亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        飛過 請留下痕跡
        ——變式教學(xué)低效的原因及對策

        2021-05-25 09:01:06王修湯
        數(shù)學(xué)通報 2021年4期
        關(guān)鍵詞:基礎(chǔ)訓(xùn)練定勢余弦定理

        王修湯

        (江蘇省南師大附中江寧分校 211102)

        “天空沒有留下翅膀的痕跡,但我已經(jīng)飛過.”這句話出自印度詩人泰戈爾的《飛鳥集》.一種消極的理解認(rèn)為:我們都在不斷遇見隨后錯過,我們學(xué)會了麻木,天空依舊泛著淡然,我們卻已不再重返. 近期聽了一節(jié)高三復(fù)習(xí)題,課題是“與三角形面積有關(guān)的問題”,授課教師采用變式教學(xué)方式與學(xué)生互動,聽課時覺得很精彩,但是從學(xué)生課堂反饋及后期測試的結(jié)果看,效果一般,筆者深感意外,有一種“飛過”卻沒留下任何痕跡的感覺. 現(xiàn)將教學(xué)過程展示如下.

        1 飛過

        1.1 基礎(chǔ)訓(xùn)練及例題

        教師先投影3道基礎(chǔ)訓(xùn)練題:

        2.在△ABC中,角A,B,C對應(yīng)邊為a,b,c,若a=3,b=5,c=7,則△ABC的面積為.

        3.直角三角形的斜邊長是2,則其面積最大值是.

        教師授課時,1、2兩題請學(xué)生分析一下思路,直接報出答案. 對于第3小題,教師分別提問四個學(xué)生,學(xué)生給出以下四種解法(設(shè)兩直角邊分別為a,b,面積為S).

        圖1

        接下來教師投影兩道例題.

        (1)求角A的大小;(2)若a=2,b+c=4,求△ABC的面積.

        例2在△ABC中,角A,B,C對應(yīng)邊為a,b,c,若a2+b2+2c2=8,求△ABC的面積最大值.

        對于例1,學(xué)生做完后教師投影學(xué)生做法如下:

        (1)由正弦定理得,

        (2)因a=2,由(1)及余弦定理得

        即4=(b+c)2-3bc,又b+c=4,故bc=4,

        所以△ABC的面積為

        1.2 變式教學(xué)

        教完例1,教師開始變式教學(xué)。

        教師:若將例1(2)中條件b+c=4去掉,可得如下變式.

        師生共同合作,從化邊、化角、化“形”上分別考慮,給出以下三種解法.

        方法1(化邊)由余弦定理得

        即b2+c2=4+bc≥2bc,故bc≤4,

        所以△ABC的面積

        方法2(化角)由正弦定理得

        圖2

        變式2在△ABC中,若BC=2,AB=2AC,則△ABC面積的最大值為.

        教師已經(jīng)來不及講例2了,匆匆總結(jié)了求三角形面積的最值可以從邊、從角、從“形”不同角度去考慮.

        2 無痕

        上述整個教學(xué)過程,教師準(zhǔn)備充分,學(xué)生精神飽滿,注意力集中,看出來學(xué)生基礎(chǔ)較好,師生關(guān)系融洽,課堂氣氛活躍,不時有學(xué)生給出不同于別人的解法. 教師教學(xué)方法先進(jìn),以學(xué)生為主體,教師為主導(dǎo),師生共同合作,一改過去“滿堂灌”的教學(xué)方式.

        對于本節(jié)課的重點(diǎn)和難點(diǎn),即求三角形的面積最值問題,教師采取變式教學(xué)方式,在強(qiáng)化重點(diǎn)突破難點(diǎn)方面,起到了很好作用. 筆者全程參與聽課,從基礎(chǔ)訓(xùn)練到例1,全體學(xué)生基本上沒遇到什么困難,不斷有奇思妙想涌現(xiàn)并積極搶答,場面活躍,教師調(diào)動有方,把控得體. 到了變式1,學(xué)生感覺有些困難,幾乎沒人想到從“形”上去考慮頂點(diǎn)A的軌跡在一個圓上,教師追問想到此法的一個學(xué)生,學(xué)生回答是從大量解題經(jīng)驗(yàn)中獲得的靈感.

