康靖
摘要 番茄果實(shí)成熟過(guò)程既是一個(gè)復(fù)雜又是一個(gè)高度有序的過(guò)程,該過(guò)程還受多種因子調(diào)控。主要綜述了MADS-box轉(zhuǎn)錄因子、NAC轉(zhuǎn)錄因子、AP2/ERF轉(zhuǎn)錄因子、SBP/SPL轉(zhuǎn)錄因子和其他轉(zhuǎn)錄因子介導(dǎo)乙烯調(diào)控番茄果實(shí)成熟的研究進(jìn)展,為進(jìn)一步完善轉(zhuǎn)錄因子介導(dǎo)乙烯參與番茄果實(shí)成熟的轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò)提供理論參考。
關(guān)鍵詞 番茄;轉(zhuǎn)錄因子;乙烯;果實(shí)成熟
中圖分類號(hào) S 641.2? 文獻(xiàn)標(biāo)識(shí)碼 A? 文章編號(hào) 0517-6611(2021)16-0016-03
doi:10.3969/j.issn.0517-6611.2021.16.005?? 開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
Research Progress on Transcription Factor-Mediated Ethylene Regulation of Tomato Fruit Ripening
KANG Jing
(School of Biological Engineering, Chongqing University,Chongqing 400044)
Abstract The tomato fruit ripening process is both a complex and highly ordered process, which is also regulated by many factors.This article mainly summarizes the research progress of MADS-box transcription factor, NAC transcription factor, AP2/ERF transcription factor, SBP/SPL transcription factor and other transcription factors mediated ethylene regulation of tomato fruit ripening, in order to provide a theoretical reference for further perfecting the transcriptional regulatory network of transcription factor-mediated ethylene participation in tomato fruit ripening.
Key words Tomato;Transcription factor;Ethylene;Fruit ripening
番茄( Solanum lycopersicum )是一類比較重要的果蔬作物,含有豐富的營(yíng)養(yǎng)物質(zhì)。番茄屬于呼吸躍變型果實(shí),因其基因組小且信息全面、生命周期短、易種植、易轉(zhuǎn)化等優(yōu)點(diǎn),已被作為研究肉質(zhì)果實(shí)生長(zhǎng)發(fā)育和成熟的模式植物[1]。
番茄果實(shí)成熟過(guò)程既是一個(gè)復(fù)雜又是一個(gè)高度有序的過(guò)程,涉及顏色、質(zhì)地、風(fēng)味物質(zhì)、有機(jī)物和芳香物質(zhì)的變化。該過(guò)程還受多種因子調(diào)控,目前,轉(zhuǎn)錄因子(transcription factors)通過(guò)乙烯途徑調(diào)控果實(shí)成熟的研究越來(lái)越多。因此,探討這些轉(zhuǎn)錄因子的功能及其與乙烯之間的相互關(guān)系,全面解析轉(zhuǎn)錄因子介導(dǎo)乙烯參與番茄果實(shí)成熟的轉(zhuǎn)錄調(diào)控機(jī)制,對(duì)培育出優(yōu)質(zhì)番茄果實(shí)品種具有重要的指導(dǎo)意義。筆者主要對(duì)近年來(lái)轉(zhuǎn)錄因子和乙烯在果實(shí)成熟方面的功能研究進(jìn)行簡(jiǎn)要綜述。
