李天才 劉小帥 劉明昌 李亞松 曾如奎 楊東 鄧龍君 甘維熊
摘要:【目的】明確短須裂腹魚苗對硫酸銅的耐受性,為短須裂腹魚苗培育過程中安全高效用藥提供理論指導?!痉椒ā吭谒疁兀?.3±0.3)℃、溶解氧7.9 mg/L、pH 7.8、CaCO3硬度41.2±0.7 mg/L、光照強度(12 h∶12 h)100 lx、不充氧、不投喂的靜態(tài)條件下,以1齡和2齡短須裂腹魚苗為研究對象,配制不同濃度硫酸銅溶液模擬藥浴過程,根據(jù)累計死亡率(概率單位)與硫酸銅濃度對數(shù)的線性關(guān)系、半致死濃度(LC50)、95%置信區(qū)間及安全濃度(SC)等指標評估短須裂腹魚苗對硫酸銅的耐受性?!窘Y(jié)果】1齡和2齡短須裂腹魚苗在硫酸銅溶液中浸泡,其開始死亡時間與硫酸銅濃度對數(shù)均呈負相關(guān)線性關(guān)系,浸泡24和48 h的累計死亡率與硫酸銅濃度對數(shù)則呈正相關(guān)線性關(guān)系。1齡短須裂腹魚苗在硫酸銅溶液中浸泡24、48 h的LC50分別為1.018和0.870 mg/L,對應的95%置信區(qū)間分別為[0.944,1.092]mg/L和[0.459,1.281]mg/L,SC為0.191 mg/L;2齡短須裂腹魚苗在硫酸銅溶液中浸泡24、48 h的LC50分別為4.222和1.011 mg/L,對應的95%置信區(qū)間分別為[3.775,4.670]mg/L和[0.421,1.602]mg/L,SC為0.017 mg/L。采用常用濃度(7.143 mg/L)硫酸銅溶液進行藥浴3 h,1齡和2齡短須裂腹魚苗均未出現(xiàn)中毒或死亡現(xiàn)象,且在藥浴后的3 d恢復期內(nèi)也無異常。1齡和2齡短須裂腹魚苗在常用濃度硫酸銅溶液中浸泡的累計死亡率曲線均呈斜置的波浪形,存在2個凸起,但中間無平臺期;魚苗死亡頻數(shù)呈不對稱M形分布,即符合二階高斯分布。【結(jié)論】硫酸銅對1齡和2齡短須裂腹魚苗的急性毒性至少可列為高毒農(nóng)藥,其中2齡魚苗耐受性相對較高,但短須裂腹魚苗對硫酸銅急性毒性耐受性較低,在實際生產(chǎn)中建議采用高濃度短時間藥浴法。
關(guān)鍵詞: 短須裂腹魚苗;硫酸銅;急性毒性;半致死濃度;安全濃度;死亡頻數(shù)
中圖分類號: S948? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼: A 文章編號:2095-1191(2021)03-0837-10
Acute toxicity of copper sulfate to the two specifications of Schizothorax wangchiachii fry
LI Tian-cai1, LIU Xiao-shuai1, LIU Ming-chang1, LI Ya-song1, ZENG Ru-kui1,
YANG Dong2, DENG Long-jun1, GAN Wei-xiong1
(1Yalong River Hydropower Development Company, Ltd., Chengdu? 610000, China; 2Sichuan Ertan Industrial
Development Corporation, Ltd., Chengdu? 610000, China)
Abstract:【Objective】To determine the resistance of Schizothorax wangchiachii fry to copper sulfate, and provide reference for safe and efficient medication in the breeding of S. wangchiachii fry. 【Method】Under the conditions of water temperature of (7.3±0.3)℃, dissolved oxygen of 7.9 mg/L, pH 7.8, CaCO3 hardness of 41.2±0.7 mg/L, light (12 h∶12 h) of 100 lx, no inflating, no feeding, one-year-old S. wangchiachii fry and ten two-year-old S. wangchiachii fry were materials. Prepared different concentrations of copper sulfate solution to simulate the drug bath process.The tolerance of the fry to copper sulfate was assessed based on the linear relationship of cumulative mortality (probability unit) and? copper sulfate? concentration logarithms, semi-lethal concentration (LC50), 95% confidence interval and safety concentration(SC).【Result】One-year-old S. wangchiachii fry and ten two-year-old S. wangchiachii fry were soaked in copper sulfate solution. The results showed that time of fry beginning of dying and the logarithm of the testing concentrations had a negative linear correlation, and there was positive linear correlation between the cumulative mortality rate at both 24 and 48 h and testing concentrations. LC50 of one-year-old S. wangchiachii fry soaked in copper sulfate solution for 24 and 48 h were 1.018 and 0.870 mg/L, 95% confidence intervals were [0.944,1.092]mg/L and [0.459,1.281]mg/L, SC was 0.191 mg/L. LC50 of two-year-old S. wangchiachii fry soaked in copper sulfate solution for 24 and 48 h were 4.222 and 1.011 mg/L, 95% confidence intervals were [3.775,4.670]mg/L and [0.421,1.602]mg/L, and SC was 0.017 mg/L. No poisoning or death occurred in one-year-old S. wangchiachii fry and ten two-year-old S. wangchiachii fry when soaked in common concentration(7.143 mg/L) of copper sulfate solution for 3 h, and no abnormal situation occurred 3 h post soaking. The cumulative mortality curve of one-year-old S. wangchiachii fry and ten two-year-old S. wangchiachii fry soaked in common concentration was oblique wavy with two bulges but no intermediate period. The death frequency of fry was M shape distribution, which was second-order Gaussian distribution. 【Conclusion】Acute toxicity of copper sulfate to one-year-old S. wangchiachii fry and two-year-old S. wangchiachii fry can be listed as highly pesticide, and the resistance of two-year-old S. wangchiachii fry is relatively high. But the resistance of S. wangchiachii fry to acute toxicity of copper sulfate is low. High concentration and short time medicine bath are suggested to prevent the disease of S. wangchiachii fry in actual production.
