吳淑輝 朱明芳 張曦 劉娟 張杜
〔摘要〕 目的 探討牛奶對金黃地鼠皮脂分泌的影響及其作用機制。方法 將18只金黃地鼠隨機分為空白組、全脂牛奶組、脫脂牛奶組,每組6只??瞻捉M不予任何干預措施,全脂牛奶組予全脂牛奶灌胃,脫脂牛奶組予脫脂牛奶灌胃,2.5 mL/次,2次/d。于干預后第0、7、14、21、28天測量金黃地鼠雙側皮脂腺斑面積及厚度;并采用免疫組化法檢測金黃地鼠皮脂腺斑ACAT1/ABCA1信號分子表達水平;采用HE染色觀察皮脂腺斑病理組織學變化。結果 各組間皮脂腺斑面積無明顯差異(P>0.05);與空白組相比,全脂牛奶組及脫脂牛奶組皮脂斑厚度明顯增厚,差異具有統(tǒng)計學意義(P<0.05);與空白組相比,全脂牛奶組ACAT1 OD值明顯升高,差異具有統(tǒng)計學意義(P<0.05);各組間ABCA1 OD值無明顯差異(P>0.05)。與空白組相比,全脂牛奶組及脫脂牛奶組金黃地鼠皮脂腺腺體肥大,數(shù)量較多,呈分葉狀分布,排列緊密。結論 牛奶可能通過ACAT1信號分子調(diào)控皮脂脂質(zhì)分泌。
〔關鍵詞〕 牛奶;金黃地鼠;皮脂腺斑;ACAT1;ABCA1
〔中圖分類號〕R275? ? ? 〔文獻標志碼〕A? ? ? ?〔文章編號〕doi:10.3969/j.issn.1674-070X.2021.05.007
Effects of Milk on Sebum Secretion in Golden Hamsters Based on ACAT1/ABCA1
Signaling Molecules
WU Shuhui, ZHU Mingfang*, ZHANG Xi, LIU Juan, ZHANG Du
(The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China)
〔Abstract〕 Objective To explore the effect and possible mechanism of milk on sebaceous gland spot of golden hamsters. Methods 18 golden hamsters were randomly divided into the blank group, whole milk group, skim milk group and control group, with 6 rats in each group. The blank group was not given any intervention measures. The whole milk group was given whole milk by gavage, and the skim milk group was given skim milk by gavage, 2.5 mL/time, twice a day. The area and thickness of bilateral sebaceous glands of golden hamsters were measured at 0, 7, 14, 21 and 28 days after intervention. The expression levels of ACAT1/ABCA1 signaling molecules in the sebaceous spots of golden hamsters were detected by immunohistochemistry. The histopathological changes of sebaceous spots were observed by HE staining. Results The sebaceous gland spots sizes in groups didnt show great significance (P>0.05). Compared with the blank group, the thickness of sebaceous spots in the whole milk group and skim milk group was increased significantly, and the difference was statistically significant (P<0.05). The expression of ACAT1 in whole milk group was significant higher than that in blank group, the difference was statistically significant (P<0.05). There were no differences in the optical density (OD) of ABCA1 among groups (P>0.05). Compared with the blank group, sebaceous gland spot of golden hamsters in the whole milk group and the skim milk group were hypertrophic and more numerous, with lobulated distribution and close arrangement. Conclusion Milk may regulate sebum lipid secretion through ACAT1 signaling molecule.
空白組皮脂腺葉無明顯分葉結構,排列較為疏松,厚度較全脂牛奶組及脫脂牛奶組略薄;與空白組相比,全脂牛奶組及脫脂牛奶組皮脂腺腺體肥大,數(shù)量較多,呈分葉狀分布,排列緊密。見圖2。
3 討論
痤瘡發(fā)病機制復雜多樣,遺傳背景下激素誘導的皮脂腺過度分泌脂質(zhì)、毛囊皮脂腺導管角化異常、痤瘡丙酸桿菌等毛囊微生物增殖及炎癥和免疫反應等與之相關,其中皮脂腺過度分泌脂質(zhì)被認為是痤瘡發(fā)生的前提條件,皮脂過分泌在痤瘡中發(fā)揮重要作用[14]。本課題組前期對長沙市區(qū)內(nèi)在校青少年乳制品消費與痤瘡患病情況開展流行病學調(diào)查,結果表明全脂牛奶、低脂牛奶和脫脂牛奶攝入的人群患痤瘡的風險均高于不喝牛奶的人群,OR值(95%CI)分別為3.46(1.18-10.11)、3.50(1.18-10.40)和46.28(5.02-427.00)[15],基于此,本課題從皮脂角度進一步探究牛奶在痤瘡發(fā)病中的作用,以期為痤瘡患者提供飲食指導。