1 番茄果實(shí)成熟突變體
轉(zhuǎn)錄因子在果實(shí)成熟方面的調(diào)控作用主要依賴于各種果實(shí)成熟突變體。MADS-RIN是從番茄 rin(ripening inhibitor) 突變體中克隆并鑒定得到的。 rin 是由于RIN與MADS-MC之間的一段基因缺失使2個(gè)基因首尾相連形成新的嵌合體導(dǎo)致基因功能失活而形成的突變體[2]。 rin 突變體中幾乎所有的果實(shí)成熟現(xiàn)象均被抑制,包括果實(shí)變軟、類胡蘿卜素含量升高、乙烯產(chǎn)生及風(fēng)味物質(zhì)合成等[3]。
與 rin ?突變體不同的是, cnr(colorless non-ripening) 突變體不是因?yàn)榛蛉笔б鸬模怯捎赟BP家族轉(zhuǎn)錄因子CNR啟動(dòng)子甲基化導(dǎo)致的[4-5]。 cnr 突變體果實(shí)出現(xiàn)無(wú)色不成熟的表型,乙烯含量急劇下降[6]。說(shuō)明CNR在番茄果實(shí)成熟中發(fā)揮重要的功能。
nor(non-ripening) 突變體果實(shí)不能成熟,也不能產(chǎn)生躍變乙烯。 nor 突變體是由于NAC家族轉(zhuǎn)錄因子 NOR 基因的第3個(gè)外顯子區(qū)域缺失了2個(gè)連續(xù)的堿基A而出現(xiàn)的移碼突變,導(dǎo)致NOR蛋白質(zhì)翻譯提前終止形成186個(gè)氨基酸的截短蛋白[7]。即使過(guò)表達(dá)NOR也不能使 nor 突變體恢復(fù)成熟的表型,因此, nor 突變體不成熟的表型可能還受到其他因素的影響[8-9]。
2 乙烯與番茄果實(shí)成熟
乙烯主要是由ACS(ACC合成酶)和ACO(ACC氧化酶)經(jīng)過(guò)兩步反應(yīng)催化生成[10]。番茄中與果實(shí)成熟相關(guān)的乙烯生物合成基因主要有 ACO1、ACS2、ACS4、ACS6和ACO3 。乙烯是通過(guò)乙烯信號(hào)轉(zhuǎn)導(dǎo)途徑發(fā)揮生物學(xué)效應(yīng)的。目前公認(rèn)的模型是細(xì)胞膜上的乙烯受體ETRs感知乙烯信號(hào),通過(guò)釋放CTR1(CONSTITUTIVE TRIPLE RESPONSE 1)對(duì)EIN2(ETHYLENE INSENSITIVE2)施加的阻滯而啟動(dòng)轉(zhuǎn)錄級(jí)聯(lián)反應(yīng),激活初級(jí)轉(zhuǎn)錄因子EIN3(ETHYLENE INSENSITIVE 3)/EIL1(EIN3/EIN3-like)和次級(jí)轉(zhuǎn)錄因子ERFs(ethylene response factors)的表達(dá)。乙烯信號(hào)轉(zhuǎn)導(dǎo)途徑最終的結(jié)果是EIN3/EILs和ERFs對(duì)下游靶基因的轉(zhuǎn)錄調(diào)控。番茄中存在7個(gè)乙烯受體基因, SlETR3、SlETR4和SlETR6 在果實(shí)成熟前期達(dá)到峰值,能對(duì)乙烯產(chǎn)生最大響應(yīng); SlETR1、SlETR2、SlETR5和SlETR7 則在果實(shí)成熟后期表達(dá),不受乙烯或受乙烯誘導(dǎo)最少[11-12]。乙烯受體下游是CTR家族基因,番茄中 SlCTR1和SlCTR2 在番茄果實(shí)成熟中具有重要作用[13-14]。EIN2能夠正向調(diào)控果實(shí)成熟過(guò)程中的乙烯響應(yīng)[15]。EIN2下游是EIN3/EILs和ERFs轉(zhuǎn)錄因子。番茄中發(fā)現(xiàn)了6種EIL轉(zhuǎn)錄因子(SlEIL1~6),其中SlEIL1~4可以調(diào)控某些果實(shí)成熟相關(guān)基因[16]。乙烯信號(hào)轉(zhuǎn)導(dǎo)的末端是ERFs轉(zhuǎn)錄因子,這類轉(zhuǎn)錄因子在果實(shí)成熟過(guò)程也表現(xiàn)出了重要的調(diào)控作用。