Key words: Schizothorax wangchiachii fry; copper sulfate; acute toxicity; half lethal concentration;? safe concentration; death frequency
Foundation item: National Major Research and Development Program of China(YHDCA-201795); Independent Research and Development Project of Yalong River Hydropower Development Company, Ltd.(KY2019-23)
0 引言
【研究意義】短須裂腹魚(Schizothorax wang-chiachii)俗稱緬魚或沙肚,主要分布于我國金沙江、烏江和雅礱江水系,隸屬于鯉科(Cyprinidac)裂腹魚亞科(Schizothoracinae)裂腹魚屬(Schizothorax),是長江上游特有的冷水性魚類(丁瑞華,1994;黃俊等,2019);因其魚肉營養(yǎng)豐富、味道鮮美(王崇等,2017),而廣受消費者青睞,現(xiàn)已發(fā)展成為當?shù)刂匾慕?jīng)濟魚類之一。但近年來受酷漁濫捕、水電開發(fā)及環(huán)境污染等社會因素的影響(謝平,2017),各水系中的短須裂腹魚資源量急劇減少。為滿足市場消費需求及充分保護短須裂腹魚種質(zhì)資源,工廠化養(yǎng)殖短須裂腹魚已逐漸興起并形成規(guī)模。硫酸銅作為一種常用的廣譜殺蟲劑,在漁業(yè)養(yǎng)殖中多用于防治寄生蟲?。_福廣等,2016),但由于硫酸銅本身對魚體有非常大的毒性,使用不當極易導致魚體中毒甚至死亡。因此,科學評估短須裂腹魚苗對硫酸銅急性毒性的耐受性,可為短須裂腹魚工廠化養(yǎng)殖過程中正確使用硫酸銅提供參考依據(jù)?!厩叭搜芯窟M展】魚類硫酸銅急性中毒機理主要表現(xiàn)為銅離子(Cu2+)大量吸附于鰓組織上,致使鰓部產(chǎn)生大量黏液(黃斌和別立潔,2006;趙巧雅等,2018),導致鰓絲及鰓片脫落(Schjolden et al.,2007;趙巧雅等,2018),鰓部形成大量血竇(朱友芳等,2011),阻礙氧氣交換;經(jīng)循環(huán)運輸后肝臟、腎臟等主要器官富集大量Cu2+,導致器官組織形態(tài)和超微結(jié)構(gòu)發(fā)生病變壞死,而造成機能障礙(朱友芳等,2011;李陽等,2018)??梢姡蛩徙~的毒性強度與魚類的抗逆能力及影響Cu2+濃度和活力的環(huán)境因子密切關(guān)聯(lián)。決定魚類自身抗逆能力的因素主要包括種類、規(guī)格和狀態(tài),相同規(guī)格下不同魚類對硫酸銅急性毒性的耐受性差異明顯(丁淑荃等,2006;蔡文超和區(qū)又君,2009;李代金等,2009;周禮敬等,2012;陳玉翠等,2016);不同規(guī)格的同種魚類耐受性規(guī)律也因品種而異(Furuta et al.,2008;蔡文超和區(qū)又君,2009),如斑馬魚不同生活史對硫酸銅急性毒性的耐受性呈波動變化(廖偉等,2020);弱、病、畸、傷等情形會導致魚類對硫酸銅的耐受性明顯降低,而飽食狀態(tài)對硫酸銅的耐受性也顯著低于少量投喂狀態(tài)(Hashemi et al.,2008)。此外,Boeckman和Bidwell(2006)研究發(fā)現(xiàn),水體中的有機物會與Cu2+絡合、螯合及吸附而降低其濃度,致使硫酸銅毒性不斷衰減。蔡文超和區(qū)又君(2009)研究指出,硫酸銅對多數(shù)魚類的毒性隨水溫升高而增強。Ebrahimpour等(2010)、熊小琴等(2016)研究發(fā)現(xiàn),水體硬度也是影響硫酸銅毒性的重要因素,其毒性隨水體硬度的增加而降低,尤其是軟水中的毒性遠高于硬水和極硬水。Boyle等(2020)研究表明,水體pH在6.0左右時硫酸銅對斑馬魚幼魚的毒性最強,是由于pH降低后H+將與Cu2+競爭通過鰓的路徑而減弱其毒性(Santore et al.,2001),pH升高時OH?會與Cu2+結(jié)合而導致其濃度降低,致使其毒性降低。漁業(yè)養(yǎng)殖中硫酸銅的指導使用方法為:①全池潑灑硫酸銅終濃度至0.357~0.500 mg/L;②使用7.143 mg/L硫酸銅溶液短時間藥浴?!颈狙芯壳腥朦c】目前,有關(guān)短須裂腹魚人工繁育(甘維熊等,2015)、營養(yǎng)價值(王崇等,2017)及其行為探索(顏文斌等,2017)等領(lǐng)域的研究已逐漸深入,但鮮見使用硫酸銅防治短須裂腹魚苗寄生蟲病的研究報道?!緮M解決的關(guān)鍵問題】選用不同規(guī)格短須裂腹魚苗為研究對象,配制不同濃度硫酸銅溶液模擬藥浴過程,確定短須裂腹魚苗對硫酸銅的耐受性,以期為短須裂腹魚苗培育過程中安全高效用藥提供理論指導。
1 材料與方法
1. 1 試驗魚苗
2019年11月?lián)迫?018和2019年培育的短須裂腹魚苗作為研究對象,即1齡和2齡魚苗(表1),剔除弱、瘦、病、畸、傷等魚苗后分別暫養(yǎng)于流水圓形養(yǎng)殖缸(直徑50 cm,水深75 cm)中,暫養(yǎng)期間正常投飼及管理,挑選預試驗和正式試驗魚苗前停食1 d。
1. 2 試驗方法