        圖3

        對于變式2,教師將“a=2”改成“BC=2”,將“c=2b”改成“AB=2AC”,暗示學(xué)生可以從“形”上考慮建系,筆者巡視發(fā)現(xiàn),絕大多數(shù)學(xué)生還是回到條件上想正弦定理或余弦定理,導(dǎo)致運(yùn)算繁雜,最終沒有計算出來. 盡管教師最后講了“建系”這種方法且確實(shí)快捷方便,但收效甚微. 面對周測試卷上的一道題:“如圖3,等腰△ABC中,AB=AC,一腰上的中線BD=2,則△ABC面積的最大值為.”據(jù)了解,學(xué)生做對者還是很少,這引起筆者深入思考,看似那么精彩的課堂,教師象領(lǐng)頭的大雁一樣帶領(lǐng)學(xué)生在知識的天空翱翔,天空中師生都確實(shí)“飛”過一遍,可為什么沒有留下任何痕跡,感覺那節(jié)課就象沒上過一樣,其原因究竟在哪里?

        3 原因

        筆者反復(fù)走訪授課教師及學(xué)生,授課教師說:“高一學(xué)習(xí)余弦定理之后就已經(jīng)做過變式1,當(dāng)時因沒有學(xué)習(xí)基本不等式,所以主要介紹‘邊化角’的方法,后來學(xué)過基本不等式之后又從‘角化邊’的角度講過一遍,學(xué)生對此印象深刻,而從‘形’上考慮建系,從來沒有系統(tǒng)學(xué)習(xí)過”.聽課學(xué)生說:“△ABC中有邊又有角的條件,當(dāng)然想到正、余弦定理了”;“又不是直角三角形或等腰三角形,誰能想到上去就建系?”;“對于周測試卷上題目,就更想不到‘BD=2,AB=2AD’,答案是變式1答案的兩倍了”.

        綜合以上師生所說,結(jié)合多年教學(xué)的思考,筆者認(rèn)為造成“無痕”的主要原因有以下四個方面.

        3.1 定勢思維困擾學(xué)生

        造成多數(shù)學(xué)生只能想到正、余弦定理而想不到建系的主要原因是“定勢思維”,高一學(xué)習(xí)“解三角形”那一章時,大量配套的例題、習(xí)題是利用正、余弦定理化邊為角或化角為邊,再加上本節(jié)課基礎(chǔ)訓(xùn)練的三個題目基本都用正、余弦定理就能搞定,特別是例1,更是直接用正、余弦定理輕松得手,學(xué)生已經(jīng)做得熟手了. 人們在思考問題時,一直按照同一種方式來思考、理解、記憶問題,久而久之,就在思考問題時形成一種習(xí)慣,使人只想到一個方面,這就是心理學(xué)上的“定勢思維”,定勢思維對問題解決既有積極的一面,也有消極的一面.大量事例表明,定勢思維確實(shí)對問題解決具有較大的負(fù)面影響,當(dāng)一個問題的條件發(fā)生質(zhì)的變化時,定勢思維會使解題者墨守成規(guī),難以涌出新思維,作出新決策.

        3.2 新授課出現(xiàn)“盲區(qū)”

        圖4

        3.3 微專題“貪大求全”

        本節(jié)課教師確定的微專題課題是“與三角形面積有關(guān)的問題”,從這個課題就能看出涉及的內(nèi)容很多,可以是已知邊(角)求面積,也可以是已知面積求邊(角),還可以求面積的最值或已知面積的最值求邊(角),與三角形面積有關(guān)的問題甚至可以滲透到立體幾何、解析幾何及微積分中. 這個課題太大了,一節(jié)課時間有限,師生精力有限,不可能面面俱到,當(dāng)學(xué)生解決了基礎(chǔ)訓(xùn)練的3個小題及例1后,時間已經(jīng)過去大半,再出現(xiàn)新的解法時,學(xué)生已經(jīng)身心俱疲,心理上不愿接受新鮮事物了.