3 轉(zhuǎn)錄因子通過(guò)乙烯途徑調(diào)控番茄果實(shí)成熟
3.1 MADS-box轉(zhuǎn)錄因子
RIN是從番茄 rin 突變體中鑒定得到的MADS-box轉(zhuǎn)錄因子。有研究表明,在突變體 rin 中轉(zhuǎn)入活性RIN,番茄果實(shí)可以成熟,但是在野生型番茄中抑制RIN,番茄果實(shí)還是出現(xiàn)不成熟的表型[17]。這些結(jié)果說(shuō)明RIN是番茄果實(shí)成熟特異的調(diào)控因子。大量的ChIP-chip/ChIP-Seq結(jié)果表明,很多乙烯合成及響應(yīng)的相關(guān)基因均為RIN的靶基因[2,18-21],這為RIN介導(dǎo)乙烯調(diào)控果實(shí)成熟提供了直接證據(jù)。TAGL1的沉默導(dǎo)致乙烯合成受到抑制,同時(shí)發(fā)現(xiàn)乙烯合成基因、番茄紅素合成基因及細(xì)胞壁降解基因表達(dá)下調(diào)[22],說(shuō)明TAGL1能通過(guò)乙烯途徑調(diào)控番茄果實(shí)成熟。FUL1(又叫TDR4)與FUL2(又叫MBP7)表現(xiàn)出功能冗余。FUL1/2沉默的綠果中乙烯含量顯著降低,證明FUL1和FUL2參與乙烯生物合成[23]。此外,F(xiàn)UL1和FUL2能與RIN相互作用[24]。
3.2 NAC轉(zhuǎn)錄因子
番茄中至少有101種NAC轉(zhuǎn)錄因子,但目前只有NOR、SlNAC1、SlNAC4、SNAC4和SNAC9參與番茄果實(shí)成熟的調(diào)控[8,25-27]。 nor 突變體果實(shí)成熟受抑制主要表現(xiàn)在果實(shí)完全不成熟、乙烯產(chǎn)生和色素積累缺陷[28-29];同樣地, NOR 基因敲除的果實(shí)也表現(xiàn)出部分不成熟的表型[30]。因此,NOR以重要的角色參與番茄果實(shí)成熟過(guò)程。SlNAC1的沉默延遲了番茄果實(shí)成熟,總類胡蘿卜素(包括番茄紅素)及乙烯含量卻比較高;SlNAC1過(guò)表達(dá)的果實(shí)中以上各個(gè)指標(biāo)均呈現(xiàn)相反的結(jié)果。此外,SlNAC1能調(diào)控其下游的乙烯合成相關(guān)基因( ACO1、ACS2和ACS4 )的表達(dá),說(shuō)明SlNAC1通過(guò)負(fù)調(diào)控乙烯參與番茄果實(shí)顏色的轉(zhuǎn)變[27,31]。SlNAC4在果實(shí)成熟起始階段表達(dá)量較高,SlNAC4的表達(dá)被抑制導(dǎo)致果實(shí)成熟進(jìn)程也被抑制,類胡蘿卜素和乙烯含量均處于較低的水平,乙烯合成相關(guān)基因( ACO1、ACO3、ACS2和ACS4 )表達(dá)顯著下調(diào)。相對(duì)于野生型番茄,SlNAC4在 rin 突變體果實(shí)中的表達(dá)沒有變化,但RIN的轉(zhuǎn)錄水平在SlNAC4-RNAi果實(shí)中顯著下降[26],說(shuō)明SlNAC4可能在RIN的上游調(diào)控番茄果實(shí)成熟。有研究表明,SNAC4和SNAC9也可通過(guò)對(duì)乙烯的調(diào)控進(jìn)而實(shí)現(xiàn)對(duì)番茄果實(shí)成熟的調(diào)控[27]。
3.3 AP2/ERF轉(zhuǎn)錄因子
AP2/ERF轉(zhuǎn)錄因子因含有保守的AP2/ERF 結(jié)構(gòu)域而得名。目前在番茄中發(fā)現(xiàn)了5個(gè)基因( SlAP2a~e),但只有SlAP2a 表現(xiàn)出果實(shí)成熟特性,沉默 SlAP2a 果實(shí)表現(xiàn)出橙紅色,軟化提前,乙烯含量顯著升高,說(shuō)明 SlAP2a 負(fù)調(diào)控乙烯合成進(jìn)而影響番茄果實(shí)成熟。此外,RIN、NOR和CNR作用于 SlAP2a 的上游并調(diào)控其表達(dá),但CNR轉(zhuǎn)錄水平在 SlAP2a -RNAi果實(shí)中升高,說(shuō)明在番茄果實(shí)成熟過(guò)程中, SlAP2a和 CNR構(gòu)成了負(fù)反饋調(diào)控回路[32]。以上結(jié)果表明,SlAP2a 能通過(guò)平衡多種調(diào)控因子,調(diào)控復(fù)雜的番茄果實(shí)成熟過(guò)程。