不同規(guī)格短須裂腹魚苗對硫酸銅急性毒性的耐受性試驗在圓形養(yǎng)殖缸(水體積150 L)中進行,試驗系統(tǒng)設在錦屏官地魚類增殖站孵化室內(nèi)。試驗用水為經(jīng)循環(huán)水過濾系統(tǒng)處理后的雅礱江支流磨子溝溪流,水質(zhì)符合GB 11607—1989《漁業(yè)水質(zhì)標準》,水溫(7.3±0.3)℃、溶解氧7.9 mg/L、pH 7.8、CaCO3硬度41.2±0.7 mg/L、光照強度(12 h∶12 h)100 lx,試驗期間不充氧、不投喂。1齡和2齡魚苗處理組的硫酸銅濃度梯度均設3個平行,每組設3個空白對照,每個平行組投放10尾魚苗。
根據(jù)預試驗結(jié)果,在魚苗全部死亡的最低濃度與全部存活的最高濃度間設6個濃度梯度(表2)。試驗前先制備15.000 g/L的硫酸銅原液,硫酸銅試劑為CuSO4·5H2O,然后將硫酸銅原液按照各組濃度梯度設計方案加入圓形養(yǎng)殖缸中,攪拌均勻。放入短須裂腹魚苗后每隔2 h檢查1次,當魚苗開始中毒則仔細觀察其中毒癥狀;記錄不同規(guī)格魚苗處理組各濃度梯度的魚苗死亡數(shù)量,并將其撈出-20 ℃保存,試驗周期48 h。短須裂腹魚苗死亡癥狀以鰓蓋停止活動、針刺無反應為準。
在圓形養(yǎng)殖缸中開展短須裂腹魚苗對硫酸銅常用濃度(7.143 mg/L)的耐受性及其恢復試驗,與硫酸銅急性毒性耐受性試驗同時開始。1齡、2齡短須裂腹魚苗處理組分別以120和125尾魚苗各自開展試驗,但均未設平行,試驗期間不充氧、不投喂。試驗開始后3 h內(nèi),每隔30 min檢查1次,觀察魚苗的中毒情況,并從2個處理組中分別隨機挑取5尾魚苗轉(zhuǎn)入清水中進行恢復試驗,連續(xù)觀察3 d,記錄魚苗的恢復情況;3 h后每隔1 h檢查1次,觀察魚苗的中毒情況及記錄死亡數(shù)量,將死亡魚苗撈出測量體重,直至2個處理組的魚苗全部死亡后結(jié)束試驗。
1. 3 數(shù)據(jù)處理
根據(jù)魚苗死亡情況計算硫酸銅對短須裂腹魚苗的致死率(p);運用最小二乘法求出累計死亡率(概率單位)與硫酸銅濃度對數(shù)的線性關(guān)系(y=a+bx),然后以直接回歸法(孟紫強,2003)求出硫酸銅對短須裂腹魚苗的半致死濃度(LC50)、標準誤差(σm)及95%置信區(qū)間[LC50-σm,LC50+σm]mg/L,再根據(jù)LC50計算出安全濃度(SC)。試驗數(shù)據(jù)均采用Excel 2013進行統(tǒng)計分析及制圖,并以MATLAB 4.5進行高斯分布擬合。高斯方程擬合:一階y=a·[e-[(x-b)/c]2];二階y=a1·[e-[(x-b1)/c1]2]+a2·[e-[(x-b2)/c2]2]。
p=n/N
lgLC50 (mg/L)=(5-a)/b
σm=[k2(lgLC50-x)+1kb2]
SC(mg/L)=0.3×48 h-LC50/(24 h-LC50/48 h-LC50)2
式中,n為魚苗死亡數(shù)量,N為試驗魚苗數(shù)量,a為截距,b為回歸系數(shù),k為每組試驗濃度梯度數(shù),[x]為試驗濃度對數(shù)的平均值;24 h-LC50為24 h的LC50(mg/L),48 h-LC50為48 h的LC50(mg/L)。
2 結(jié)果與分析
2. 1 短須裂腹魚苗中毒癥狀
中毒初期:短須裂腹魚苗體表黏液開始增多,偶爾浮游于水體表層,但行動仍非常靈活,對刺激反應迅速,受影響則快速游回水底。中毒中期:魚苗體表可觀察到大量黏液,長期緩慢浮游于水體表層,對輕微刺激無明顯反應,劇烈刺激則快速游回水底,但稍后又游回水體表層;鰓蓋張合頻率降低,呼吸明顯變慢。中毒死亡期:魚苗已無自主游動能力,側(cè)躺或平躺于水底,偶爾向上竄動很短距離后又迅速沉回水底;對刺激無明顯反應,鰓蓋偶爾張合,呼吸斷斷續(xù)續(xù)直至死亡;死亡魚體泛白,身體略微彎曲。
2. 2 短須裂腹魚苗死亡情況
2. 2. 1 累計死亡率曲線 1齡短須裂腹魚苗在0.321 mg/L硫酸銅溶液中浸泡48 h無死亡,也未出現(xiàn)應激或中毒癥狀,與空白對照組的短須裂腹魚苗相比其活力無明顯差異;其他濃度梯度下的魚苗均出現(xiàn)死亡,且累計死亡率的升高速率按硫酸銅濃度由高到低依次排列。0.507和0.807 mg/L硫酸銅溶液的累計死亡率曲線呈梯步形上升趨勢;1.279、2.029和3.214 mg/L硫酸銅溶液的累計死亡率則呈快速上升趨勢,其累計死亡率曲線均呈Z字鏡像形(圖1),至浸泡20 h時3.214 mg/L硫酸銅溶液中的魚苗全部死亡,而1.279和2.029 mg/L硫酸銅溶液的累計死亡率分別于試驗中后期進入平臺期。
2齡短須裂腹魚苗在0.400、0.634和1.005 mg/L硫酸銅溶液中于浸泡28~34 h出現(xiàn)首尾死亡,隨后魚苗斷斷續(xù)續(xù)出現(xiàn)死亡;在1.529、2.524和4.000 mg/L硫酸銅溶液中,出現(xiàn)首尾死亡后魚苗連續(xù)死亡,累計死亡率呈快速上升趨勢,至浸泡36 h時4.000 mg/L硫酸銅溶液中的魚苗全部死亡,其魚苗累計死亡率曲線呈S形(圖2)。