        3.4 一題多解缺少“比較”

        因誤解新課程理念,教師授課時往往過分關(guān)注學(xué)生,課堂上有時會被學(xué)生的表現(xiàn)帶“偏”,即改變了教師備課時的預(yù)設(shè),隨著學(xué)生的解法“游走”,等教師緩過神來,教學(xué)時間已剩下不多,為了趕教學(xué)進(jìn)度,就會忘記教學(xué)中的一些重要環(huán)節(jié).

        本節(jié)課對于基礎(chǔ)訓(xùn)練第3題的處理,如果教師在四種解法展示后能停留一下,請學(xué)生比較一下四種解法的優(yōu)劣,有些學(xué)生可能會對方法4(坐標(biāo)法)多一些關(guān)注,如果教師再能發(fā)表一下自己對四種解法的“喜好”,重點(diǎn)點(diǎn)評一下坐標(biāo)法,可能會對后面的變式1、變式2的解法產(chǎn)生一定的影響.

        4 對策

        根據(jù)上述分析的原因,為了避免師生“飛過”但是“無痕”,讓學(xué)生形成較強(qiáng)的分析問題解決問題的能力,讓高三數(shù)學(xué)復(fù)習(xí)課的課堂更為扎實(shí)高效. 筆者給出以下對策供參考,不妥之處敬請指正.

        4.1 新授課要“落地生根”

        在“解三角形”一章教學(xué)中,不僅教學(xué)生“作高法”、“向量法”等證明正、余弦定理的方法,還要教會學(xué)生用“坐標(biāo)法”證明,教師要強(qiáng)調(diào)“向量”和“坐標(biāo)系”是處理幾何圖形的兩個重要工具(南師大葛軍教授稱之為處理幾何的兩把“上方寶劍”),突出“工具”意識. 教師要說到做到,平時對于較難的幾何圖形問題,要帶領(lǐng)學(xué)生嘗試“向量法”和“坐標(biāo)法”,對于前面提到的教材第16頁例題6,教師可以提問學(xué)生有沒有其它解法,學(xué)生如果還是想不到,就啟發(fā)學(xué)生:“可以用向量解決此題嗎?”;“可以建立坐標(biāo)系解決此題嗎?”并給足時間讓學(xué)生去體驗(yàn).

        4.2 微專題要“微小精悍”

        什么叫微專題?“微”是選擇一個比較微小的問題作為切入口,“?!笔菍iT解決一個知識“點(diǎn)”的問題,而不是解決知識“面”的問題. 本節(jié)課如果能將課題改為“三角形面積的最值問題”,將基礎(chǔ)訓(xùn)練第1題、第2題及例1全部刪除(其實(shí)學(xué)生早已掌握),直接教學(xué)基礎(chǔ)訓(xùn)練第3題、變式1及變式2,那么更能突出重點(diǎn)、分散難點(diǎn),學(xué)生更有精力和時間用新方法解決比較復(fù)雜的最值問題. 教師也可以從容一點(diǎn),把“坐標(biāo)法”強(qiáng)調(diào)到位,說不定師生還有時間完成較難的例2,周測試卷上的題目正確率也會提高很多.

        4.3 一題多解要“畫龍點(diǎn)睛”

        一題多解,可以開拓學(xué)生解題思路,培養(yǎng)學(xué)生思維的靈活性和獨(dú)創(chuàng)性. 許多老師在數(shù)學(xué)教學(xué)中特別重視和加強(qiáng)一題多解的訓(xùn)練,這對提高學(xué)生的解題能力,發(fā)展學(xué)生的智力,都是大為有益的. 但是,有些老師在一題多解訓(xùn)練中存在的主要問題是盲目追求解法多樣,忽視解法優(yōu)劣的比較.

        對于基礎(chǔ)訓(xùn)練第3題的四種解法,教師逐一分析展示后,無論教學(xué)任務(wù)多重,教學(xué)進(jìn)度多慢,都要停下來“點(diǎn)睛”,即讓學(xué)生比較四種解法的優(yōu)劣,畢竟考試不可能將四種解法都嘗試一遍.