ERF基因參與果實(shí)成熟一直備受關(guān)注,番茄中存在77個(gè)ERF轉(zhuǎn)錄因子,但目前報(bào)道的與果實(shí)成熟相關(guān)的ERF轉(zhuǎn)錄因子相對(duì)較少[33]。番茄LeERF1過(guò)表達(dá)植株表現(xiàn)出組成型乙烯響應(yīng)的表型,番茄果實(shí)成熟和軟化加快,而LeERF1表達(dá)受到抑制,番茄果實(shí)成熟進(jìn)程也相應(yīng)地變慢[34]。LeERF2是一個(gè)受乙烯誘導(dǎo)的轉(zhuǎn)錄因子,LeERF2又能反過(guò)來(lái)影響乙烯合成[35]。同樣地,SlERF6也是一個(gè)果實(shí)成熟特異的轉(zhuǎn)錄因子,負(fù)調(diào)控番茄果實(shí)成熟[36]。近年來(lái)發(fā)現(xiàn)SlERF.B3(又叫LeERF4)能夠調(diào)控多個(gè)基因的表達(dá),例如果實(shí)成熟相關(guān)基因及某些ERF家族成員的表達(dá),ERF.B3-SRDX果實(shí)顏色表現(xiàn)為橙紅色,番茄紅素含量較低,但是乙烯含量卻呈現(xiàn)上升趨勢(shì),可能是由于乙烯合成基因表達(dá)上調(diào)所致,ERF.B3-SRDX對(duì)乙烯敏感性高表明SlERF.B3反饋調(diào)節(jié)乙烯的合成和響應(yīng)[37-38]。
3.4 SBP/SPL轉(zhuǎn)錄因子
CNR屬于SBP/SPL家族成員,其啟動(dòng)子甲基化導(dǎo)致 cnr 突變體果實(shí)表現(xiàn)為無(wú)色、乙烯含量大大降低的表型[5,39],即使施加外源乙烯也不能使突變體的表型恢復(fù)至野生型。CNR啟動(dòng)子甲基化不僅抑制其與RIN的結(jié)合活性[18],也抑制了RIN與其他基因的結(jié)合活性[20],而 rin 中CNR的表達(dá)水平也很低,以上結(jié)果暗示CNR應(yīng)該在RIN的下游發(fā)揮作用[5]。另外,其他的SBP/SPL轉(zhuǎn)錄因子也可能參與調(diào)控番茄果實(shí)發(fā)育與成熟[40]。
3.5 其他轉(zhuǎn)錄因子
其他轉(zhuǎn)錄因子如HB-1也參與果實(shí)成熟的調(diào)控。LeHB-1是一種HD-zip同源異型蛋白,可直接與 ACO1相互作用,LeHB-1基因的抑制會(huì)導(dǎo)致ACO1 表達(dá)降低,乙烯合成減少,延遲果實(shí)成熟[41]。
4 展望
番茄果實(shí)成熟是一個(gè)復(fù)雜而又高度協(xié)調(diào)有序的過(guò)程,各類轉(zhuǎn)錄因子介導(dǎo)乙烯調(diào)控番茄果實(shí)成熟的機(jī)理仍是目前研究的重點(diǎn)和難點(diǎn)。因此,繼續(xù)挖掘番茄果實(shí)成熟相關(guān)轉(zhuǎn)錄因子并探究這些轉(zhuǎn)錄因子的功能及其與乙烯之間的關(guān)系,完善轉(zhuǎn)錄因子介導(dǎo)乙烯參與番茄果實(shí)成熟的轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò),對(duì)于從分子水平上改良番茄品種具有重要的指導(dǎo)意義。
參考文獻(xiàn)
[1] KLEE H J,GIOVANNONI J J.Genetics and control of tomato fruit ripening and quality attributes[J].Annu Rev Genet,2011,45:41-59.
[2] FUJISAWA M,SHIMA Y,HIGUCHI N,et al.Direct targets of the tomato-ripening regulator RIN identified by transcriptome and chromatin immunoprecipitation analyses[J].Planta,2012,235(6):1107-1122.