2. 2. 2 開始死亡時間與硫酸銅濃度 由圖3可知,1齡短須裂腹魚苗在硫酸銅溶液中浸泡,其開始死亡時間與硫酸銅濃度對數(shù)呈負相關(guān)線性關(guān)系,線性回歸方程為:y=-14.088x+16.362(R?=0.99)。由于試驗期間0.321 mg/L硫酸銅溶液中的魚苗未出現(xiàn)死亡,開始死亡時間無法確定,因此線性回歸方程中x對應區(qū)間為[-0.295,0.507],即硫酸銅濃度區(qū)間為[0.507,3.214]mg/L。2齡短須裂腹魚苗在硫酸銅溶液中浸泡,其開始死亡時間與硫酸銅濃度對數(shù)也呈負相關(guān)線性關(guān)系,線性回歸方程為:y=-23.287x+31.210(R?=0.97),其中x對應區(qū)間為[-0.398,0.602],即硫酸銅濃度區(qū)間為[0.400,4.000]mg/L。
2. 2. 3 累計死亡率與硫酸銅濃度 1齡短須裂腹魚苗在硫酸銅溶液中浸泡24和48 h的累計死亡率與硫酸銅濃度對數(shù)均呈正相關(guān)線性關(guān)系(圖4),線性回歸方程分別為:y=5.5436x+4.9567(R?=0.96)、y=5.3988x+5.3272(R?=0.93)。由于y取值區(qū)間均為[1.91,8.09],故x對應區(qū)間分別為[-0.549,0.636]和[-0.633,0.512],即硫酸銅濃度區(qū)間分別為[0.282,4.320]mg/L和[0.233,3.249]mg/L。
2齡短須裂腹魚苗在濃度等于或低于1.592 mg/L硫酸銅溶液浸泡24 h均未出現(xiàn)死亡,而在高于該濃度硫酸銅溶液中浸泡24 h的累計死亡率與硫酸銅濃度對數(shù)呈正相關(guān)線性關(guān)系(圖5),線性回歸方程為:y=7.3694x+0.3898(R?=0.99),由于y取值區(qū)間為[1.91,8.09],故x對應區(qū)間為[0.206,1.045],即硫酸銅濃度為[1.607,11.092]mg/L;同時可認為魚苗累計死亡率與硫酸銅濃度對數(shù)在(-∞,0.206]區(qū)間呈線性關(guān)系,線性回歸方程為:y=1.91,即硫酸銅濃度區(qū)間為[0,1.607]mg/L。2齡短須裂腹魚苗在硫酸銅溶液中浸泡48 h的累計死亡率與硫酸銅濃度對數(shù)呈正相關(guān)線性關(guān)系,線性回歸方程為:y=4.5415x+4.9781(R?=0.97),由于y取值區(qū)間為[1.91,8.09],故x對應區(qū)間為[-0.675,0.685],即硫酸銅濃度為[0.211,4.844]mg/L。
2. 3 半致死濃度(LC50)與安全濃度(SC)
由表3可知,1齡短須裂腹魚苗在硫酸銅溶液中浸泡24和48 h的LC50分別為1.018和0.870 mg/L,對應的95%置信區(qū)間分別為[0.944,1.092]mg/L和[0.459,1.281]mg/L,SC為0.191 mg/L。2齡短須裂腹魚苗在硫酸銅溶液中浸泡24和48 h的LC50分別為4.222和1.011 mg/L,對應的95%置信區(qū)間分別為[3.775,4.670]mg/L和[0.421,1.602]mg/L,SC為0.017 mg/L。
2. 4 硫酸銅常用濃度對短須裂腹魚苗的毒性
2. 4. 1 短須裂腹魚苗中毒情況 1齡和2齡短須裂腹魚苗在7.143 mg/L硫酸銅溶液中浸泡3 h后均未出現(xiàn)中毒癥狀及死亡現(xiàn)象;其間每30 min撈出的5尾魚苗在恢復期(3 d)內(nèi)也未發(fā)生死亡,恢復后的魚苗健康且有活力,與空白對照組短須裂腹魚苗無明顯差異。1齡和2齡短須裂腹魚苗分別于浸泡6和11 h后出現(xiàn)首尾死亡,之后魚苗連續(xù)不斷死亡,累計死亡率快速上升,分別在浸泡10和16 h附近達50.00%,并于浸泡20和26 h全部死亡。1齡和2齡短須裂腹魚苗累計死亡率曲線均呈斜置的波浪形,存在2個凸起,但中間無平臺期(圖6)。
2. 4. 2 魚苗死亡頻數(shù)分布情況 1齡短須裂腹魚苗在7.143 mg/L硫酸銅溶液中浸泡,魚苗死亡起于浸泡6 h終于浸泡20 h,其過程跨越15 h。在魚苗累計死亡過程中,其死亡頻數(shù)有3個拐點,2個峰值分別為:浸泡10 h時死亡16尾(占17.8%)和浸泡17 h時死亡7尾(占7.8%),1個低點為浸泡13 h時死亡2尾(占2.2%)。魚苗死亡頻數(shù)呈不對稱M形分布(圖7),符合二階高斯分布,回歸方程為:y=17.15e-[(x-9.587)/1.928]2+ 6.991e-[(x-16.5)/2.507]2(R2=0.98,x∈N)。
2齡短須裂腹魚苗在7.143 mg/L硫酸銅溶液中浸泡,魚苗死亡起于浸泡11 h終于浸泡26 h,其過程跨越16 h。在魚苗累計死亡過程中,其死亡頻數(shù)有3個拐點,2個峰值分別為:浸泡15 h死亡15尾(占15.8%)和浸泡21 h死亡8尾(占8.4%),1個低點為浸泡19 h死亡3尾(占3.2%)。魚苗死亡頻數(shù)呈不對稱M形分布(圖8),符合二階高斯分布,回歸方程為:y=15.62e-[(x-15.3)/2.195]2+7.579e-[(x-21.44)/2.516]2(R2=0.95,x∈N)。
3 討論
3. 1 短須裂腹魚苗對硫酸銅毒性的耐受性