        筆者認(rèn)為一題多解后教師一定要帶領(lǐng)學(xué)生作比較,點(diǎn)出最簡便也最容易想到的那個解法.不能幾種解法同等地位,應(yīng)側(cè)重于通性通法的講解,對于那些所謂的“巧解”,只需讓學(xué)生了解一下即可,有的甚至不講,對于基礎(chǔ)中下等的學(xué)生應(yīng)該將講解“巧解”的時間空出來,讓學(xué)生自己來尋求通性通法,掌握通性通法.

        4.4 強(qiáng)化訓(xùn)練要“鞏固到位”

        光說不練是假把式,光聽不做是走過場,每一項體育運(yùn)動項目取得成功都是背后反復(fù)訓(xùn)練的結(jié)果.“曲不離口,拳不離手”說的也是這個道理. 本節(jié)課在教完變式1之后,教師將化邊、化角、化“形”三種方法總結(jié)過后,不要急于出示變式2,應(yīng)該請所有學(xué)生把三種方法重新再做一遍(對于那些原來不會做的學(xué)生,可以請他們到黑板上書寫),讓學(xué)生親自體驗(yàn)三種解法的繁簡. 對于變式2,學(xué)生可能就會想到“坐標(biāo)法”,變式2教學(xué)過后也應(yīng)作同樣要求,如果時間不允許,就布置為課后作業(yè),學(xué)生反復(fù)體驗(yàn)之后,相信學(xué)生在周測中會有更多人做出那道題.

        總之,變式教學(xué)、一題多解確實(shí)是當(dāng)下高三數(shù)學(xué)復(fù)習(xí)課的主流模式,但如果處置不當(dāng),盡管“大雁聽過我的歌”,也可能會“什么都沒改變”.但愿教師能選擇恰當(dāng)?shù)奈n}課題,一題多解后作出比較,畫龍點(diǎn)睛,對新穎解法反復(fù)訓(xùn)練,就一定能象噴氣式飛機(jī)一樣飛過高三的每一天,天天留下最美的云朵.

        猜你喜歡
        基礎(chǔ)訓(xùn)練定勢余弦定理
        排除統(tǒng)計問題中的定勢效應(yīng)之“雷”
        宜寫“思維定式”,不宜寫“思維定勢”
        余弦定理的證明及其應(yīng)用
        聚焦正、余弦定理的變式在高考中的應(yīng)用
        正余弦定理的若干證明與思考
        Module 3基礎(chǔ)訓(xùn)練
        Module 4基礎(chǔ)訓(xùn)練
        正余弦定理在生活中的運(yùn)用
        智富時代(2017年4期)2017-04-27 02:13:48
        Module 1 基礎(chǔ)訓(xùn)練
        Module 2 基礎(chǔ)訓(xùn)練
        日韩肥熟妇无码一区二区三区| 欧美放荡的少妇| 人妻被黑人粗大的猛烈进出| 久久久久一| 精品视频手机在线免费观看| 国产亚洲精品久久久久久国模美| 欧美亚洲日本国产综合在线| 五月婷婷激情六月| 九九久久精品一区二区三区av| 真人做爰试看120秒| 国产成人精品一区二区三区免费| 国产熟女亚洲精品麻豆| 亚洲福利网站在线一区不卡| 国产在线无码一区二区三区视频| 激情综合一区二区三区| 国产又黄又爽又无遮挡的视频| 亚洲国产av精品一区二| 人与人性恔配视频免费| 国产精品毛片无码| 久久91精品国产91久久麻豆| 久久精品一区二区熟女| 疯狂添女人下部视频免费| 日韩A∨精品久久久久| 中文字幕一区二区va| 蜜桃成熟时在线观看免费视频| 亚洲国产精品福利片在线观看 | 女人张开腿让男桶喷水高潮| 国产91精选在线观看麻豆| 中文字幕一区二区三区喷水| 成人免费自拍视频在线观看| 无码成人aaaaa毛片| 99riav精品国产| av一区二区在线网站| 巨人精品福利官方导航| 日本a在线看| 丰满人妻一区二区三区52| 国产日产亚洲系列最新| 国产成人www免费人成看片 | 黄页国产精品一区二区免费| 久久久久亚洲av无码a片| 黑人巨大白妞出浆|