[3] VREBALOV J,RUEZINSKY D,PADMANABHAN V,et al.A MADS-box gene necessary for fruit ripening at the tomato ?ripening-inhibitor(rin) ?locus[J].Science,2002,296(5566):343-346.
[4] CHEN W W,KONG J H,QIN C,et al.Requirement of ?CHROMOMETHYLASE3 ?for somatic inheritance of the spontaneous tomato epimutation ?Colourless non-ripening [J].Sci Rep,2015,5(1):881-894.
[5] MANNING K,T R M,POOLE M,et al.A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening[J].Nat Genet,2006,38(8):948-952.
[6] WANG R F,DA ROCHA TAVANO E C,LAMMERS M,et al.Re-evaluation of transcription factor function in tomato fruit development and ripening with CRISPR/Cas9-mutagenesis[J].Sci Rep,2019,9(1):4527-4541.
[7] LINCOLN J E,F(xiàn)ISCHER R L.Regulation of gene expression by ethylene in wild-type and rin tomato( Lycopersicon esculentum )fruit[J].Plant Physiol,1988,88(2):370-374.
[8] GAO Y,WEI W,F(xiàn)AN Z Q,et al.Re-evaluation of the ?nor ?mutation and the role of the NAC-NOR transcription factor in tomato fruit ripening[J].J Exp Bot,2020,71(12):3560-3574.
[9] GIOVANNONI J J,NOENSIE E N,RUEZINSKY D M,et al.Molecular genetic analysis of the ripening-inhibitor and non-ripening loci of tomato:A first step in genetic map-based cloning of fruit ripening genes[J].Mol Gen Genet,1995,248(2):195-206.
[10] NAKATSUKA A,MURACHI S,OKUNISHI H,et al.Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase,1-aminocyclopropane-1-carboxylate oxidase,and ethylene receptor genes in tomato fruit during development and ripening[J].Plant Physiol,1998,118(4):1295-1305.
[11] CHEN Y,HU G J,RODRIGUEZ C,et al.Roles of SlETR7,a newly discovered ethylene receptor,in tomato plant and fruit development[J].Hortic Res,2020,7(1):405-425.
[12] KEVANY B M,TIEMAN D M,TAYLOR M G,et al.Ethylene receptor degradation controls the timing of ripening in tomato fruit[J].Plant J,2007,51(3):458-467.
[13] LIN Z F,ALEXANDER L,HACKETT R,et al.LeCTR2,a CTR1-like protein kinase from tomato,plays a role in ethylene signalling,development and defence[J].Plant J,2008,54(6):1083-1093.
[14] LECLERCQ J,ADAMS-PHILLIPS L C,ZEGZOUTI H,et al. LeCTR1 ,a tomato ?CTR1 -like gene,demonstrates ethylene signaling ability in ?Arabidopsis ?and novel expression patterns in tomato[J].Plant Physiol,2002,130(3):1132-1142.
[15] ALONSO J M,HIRAYAMA T,ROMAN G,et al.EIN2,a bifunctional transducer of ethylene and stress responses in ?Arabidopsis [J].Science,1999,284(5423):2148-2152.
[16] LIU M,PIRRELLO J,CHERVIN C,et al.Ethylene control of fruit ripening:Revisiting the complex network of transcriptional regulation[J].Plant Physiol,2015,169(4):2380-2390.
[17] MOORE S,VREBALOV J,PAYTON P,et al.Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato[J].J Exp Bot,2002,53(377):2023-2030.
[18] ZHONG S L,F(xiàn)EI Z J,CHEN Y R,et al.Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening[J].Nat Biotechnol,2013,31(2):154-159.
[19] FUJISAWA M,NAKANO T,SHIMA Y,et al.A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening[J].Plant Cell,2013,25(2):371-386.
[20] MARTEL C,VREBALOV J,TAFELMEYER P,et al.The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner[J].Plant Physiol,2011,157(3):1568-1579.
[21] ITO Y,KITAGAWA M,IHASHI N,et al.DNA-binding specificity,transcriptional activation potential,and the rin mutation effect for the tomato fruit-ripening regulator RIN[J].Plant J,2008,55(2):212-223.
[22] GIM NEZ E,DOMINGUEZ E,PINEDA B,et al.Transcriptional activity of the MADS box ?ARLEQUIN/TOMATO AGAMOUS-LIKE1 ?gene is required for cuticle development of tomato fruit[J].Plant Physiol,2015,168(3):1036-1048.