本研究結(jié)果表明,大齡短須裂腹魚苗對硫酸銅毒性耐受性更強。由短須裂腹魚苗開始死亡時間與硫酸銅濃度對數(shù)的線性回歸方程可看出,2齡短須裂腹魚苗對應的方程斜率絕對值更大,說明大齡短須裂腹魚苗對硫酸銅濃度變化更敏感。1齡和2齡短須裂腹魚苗在硫酸銅溶液中浸泡24和48 h,僅2齡短須裂腹魚苗在硫酸銅溶液中浸泡24 h時未達100.00%的累計死亡率;此外,1齡和2齡短須裂腹魚苗開始死亡時間與硫酸銅濃度對數(shù)均呈負相關(guān)線性關(guān)系,對應的線性回歸方程分別為y=-14.088x+16.362(R?=0.99)和y=-23.287x+31.210(R?=0.97)。由1齡和2齡短須裂腹魚苗累計死亡率(概率單位)與硫酸銅濃度對數(shù)的關(guān)系圖可知,在已標出回歸直線對應的硫酸銅濃度之外,其左側(cè)所有硫酸銅濃度區(qū)間對應的魚苗累計死亡率均為0,而右側(cè)所有硫酸銅濃度區(qū)間對應的魚苗累計死亡率均為100.00%??梢?,短須裂腹魚苗在硫酸銅溶液中浸泡的累計死亡率(概率單位)與硫酸銅濃度對數(shù)呈分段線性關(guān)系。
在硫酸銅常用濃度下,1齡和2齡短須裂腹魚苗的死亡頻數(shù)均有2個峰值,對應累計死亡率曲線中的2個凸起;而累計死亡率曲線為斜置的波浪形可視為2個S形的拼接,分別對應二階高斯分布中每個峰的累積過程。從二階高斯方程分析可知,若試驗對象大幅減小,第1峰值和第2峰值也將劇烈降低;綜合硫酸銅常用濃度下1齡和2齡短須裂腹魚苗死亡頻數(shù)回歸方程中第2峰值較小,故推測各硫酸銅濃度梯度中1齡和2齡短須裂腹魚苗死亡頻數(shù)二階高斯分布圖形可能更符合一階高斯方程(圖9),具體表現(xiàn)為:第1峰值劇烈降低、第2峰值幾乎為1或2,而低點附近值均降至0,與Anderson和Spear(1980)的研究結(jié)果相似。在硫酸銅常用濃度對短須裂腹魚苗的毒性試驗基礎(chǔ)上,繼續(xù)擴大試驗對象數(shù)量,魚苗死亡頻率曲線峰的數(shù)量是否增加尚有待進一步探究。在相同規(guī)格下,硫酸銅濃度越高則短須裂腹魚苗從開始至全部死亡的時間跨度越短,因此1齡短須裂腹魚苗在硫酸銅溶液中浸泡的累計死亡率曲線由S形被壓縮成Z字鏡像形。
3. 2 硫酸銅對短須裂腹魚苗的毒性
根據(jù)魚苗累計死亡率曲線呈S形、魚苗累計死亡率(概率單位)與硫酸銅濃度對數(shù)呈線性關(guān)系及不同硫酸銅濃度下魚苗死亡頻數(shù)呈正態(tài)分布,可選用直接回歸法推算試驗期間任一時間點的LC50及其95%置信區(qū)間(孟紫強,2003;李磊等,2019)。通過與前人的相關(guān)研究進行對比,結(jié)果(表4)發(fā)現(xiàn),硫酸銅對1齡短須裂腹魚苗的LC50遠低于丁鱥(喬德亮等,2005)、厚頜魴(李代金等,2009)、鰱(牟洪民等,2010)及中國花鱸(朱友芳等,2011)等常見淡水魚,但高于小規(guī)格的花(丁淑荃等,2006)和草魚(葉素蘭和余治平,2007);2齡短須裂腹魚苗的LC50也遠低于丁鱥(喬德亮等,2005)、厚頜魴(李代金等,2009)及鰱(牟洪民等,2010)等常見淡水魚,說明短須裂腹魚苗對硫酸銅耐受性相對較低,在養(yǎng)殖過程中應謹慎使用硫酸銅。依據(jù)GB/T 31270.12—2014《化學農(nóng)藥環(huán)境安全評價試驗準則 第12部分:魚類急性毒性試驗》關(guān)于農(nóng)藥對魚類的毒性等級劃分(表5)可知,硫酸銅對小規(guī)格草魚、花及短須裂腹魚的毒性至少可列為高毒農(nóng)藥。這是由于Cu2+在諸多金屬離子中其毒性較大,也是硫酸銅作為常用廣譜殺蟲劑的原因之一(徐永江等,2004;陳玉翠和陳錦云,2016;熊小琴等,2016)。
在水產(chǎn)養(yǎng)殖生產(chǎn)中,通常采用全池潑灑硫酸銅0.357~0.500 mg/L(銅鐵合劑5∶2配比濃度0.5~0.7 mg/L)進行浸泡,或拉網(wǎng)集中后以7.143 mg/L硫酸銅溶液(銅鐵合劑5∶2配比濃度10.0 mg/L)進行短時間藥浴。本研究結(jié)果表明,硫酸銅對1齡和2齡短須裂腹魚苗的SC分別為0.191和0.017 mg/L,均低于0.357 mg/L,因此采用全池潑灑硫酸銅浸泡可能會對短須裂腹魚苗產(chǎn)生極大風險。即使采用常用濃度區(qū)間中最低濃度(0.357 mg/L)的硫酸銅溶液浸泡1齡和2齡短須裂腹魚苗,魚苗在浸泡48 h內(nèi)也極可能出現(xiàn)死亡。而采用7.143 mg/L硫酸銅溶液進行藥浴3 h,1齡和2齡短須裂腹魚苗均未出現(xiàn)中毒或死亡現(xiàn)象,且在藥浴后的3 d內(nèi)也無異常,因此生產(chǎn)中建議采用高濃度短時間藥浴法。由于硫酸銅浸泡會顯著增加魚苗耗氧量(袁喜等,2016),因此高濃度藥浴過程中應開啟增氧設備。此外,藥浴水應與池水隔開,避免高濃度硫酸銅快速殺死藻類而導致水體中的溶解氧大量消耗(鄧紫云和陳清香,2019)。
3. 3 硫酸銅對短須裂腹魚苗毒性的影響因子
Anderson和Spear(1980)、Perschbacher(2005)研究指出硫酸銅對太陽魚和斑點叉尾鮰的毒性隨水溫的升高而增強;而Furuta等(2008)研究發(fā)現(xiàn)硫酸銅對虹鱒、牙鲆和真鯛的毒性與水溫無顯著相關(guān)性。一般仍認為硫酸銅對多數(shù)魚類的毒性隨水溫升高而增強(蔡文超和區(qū)又君,2009)。本研究在11月開展硫酸銅對短須裂腹魚苗的急性毒性試驗,其試驗用水(雅礱江支流磨子溝溪流水)的溫度幾乎降至年內(nèi)最低值,可認為是硫酸銅毒性最低的季節(jié)。在春季的仔魚培育期水溫將持續(xù)升高,且進入小瓜蟲、車輪蟲和斜管蟲等寄生蟲感染高峰期,即使此期間硫酸銅毒性或?qū)㈦S水溫的升高而增強,但仍建議采用高濃度短時間藥浴進行殺蟲(王秋實等,2018)。此外,本研究的試驗用水為雅礱江支流磨子溝溪流水經(jīng)循環(huán)水過濾系統(tǒng)處理后的軟水,水質(zhì)清澈少雜質(zhì),但漁業(yè)養(yǎng)殖過程中水體硬度一般偏高且富含有機質(zhì),致使硫酸銅漁業(yè)養(yǎng)殖水體中毒性減弱,因此實際用藥過程中可適當提高使用濃度。