在高脂血癥或高膽固醇血癥條件作用下,游離膽固醇可在內(nèi)質(zhì)網(wǎng)通過ACAT1作用被酯化,導致膽固醇酯化,形成泡沫狀巨噬細胞[16-18];而上調(diào)ABCA1表達則可促進巨噬細胞內(nèi)膽固醇及磷脂流出,抑制巨噬細胞泡沫化,改善動脈粥樣硬化[19-21]。除了動脈粥樣硬化,研究[16,22-25]表明,阿爾茨海默病、糖尿病、鞘磷脂沉積病等多種脂質(zhì)代謝紊亂疾病與ACTA1/ABCA1信號分子功能失調(diào)密切相關。近年研究表明,脂質(zhì)代謝紊亂參與誘導痤瘡發(fā)生發(fā)展,Melnik等[26-27]更提出痤瘡是一種發(fā)生于毛囊皮脂腺的代謝綜合征。Zhou M等[28]檢測了59名嬰兒痤瘡患者皮脂成分及含量,結果表明,相比正常對照組,痤瘡患兒表面脂質(zhì)成分明顯改變,脂肪酰基、甘油磷脂、鞘磷脂、甾醇脂質(zhì)、糖脂類明顯上升,孕烯醇酮脂類則明顯下降;并重點檢測了甘油三酯、甘油二酯、神經(jīng)酰胺類脂質(zhì)游離脂肪酸、磷脂質(zhì),發(fā)現(xiàn)患兒表面皮脂甘油三酯、游離脂肪酸含量明顯上升,甘油二酯含量與甘油三酯含量成比例關系,磷脂質(zhì)平均鏈長明顯減低導致患兒皮膚屏障功能下降。Zhou M等[29]研究表明,在青少年痤瘡患者皮脂中甘油磷脂、不飽和游離脂肪酸、甾醇類脂質(zhì)含量明顯上升,孕烯醇酮脂類、糖脂類含量明顯下降,甘油脂類、鞘磷脂含量相比對照組無明顯改變。以上研究表明皮脂代謝紊亂在痤瘡發(fā)生發(fā)展中發(fā)揮重要作用,基于此,本研究從皮脂代謝紊亂角度進一步探究牛奶在痤瘡中的作用。
本研究發(fā)現(xiàn)與空白組相比,全脂牛奶組及脫脂牛奶組皮脂腺斑厚度明顯增厚(P<0.05),然而各組皮脂腺斑面積無明顯差異,不排除由于測量誤差及喂養(yǎng)時間較短等因素造成影響。與空白組相比,全脂牛奶組ACTA1表達上調(diào)(P<0.05),這表明牛奶可能通過上調(diào)ACAT1表達影響皮脂膽固醇代謝,進而誘導皮脂脂質(zhì)代謝紊亂,加重痤瘡發(fā)生,然而各組間ABCA1表達無明顯差異,不排除由于實驗動物數(shù)量較少及喂養(yǎng)時間較短等各方面原因造成的假陰性,仍需進一步實驗驗證;同時本研究采用金黃地鼠皮脂腺斑面積大小作為其皮脂分泌改變指標,方法簡便直觀,然尚欠缺一定精準性,故本實驗存在一定局限性,仍有待進一步實驗證實。
參考文獻
[1] SOLEYMANI S, FARZAEI M H, ZARGARAN A, et al. Promising plant-derived secondary metabolites for treatment of acne vulgaris: A mechanistic review[J]. Archives of Dermatological Research, 2020, 312(1): 5-23.
[2] 吳淑輝,朱明芳,張? 曦,等.基于數(shù)據(jù)挖掘探討朱明芳教授治療尋常痤瘡的用藥規(guī)律[J].湖南中醫(yī)藥大學學報,2020,40(9):1142-1146.
[3] SMITH R N, MANN N J, BRAUE A, et al. A low-glycemic-load diet improves symptoms in acne vulgaris patients: A randomized controlled trial[J]. The American Journal of Clinical Nutrition, 2007, 86(1): 107-115.
[4] BURRIS J, SHIKANY J M, RIETKERK W, et al. A low glycemic index and glycemic load diet decreases insulin-like growth factor-1 among adults with moderate and severe acne: A short-duration, 2-week randomized controlled trial[J]. Journal of the Academy of Nutrition and Dietetics, 2018, 118(10): 1874-1885.
[5] BURRIS J, RIETKERK W, WOOLF K. Relationships of self-reported dietary factors and perceived acne severity in a cohort of New York young adults[J]. Journal of the Academy of Nutrition and Dietetics, 2014, 114(3): 384-392.
[6] JUNG J Y, KWON H H, HONG J S, et al. Effect of dietary supplementation with omega-3 fatty acid and gamma-linolenic acid on acne vulgaris: a randomised, double-blind, controlled trial[J]. Acta Derm Venereol, 2014. 94(5): 521-525.
[7] KUCHARSKA A, SZMUR?O A, SI[N][']SKA B. Significance of diet in treated and untreated acne vulgaris[J]. Postepy Dermatologii i Alergologii, 2016, 33(2): 81-86.
[8] MELNIK B. Dietary intervention in acne: Attenuation of increased mTORC1 signaling promoted by Western diet[J]. Dermato-endocrinology, 2012, 4(1): 20-32.