[23] SHIMA Y,F(xiàn)UJISAWA M,KITAGAWA M,et al.Tomato ?FRUITFULL ?homologs regulate fruit ripening via ethylene biosynthesis[J].Biosci Biotechnol Biochem,2014,78(2):231-237.
[24] SHIMA Y,KITAGAWA M,F(xiàn)UJISAWA M,et al.Tomato FRUITFULL homologues act in fruit ripening via forming MADS-box transcription factor complexes with RIN[J].Plant Mol Biol,2013,82(4/5):427-438.
[25] KOU X H,LIU C,HAN L H,et al.NAC transcription factors play an important role in ethylene biosynthesis,reception and signaling of tomato fruit ripening[J].Mol Genet Genomics,2016,291(3):1205-1217.
[26] ZHU M K,CHEN G P,ZHOU S,et al.A new tomato NAC(NAM/ATAF1/2/CUC2) transcription factor,SlNAC4,functions as a positive regulator of fruit ripening and carotenoid accumulation[J].Plant Cell Physiol,2014,55(1):119-135.
[27] MENG C,YANG D Y,MA X C,et al.Suppression of tomato ?SlNAC1 ?transcription factor delays fruit ripening[J].J Plant Physiol,2016,193:88-96.
[28] GIOVANNONI J J.Fruit ripening mutants yield insights into ripening control[J].Curr Opin Plant Biol,2007,10(3):283-289.
[29] GIOVANNONI J J.Genetic regulation of fruit development and ripening[J].Plant Cell,2004,16(S1):S170-S180.
[30] GAO Y,ZHU N,ZHU X F,et al.Diversity and redundancy of the ripening regulatory networks revealed by the fruitENCODE and the new CRISPR/Cas9 ?CNR ?and ?NOR ?mutants[J].Hortic Res,2019,6(1):207-228.
[31] MA N N,F(xiàn)ENG H L,MENG X,et al.Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening[J].BMC Plant Biol,2014,14:1-14.
[32] KARLOVA R,ROSIN F M,BUSSCHER-LANGE J,et al.Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening[J].Plant Cell,2011,23(3):923-941.
[33] LIU M C,GOMES B L,MILA I,et al.Comprehensive profiling of ethylene response factor expression identifies ripening-associated ?ERF ?genes and their link to ley regulators of fruit ripening in tomato[J].Plant Physiol,2016,170(3):1732-1744.
[34] LI Y C,ZHU B Z,XU W T,et al. LeERF1 ?positively modulated ethylene triple response on etiolated seedling,plant development and fruit ripening and softening in tomato[J].Plant Cell Rep,2007,26(11):1999-2008.
[35] ZHANG Z J,ZHANG H W,QUAN R D,et al.Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco[J].Plant Physiol,2009,150(1):365-377.
[36] LEE J M,JOUNG J G,MCQUINN R,et al.Combined transcriptome,genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor ?SlERF6 ?plays an important role in ripening and carotenoid accumulation[J].Plant J,2012,70(2):191-204.
[37] LIU M C,DIRETTO G,PIRRELLO J,et al.The chimeric repressor version of an ?Ethylene Response Factor(ERF) ?family member, Sl-ERF.B3 ,shows contrasting effects on tomato fruit ripening[J].New Phytol,2014,203(1):206-218.
[38] LIU M C,PIRRELLO J,KESARI R,et al.A dominant repressor version of the tomato ?Sl-ERF.B3 ?gene confers ethylene hypersensitivity via feedback regulation of ethylene signaling and response components[J].Plant J,2013,76(3):406-419.
[39] THOMPSON A J,TOR M,BARRY C S,et al.Molecular and genetic characterization of a novel pleiotropic tomato-ripening mutant[J].Plant Physiol,1999,120(2):383-390.
[40] SALINAS M,XING S P,H HMANN S,et al.Genomic organization,phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato[J].Planta,2012,235(6):1171-1184.
[41] LIN Z F,HONG Y G,YIN M G,et al.A tomato HD-Zip homeobox protein,LeHB-1,plays an important role in floral organogenesis and ripening[J].Plant J,2008,55(2):301-310.