4 結(jié)論
硫酸銅對1齡和2齡短須裂腹魚苗的急性毒性至少可列為高毒農(nóng)藥,其中2齡魚苗耐受性相對較高,但短須裂腹魚苗對硫酸銅急性毒性耐受性較低,在實際生產(chǎn)中建議采用高濃度短時間藥浴法。
參考文獻:
蔡文超,區(qū)又君. 2009. 重金屬離子銅對魚類早期發(fā)育階段的毒性[J]. 南方水產(chǎn),5(5):75-79. doi:10.3969/j.issn.1673-2227.2009.05.014. [Cai W C,Qu Y J. 2009. Toxicity of Cu2+ to fish during early developmental stages:A review[J]. South China Fisheries Science,5(5):75-79.]
陳玉翠,陳錦云. 2016. 重金屬Cu2+、Cd2+、Hg2+對斑馬魚胚胎發(fā)育的毒性效應[J]. 南方水產(chǎn)科學,12(3):35-42. doi:10. 3969/j.issn.2095-0780.2016.03.005. [Chen Y C,Chen J Y. 2016. Toxic effect of heavy metal ions of Cu2+,Cd2+ and Hg2+ on embryo development of zebrafish(Danio rerio)[J]. South China Fisheries Science,12(3):35-42.]
鄧紫云,陳清香. 2019. Cu和Pb對赤潮異彎藻(Heterosigma akashiwo)生長的影響[J]. 生態(tài)毒理學報,14(1):116-127. doi:10.7524/AJE.1673-5897.20180911003. [Deng Z Y,Chen Q X. 2019. Effects of Cu and Pb on the growth of alga,Heterosigma akashiwo[J]. Asian Journal of Ecotoxicology,14(1):116-127.]
丁瑞華. 1994. 四川魚類志[M]. 成都:四川科學技術(shù)出版社. [Ding R H. 1994. The fishes of Sichuan[M]. Chengdu:Sichuan Science and Technology Press.]
丁淑荃,萬全,范文張,邊家榮,吳泊君,汪永忠. 2006. 五種藥物對花魚苗的急性毒性試驗[J]. 淡水漁業(yè),36(5):48-51. doi:10.3969/j.issn.1000-6907.2006.05.012. [Ding S Q,Wan Q,F(xiàn)an W Z,Bian J R,Wu B J,Wang Y Z. 2006. Acute toxicity of five drugs to Hemibarbus maculates fries[J]. Freshwater Fisheries,36(5):48-51.]
甘維熊,鄧龍君,曾如奎,曾焱,向成權(quán). 2015. 短須裂腹魚人工繁殖和早期仔魚的培育[J]. 江蘇農(nóng)業(yè)科學,43(9):259-260. doi:10.15889/j.issn.1002-1302.2015.09.086. [Gan W X,Deng L J,Zeng R K,Zeng Y,Xiang C Q. 2015. Artificial breeding and early larval breeding of Schizothorax wangchiachii[J]. Jiangsu Agricultural Sciences,43(9):259-260.]
黃斌,別立潔. 2006. 銅(Cu2+)對麥穗魚苗的急性毒性與非生物因子的相關(guān)性研究[J]. 淡水漁業(yè),36(2):34-38. doi:10.3969/j.issn.1000-6907.2006.02.009. [Huang B,Bie L J. 2006. Relation between acute toxicity of Cu2+ on juvenile of Pseudorasbora parva and non-biological factors[J]. Freshwater Fisheries,36(2):34-38.]
黃俊,朱挺兵,楊德國,吳興兵,柴毅. 2019. 短須裂腹魚仔稚魚發(fā)育及生長特性的初步研究[J]. 水生態(tài)學雜志,40(6):99-105. doi:10.15928/j.1674-3075.2019.06.015. [Huang J,Zhu T B,Yang D G,Wu X B,Cai Y. 2019. Development and growth characteristics of larval and juvenile Schizothorax wangchiachii[J]. Journal of Hydroecology,40(6):99-105.]