[9] ADEBAMOWO C A, SPIEGELMAN D, BERKEY C S, et al. Milk consumption and acne in adolescent girls[J]. Dermatology Online Journal,2006. 12(4): 1.
[10] PENSO L, TOUVIER M, DESCHASAUX M, et al. Association between adult acne and dietary behaviors: Findings from the NutriNet-santé prospective cohort study[J]. JAMA Dermatology, 2020, 156(8): 854-862.
[11] AALEMI A K, ANWAR I, CHEN H X. Dairy consumption and acne: A case control study in Kabul, Afghanistan[J]. Clinical, Cosmetic and Investigational Dermatology, 2019, 12: 481-487.
[12] ZHANG Z, TONG T, FANG Y, et al. Genome-wide identification of barley ABC genes and their expression in response to abiotic stress treatment[J]. Plants, 2020. 9(10): 1281-1296.
[13] OKAMOTO Y, TOMIOKA M, OGASAWARA F, et al. C-terminal of ABCA1 separately regulates cholesterol floppase activity and cholesterol efflux activity[J]. Biosci Biotechnol Biochem, 2020. 84(4): 764-773.
[14] 鞠? 強.中國痤瘡治療指南(2019修訂版)[J].臨床皮膚科雜志, 2019,48(9):583-588.
[15] 周? 佳,朱明芳,曾迎紅,等.長沙市學生痤瘡患病情況與乳制品消費的關聯(lián)性分析[J].應用預防醫(yī)學,2020,26(5):401-404.
[16] TERASAKI M, YASHIMA H, MORI Y, et al. A dipeptidyl peptidase-4 inhibitor inhibits foam cell formation of macrophages in type 1 diabetes via suppression of CD36 and ACAT-1 expression[J]. International Journal of Molecular Sciences, 2020. 21(13):4811-4824.
[17] PAGANO S, MAGENTA A, D'AGOSTINO M, et al. Anti-ApoA-1 IgGs in familial hypercholesterolemia display paradoxical associations with lipid profile and promote foam cell formation[J]. Journal of Clinical Medicine, 2019, 8(12): 2035-2055.
[18] LI-HAO H, MELTON ELAINA M, HAIBO L, et al. Myeloid Acyl-CoA: Cholesterol acyltransferase 1 deficiency reduces lesion macrophage content and suppresses atherosclerosis progression[J]. The Journal of Biological Chemistry, 2016, 291(12):6232-6244.
[19] JEBARI-BENSLAIMAN S, URIBE KB, BENITO-VICENTE A, et al. Cholesterol efflux efficiency of reconstituted hdl is affected by nanoparticle lipid composition[J]. Biomedicines, 2020, 8(10): 373-392.
[20] ZHANG Z, ZHAI L, LU J, et al. γShen-Hong-Tong-Luo formula attenuates macrophage inflammation and lipid accumulation through the activation of the PPAR-/LXR-/ABCA1 pathway[J]. Oxidative Medicine and Cellular Longevity, 2020, 2020: 3426925.
[21] WANG T, ZHAO Y, YOU Z, et al. Endoplasmic Reticulum stress affects cholesterol homeostasis by inhibiting LXRα expression in hepatocytes and macrophages. Nutrients. 2020. 12(10): 3088-3103.
[22] LUQUAIN-COSTAZ C, KOCKX M, ANASTASIUS M, et al. Increased ABCA1 (ATP-binding cassette transporter A1)-specific cholesterol efflux capacity in schizophrenia[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40(11): 2728-2737.
[23] HE Y, RONSEIN G E, TANG C R, et al. Diabetes impairs cellular cholesterol efflux from ABCA1 to small HDL particles[J]. Circulation Research, 2020, 127(9): 1198-1210.
[24] ALAVEZ-RUBIO J S, JUAREZ-CEDILLO T. ACAT1 as a therapeutic target and its genetic relationship with Alzheimer's disease[J]. Current Alzheimer Research, 2019, 16(8): 699-709.
[25] KAMIKAWA M, LEI X F, FUJIWARA Y, et al. ACAT1-associated late endosomes/lysosomes significantly improve impaired intracellular cholesterol metabolism and the survival of niemann-pick type C mice[J]. Acta Histochemica et Cytochemica, 2014, 47(2): 35-43.
[26] BIAGI L G, SA?UDO A, BAGATIN E. Severe acne and metabolic syndrome: A possible correlation[J]. Dermatology, 2019, 235(6): 456-462.
[27] MELNIK B C. Acne vulgaris: The metabolic syndrome of the pilosebaceous follicle[J]. Clinics in Dermatology, 2018, 36(1): 29-40.
[28] ZHOU M, WANG H, YANG M, et al. Lipidomic analysis of facial skin surface lipid reveals the altered lipid profile in infancy acne[J]. The British Journal of Dermatology, 2019,182(3):817-818.
[29] ZHOU M, GAN Y, HE C, et al. Lipidomics reveals skin surface lipid abnormity in acne in young men[J]. The British Journal of Dermatology, 2018, 179(3): 732-740.