)xn.

        例8 設(shè)f(x)、g(x)是R上的可導(dǎo)函數(shù),f ′(x)、

        g′(x)分別為f(x)、g(x)的導(dǎo)函數(shù),且滿(mǎn)足f ′(x)g(x)+

        f(x)g′(x)<0,則當(dāng)a<x<b時(shí),則有().

        A.f(x)g(b)>f(b)g(x) B.f(x)g(a)>f(a)g(x)

        C.f(x)g(x)>f(b)g(b)D.f(x)g(x)>f(b)g(a)

        解析 構(gòu)造函數(shù)h(x)=f(x)g(x),則h′(x)=f ′(x)g(x)+f(x)g′(x)<0,所以函數(shù)h(x)=f(x)g(x)在R上為減函數(shù),因?yàn)閤<b,所以f(x)g(x)>f(b)g(b),故選C.

        點(diǎn)評(píng) 對(duì)于f ′(x)g(x)+f(x)g′(x)>0,構(gòu)造函數(shù)h(x)=f(x)g(x).

        例9 設(shè)函數(shù)f(x),g(x)在[a,b]上均可導(dǎo),且f ′(x)<g′(x),則當(dāng)a<x<b時(shí),有().

        A.f(x)>g(x) B.f(x)<g(x)

        C.f(x)+g(a)<g(x)+f(a)D.f(x)+g(b)<g(x)+f(b)

        解析 構(gòu)造函數(shù)hx=fx-gx,則h′(x)=f ′(x)-g′(x)<0,所以函數(shù)hx=fx-gx在[a,b]上為減函數(shù), 因?yàn)閍<x,所以f(a)-g(a)>f(x)-g(x),故f(x)+g(a)<g(x)+f(a),故選C.

        點(diǎn)評(píng) 對(duì)于f ′(x)-g′(x)>0或f ′x+g′x>0,構(gòu)造函數(shù)hx=fx-gx或hx=fx+gx.

        例10 已知函數(shù)y=f(x)對(duì)任意的x∈(-π2,π2)滿(mǎn)足f ′(x)cosx+f(x)sinx>0,則下列不等式成立的是().

        A.2f(-π3)<f(-π4)

        B.2f(π3)<f(π4)

        C.0>2f(π3)

        D.0>2f(π4)

        解析 構(gòu)造函數(shù)h(x)=f(x)cosx,則h′(x)=f ′(x)cosx+f(x)sinxcos2x>0,函數(shù)h(x)在(-π2,π2)單調(diào)遞增,所以h(-π3)<h(-π4),2f(-π3)<f(-π4),故選A.

        點(diǎn)評(píng) 對(duì)于f ′(x)cosx+f(x)sinx>0或f ′(x)sinx-f(x)cosx>0,構(gòu)造函數(shù)h(x)=f(x)cosx或h(x)=f(x)sinx.

        在平時(shí)的教學(xué)中,我們要勤于積累,善于總結(jié),熟練掌握導(dǎo)數(shù)四則運(yùn)算,通過(guò)對(duì)題目的分析,根據(jù)題目的不同形式在解題中合理巧妙地構(gòu)造函數(shù),結(jié)合導(dǎo)數(shù)這一工具進(jìn)行合理計(jì)算,使復(fù)雜的問(wèn)題轉(zhuǎn)化成熟悉而簡(jiǎn)單的問(wèn)題,進(jìn)而找到問(wèn)題解決的突破口!

        模型總結(jié) 關(guān)系式為“加”型

        (1)f ′(x)+f(x)≥0,構(gòu)造hx=exfx,則h′(x)=[exf(x)]′=ex[f ′(x)+f(x)].

        (2)xf ′(x)+f(x)≥0,構(gòu)造hx=xfx,則h′(x)=[xf(x)]′=xf ′(x)+f(x).

        (3)xf ′(x)+nf(x)≥0,構(gòu)造h(x)=xnf(x),

        則h′(x)=[xnf(x)]′=xnf ′(x)+nxn-1f(x)=xn-1[xf ′(x)+nf(x)].

        關(guān)系式為“減”型

        (1)f ′(x)-f(x)≥0,構(gòu)造h(x)=f(x)ex,

        則h′(x)=[f(x)ex]′=f ′(x)ex-f(x)ex(ex)2=f ′(x)-f(x)ex

        (2)xf ′(x)-f(x)≥0,構(gòu)造hx=fxx,則h′(x)=[f(x)x]′=xf ′(x)-f(x)x2

        (3)xf ′(x)-nf(x)≥0,構(gòu)造h(x)=f(x)xn,則h′(x)=[f(x)xn]′=xnf ′(x)-nxn-1f(x)(xn)2=xf ′(x)-nf(x)xn+1(注意對(duì)x的符號(hào)進(jìn)行討論)

        參考文獻(xiàn):

        [1]王榮峰.觀察題目結(jié)構(gòu) 構(gòu)造函數(shù)解題[J].中學(xué)數(shù)學(xué)雜志,2016(01):29-31.

        [2]夏麗娟,胡廣宏.構(gòu)造函數(shù)法在數(shù)學(xué)解題中的應(yīng)用——關(guān)注以導(dǎo)數(shù)為背景的一類(lèi)題[J].高中數(shù)學(xué)教與學(xué),2013(10):41-43.

        [責(zé)任編輯:李 璟]

        猜你喜歡
        解題
        用“同樣多”解題
        設(shè)而不求巧解題
        用“同樣多”解題
        巧用平面幾何知識(shí)妙解題
        巧旋轉(zhuǎn) 妙解題
        根據(jù)和的變化規(guī)律來(lái)解題
        例談?dòng)行г鲈O(shè)解題
        拼接解題真簡(jiǎn)單
        解題勿忘我
        也談構(gòu)造等比數(shù)列巧解題
        午夜精品一区二区三区无码不卡| 国产二级一片内射视频播放| 18分钟处破好疼哭视频在线观看| 久久av无码精品一区二区三区| 色老汉亚洲av影院天天精品 | 亚洲av乱码专区国产乱码| 美腿丝袜网址亚洲av| 久久777国产线看观看精品| 少妇人妻陈艳和黑人教练| 黄色毛片视频免费| 国产一品二品三品精品久久| 亚洲久悠悠色悠在线播放| 国产莉萝无码av在线播放| 人妻尝试又大又粗久久| 精品久久久久久中文字幕| 国产成人香蕉久久久久| 亚洲av色香蕉一区二区三区潮| 隔壁老王国产在线精品| 无码久久精品国产亚洲av影片| 日韩国产有码在线观看视频| 美女和男人一起插插插| 成人试看120秒体验区| 欧美成人看片黄a免费看| 九九99久久精品在免费线18| 亚洲av高清资源在线观看三区| 亚洲av迷人一区二区三区| 边喂奶边中出的人妻| 亚洲伊人久久大香线蕉影院| 白白白色视频在线观看播放| 人人妻人人澡人人爽人人精品浪潮| 国产成人av性色在线影院色戒 | 日韩精品一区二区三区四区五区六| 精品在线视频在线视频在线视频| 麻豆精品国产精华精华液好用吗 | 国产日本在线视频| 99久久无色码中文字幕鲁信| 国产亚洲成人精品久久| 久久国产精品精品国产色婷婷| 亚洲另类激情综合偷自拍图| 亚洲精品一区二在线观看| 精品成在人线av无码免费看|