李代金,黃輝,譚德清. 2009. 6種常用漁藥對厚頜魴魚苗的急性毒性試驗[J]. 水生態(tài)學雜志,2(6):25-29. doi:10. 15928/j.1674-3075.2009.06.004. [Li D J,Huang H,Tan D Q. 2009. Acute toxicity of six aquacultural chemicals towards larva of Megalobrama pellegrini[J]. Journal of Hydroecolog,2(6):25-29.]
李磊,蔣玫,王云龍. 2019. 鄰苯二甲酸二丁酯和鄰苯二甲酸二辛酯對大黃魚受精卵及仔魚的急性毒性效應[J]. 海洋漁業(yè),41(3):346-353. doi:10.13233/j.cnki.mar.fish. 2019.03.010. [Li L,Jiang M,Wang Y L. 2019. Toxic effects of DBP and DOP on early life stage of Pseudosciaena crocea[J]. Marine Fisheries,41(3):346-353.]
李陽,薛素燕,李加琦,沈淑芳,陳瓊琳,蔣增杰,方建光,毛玉澤. 2018. Cu2+脅迫對魁蚶生理生化和組織結(jié)構(gòu)的影響[J]. 水產(chǎn)學報,42(10):1531-1540. doi:10.11964/jfc.2017 0810928. [Li Y,Xue S Y,Li J Q,Shen S F,Chen Q L,Jiang Z J,F(xiàn)ang J G,Mao Y Z. 2018. Effect of Cu2+ stress on physiology biochemistry and histopathological structure of Scapharca broughtonii[J]. Journal of Fisheries of China,42(10):1531-1540.]
廖偉,劉大慶,馮承蓮,金小偉,劉娜,白英臣,吳代赦. 2020. 不同生長階段斑馬魚對Cu2+的毒性響應差異[J]. 環(huán)境科學研究,33(3):626-633. doi:10.13198/j.issn.1001-6929.2019.06.25. [Liao W,Liu D Q,F(xiàn)eng C L,Jin X W,Liu N,Bai Y C,Wu D H. 2020. Difference in toxicity response of zebrafish to Cu2+ at different life stages[J]. Research of Environmental Sciences,33(3):626-633.]
羅福廣,黎婭,黃杰,易弋. 2016. 麥穗魚在硫酸銅藥效評估中的應用[J]. 南方農(nóng)業(yè)學報,47(3):494-499. doi:10.3969/j:issn.2095-1191.2016.03.494. [Luo F G,Li Y,Huang J,Yi Y. 2016. Application of Pseudorasbora parva in evalua-tion of copper sulfate efficacy[J]. Journal of Southern Agriculture,47(3):494-499.]
孟紫強. 2003. 環(huán)境毒理學基礎(chǔ)[M]. 北京:高等教育出版社. [Meng Z Q. 2003. Basis of environmental toxicology[M]. Beijing:Higher Education Press.]
牟洪民,唐黎,王吉橋,姚俊杰,安苗,陳玉珍. 2010. 4種常用漁藥對鰱魚種的急性毒性試驗[J]. 淡水漁業(yè),40(5):76-79. doi:10.3969/j.issn.1000-6907.2010.05.015. [Mu H M,Tang L,Wang J Q,Yao J J,An M,Chen Y Z. 2010. Acute toxicity of four drugs to juvenile silver carp (Hypophthalmichthys molitrix)[J]. Freshwater Fisheries,40(5):76-79.]
聶志娟,徐鋼春,張守領(lǐng),徐跑,顧若波. 2014. 銅對刀鱭幼魚的急性毒性及對肝抗氧化酶活性與組織結(jié)構(gòu)的影響[J]. 中國水產(chǎn)科學,21(1):161-168. doi:10.3724/SP.J.1118. 2014.00161. [Nie Z J,Xu Z C,Zhang S L,Xu P,Gu R B. 2014. Acute effects of copper on survival of fingerlings,antioxidant enzyme activities in liver and structure of gill and liver of Coilia nasus[J]. Journal of Fishery Sciences of China,21(1):161-168.]
喬德亮,凌去非,殷建國,李巖平,蔡曉琴,何智杰. 2005. 4種常用水產(chǎn)藥物對丁鱥魚種的急性毒性實驗[J]. 水利漁業(yè),25(4):92-93. doi:10.15928/j.1674-3075.2005.04.040. [Qiao D L,Ling Q F,Yin J G,Li Y P,Cai X Q,He Z J. 2005. Acute toxicity of 4 kinds of aquaculture medicines to the fingerlings of Tinca tinca[J]. Reservoir Fisheries,25(4):92-93.]
王崇,梁銀銓,張宇,沈再軍,姜志武. 2017. 短須裂腹魚營養(yǎng)成分分析與品質(zhì)評價[J]. 水生態(tài)學雜志,38(4):96-100. doi:10.15928/j.1674-3075.2017.04.014. [Wang C,Liang Y Q,Zhang Y,Shen Z J,Jiang Z W. 2017. Nutrient content and quality of Schizothorax wangchuachii[J]. Journal of Hydroecology,38(4):96-100.]
王秋實,王樂,裴月,曹頂臣,李崇文,鄭先虎,吳學工,王炳謙. 2018. 硫酸銅對梭鱸幼魚的急性毒性及其對車輪蟲的滅殺作用[J]. 水產(chǎn)學雜志,31(1):17-20. doi:10.3969/j.issn.1005-3832.2018.01.004. [Wang Q S,Wang L,Pei Y,Cao D C,Li C W,Zheng X H,Wu X G,Wang B Q. 2018. Acute toxicity of copper sulfate to pikeperch San-der lucioperca juveniles and extermination of parasite Trichodina sp.[J]. Chinese Journal of Fisheries,31(1):17-20.]
謝平. 2017. 長江的生物多樣性危機——水利工程是禍首,酷漁亂捕是幫兇[J]. 湖泊科學,29(6):1279-1299. doi:10. 18307/2017.0601. [Xie P. 2017. Biodiversity crisis in the Yangtze River:The culprit was dams,followed by overfishing[J]. Journal of Lake Sciences,29(6):1279-1299.]
熊小琴,羅思,吳本麗,王劍偉. 2016. 不同硬度條件下Cd2+和Cu2+對稀有鮈鯽的急性毒性[J]. 生態(tài)毒理學報,11(3):316-322. doi:10.7524/AJE.1673-5897.20150902002. [Xiong X Q,Luo S,Wu B L,Wang J W. 2016. Acute toxicity of cadmium and copper to Gobiocypris rarus under different water hardness[J]. Asian Journal of Ecotoxicology,11(3):316-322.]
徐永江,柳學周,馬愛軍. 2004. 重金屬對魚類毒性效應及其分子機理的研究概況[J]. 海洋科學,28(10):67-70. doi:10.3969/j.issn.1000-3096.2004.10.018. [Xu Y J,Liu X Z,Ma A J. 2004. Current research on toxicity effect and molecular mechanism of heavy metals on fish[J]. Marine Sciences,28(10):67-70.]
顏文斌,朱挺兵,吳興兵,楊德國,陳亮. 2017. 短須裂腹魚產(chǎn)卵行為觀察[J]. 淡水漁業(yè),47(3):9-15. doi:10.13721/j.cnki.dsyy.2017.03.002. [Yan W B,Zhu T B,Wu X B,Yang D G,Chen L. 2017. An observation of spawning behavior of Schizothorax wangchiachii[J]. Freshwater Fisheries,47(3):9-15.]
葉素蘭,余治平. 2007. 六種水產(chǎn)藥物對草魚魚種的急性毒性試驗[J]. 水產(chǎn)科學,26(10):564-566. doi:10.16378/j.cnki. 1003-1111.2007.10.007. [Ye S L,Yu Z P. 2007. Acute toxicity of six fishery drugs to grass carp juvenile[J]. Fisheries Science,26(10):564-566.]
袁喜,黃應平,靖錦杰,蔣清,胥燾,涂志英,李為民. 2016. 銅暴露對草魚幼魚代謝行為的影響[J]. 農(nóng)業(yè)環(huán)境科學學報,35(2):261-265. doi:10.11654/jaes.2016.02.008. [Yuan X,Huang Y P,Jing J J,Jiang Q,Xu T,Tu Z Y,Li W M. 2016. Effect of copper exposure on metabolism behavior of juvenile grass carp(Ctenopharyngodon idella)[J]. Journal of Agro-Environment Science,35(2):261-265.]
趙巧雅,孫雪婧,王玲玲,王濤只,陳秋生,林金杏. 2018. 銅對斑馬魚鰓的損傷及其作用機制[J]. 解剖學報,49(3):367-373. doi:10.16098 /j.issn.0529-1356.2018.03.016. [Zhao Q Y,Sun X J,Wang L L,Wang T Z,Chen Q S,Lin J X. 2018. Gill injury by copper and its mechanism in zebra-fish[J]. Acta Anatomica Sinica,49(3):367-373.]
周禮敬,詹會祥,吳興兵,晏宏,鄒元富. 2012. 4種漁藥對昆明裂腹魚魚苗的急性毒性試驗[J]. 淡水漁業(yè),42(4):26-30. doi:10.3969/j.issn.1000-6907.2012.04.005. [Zhou L J,Zhan H X,Wu X B,Yan H,Zou Y F. 2012. Acute toxi-city of four drugs to larva of Schizothorax graham[J]. Freshwater Fisheries,42(4):26-30.]
朱友芳,洪萬樹,林金忠. 2011. 銅離子對中國花鱸幼魚的毒性研究[J]. 生態(tài)毒理學報,6(3):331-336. [Zhu Y F,Hong W S,Lin J Z. 2011. Toxicity of Cu2+ to juvenile perch Lateolabrax maculatus[J]. Asian Journal of Ecotoxico-logy,6(3):331-336.]
Anderson P D,Spear P A. 1980. Copper pharmacokinetics in fish gills-II body size relationships for accumulation and tolerance[J]. Water Research,14(8):1107-1111. doi:10. 1016/0043-1354(80)90160-8.
Boeckman C J,Bidwell J R. 2006. The effects of temperature,suspended solids,and organic carbon on copper toxi-city to two aquatic invertebrates[J]. Water,Air,& Soil Pollution,171(1-4):185-202.
Boyle D,Clark N J,Handy R D. 2020. Toxicities of copper oxide nanomaterial and copper sulphate in early life stage zebrafish:Effects of pH and intermittent pulse exposure[J]. Ecotoxicology and Environmental Safety,190:1099 85. doi:10.1016/j.ecoenv.2019.109985.
Ebrahimpour M,Alipour H,Rakhshah S. 2010. Influence of water hardness on acute toxicity of copper and zinc on fish[J]. Toxicology and Industrial Health,26(6):361-365. doi:10.1177/0748233710369123.
Furuta T,Iwata N,Kikuchi K. 2008. Effects of fish size and water temperature on the acute toxicity of copper for Ja-panese flounder,Paralichthys olivaceus,and red sea bream,Pagrus major[J]. Journal of the World Aquaculture Society,39(6):766-773. doi:10.1111/j.1749-7345. 2008.00212.x.
Hashemi S,Blust R,de Boeck G. 2008. The effect of starving and feeding on copper toxicity and uptake in Cu acclimated and non-acclimated carp[J]. Aquatic Toxicology,86(2):142-147. doi:10.1016/j.aquatox.2007.10.008.
Perschbacher P W. 2005. Temperature effects on acute copper toxicity to juvenile channel catfish ictalurus punctatus[J]. Aquaculture,243(1-4):225-228. doi:10.1016/j.aquaculture.2004.10.006.
Santore R C,Di Toro D M,Paquin P R,Allen H E,Meyer J S. 2001. Biotic ligand model of the acute toxicity of me-tals. 2. Application to acute copper toxicity in freshwater fish and Daphnia[J]. Environmental Toxicology and Che-mistry,20(10):2397-2402.
Schjolden J,S?rensen J,Nilsson G E,Poléo A B S. 2007. The toxicity of copper to crucian carp(Carassius carassius) in soft water[J]. Science of the Total Environment,384(1-3):239-251. doi:10.1016/j.scitotenv.2007.06.009.
(責任編輯 蘭宗寶)