毛晨岳, 趙 頌, 何鵬鵬, 王 志, 王紀(jì)孝
基于共價(jià)有機(jī)框架材料的納濾膜制備研究進(jìn)展
毛晨岳, 趙 頌, 何鵬鵬, 王 志, 王紀(jì)孝
(天津大學(xué) 化工學(xué)院 化學(xué)工程研究所, 天津市膜科學(xué)與海水淡化技術(shù)重點(diǎn)實(shí)驗(yàn)室,化學(xué)工程聯(lián)合國家重點(diǎn)實(shí)驗(yàn)室(天津大學(xué)), 天津 化學(xué)化工協(xié)同創(chuàng)新中心, 天津 300350)
共價(jià)有機(jī)框架(COFs)材料是由有機(jī)結(jié)構(gòu)單元通過共價(jià)鍵連接形成的多孔納米材料,具有比表面積大、孔隙率高、結(jié)構(gòu)規(guī)整有序、穩(wěn)定性好的優(yōu)點(diǎn),是制備高性能分離膜的理想材料,因而在納濾膜研究領(lǐng)域引起廣泛關(guān)注。文章綜述了近幾年來研究者利用摻雜法、層層組裝法、界面聚合法、原位生長法等制備COFs納濾膜的研究成果,對(duì)不同制膜方法的特點(diǎn)進(jìn)行分析,并指出目前COFs納濾膜研究中存在的問題,最后對(duì)COFs納濾膜的未來發(fā)展前景作出展望。
共價(jià)有機(jī)框架材料;納濾;膜;分離;層層組裝;界面聚合;原位生長
納濾作為一種介于超濾和反滲透之間的膜分離過程,能夠有效分離二價(jià)鹽、染料及其他有機(jī)小分子,在水處理、生物、醫(yī)藥、食品等領(lǐng)域有廣泛應(yīng)用[1]。通過界面聚合的方式,在聚合物基底上制備聚酰胺(polyamide,PA)或聚酯分離層,得到薄膜復(fù)合(thin film composite,TFC)納濾膜是目前最常見的納濾膜制備過程[2]。聚酰胺分離層雖然具有良好的分離性能與穩(wěn)定性,但其材料本身結(jié)構(gòu)致密,導(dǎo)致膜通量難以有較大提高。因此,研究者們通過開發(fā)新的反應(yīng)單體[3-4]、添加納米顆粒添加劑[5-6]、改進(jìn)聚合物基底[7]等方式優(yōu)化分離層結(jié)構(gòu),期望能大幅提高納濾膜性能。此外,一些研究者開始著重于新型納濾膜材料及制備方法的開發(fā)。
共價(jià)有機(jī)框架(covalent organic frameworks,COFs)是一類由C、N、O等元素通過共價(jià)鍵構(gòu)成的有機(jī)多孔材料,具有孔隙率高、孔道結(jié)構(gòu)規(guī)整、穩(wěn)定性好等特點(diǎn),廣泛應(yīng)用于氣體儲(chǔ)存[8]、催化[9]、環(huán)保[10-11]、藥物合成[12]等領(lǐng)域。大多數(shù)COFs的孔徑在0.5~4 nm[13-14],可以截留多價(jià)離子、染料等有機(jī)小分子。同時(shí),COFs的多孔結(jié)構(gòu)還可以為溶劑提供傳輸通道,因而成為制備高通量納濾膜的理想材料。自Cote等[15]在2005年第一次成功合成COFs以來,硼酸類、亞胺類、三嗪類等二維及三維COFs被不斷研發(fā)出來[15-18]。目前,COFs納濾膜的制膜方法主要包括摻雜法、層層組裝法、界面聚合法、原位生長法等[19-20]。由于片層狀的二維COFs更適宜于超薄分離層的制備,因此大部分研究者采用二維COFs開展納濾膜的制備研究,僅有少量研究報(bào)道通過在分離層中摻雜三維COFs改善膜結(jié)構(gòu)。本文綜述了近年來COFs納濾膜的研究工作,按照制膜方法進(jìn)行分類和歸納,并對(duì)COFs納濾膜的發(fā)展前景進(jìn)行展望。
摻雜法是將溶劑熱合成得到的COFs顆?;駽OFs納米片(COFs nanosheets, CONs)摻雜在界面聚合或相轉(zhuǎn)化所制備的聚合物層中,制備含有COFs的雜化膜。由于其本身的有機(jī)結(jié)構(gòu),COFs與聚合物基體有很好的相容性[14,20]。COFs在膜中的作用可以概括為3點(diǎn)[21]:1) 利用COFs的孔道作為溶劑的傳輸通道,從而提高膜通量;2) 利用COFs與界面聚合水相單體之間的相互作用,控制單體的擴(kuò)散,進(jìn)而調(diào)節(jié)分離層結(jié)構(gòu);3) 將COFs作為共單體參與界面聚合,改變分離層結(jié)構(gòu)。
Wu等[22]將COF-TpPa顆粒和多巴胺在支撐層上沉積得到中間層,再通過哌嗪(PIP)和均苯三甲酰氯(TMC)的界面聚合反應(yīng)制備PA層。COFs可與PIP單體形成氫鍵,減緩其擴(kuò)散速度,從而得到薄而致密的PA層。PA層的厚度最低僅為11 nm,納濾膜的水滲透速率達(dá)207 L×m-2×h-1×MPa-1,Na2SO4截留率為93.4%。Yuan等[23]直接將CONs負(fù)載在聚醚砜(PES)基膜上作為中間層,界面聚合后得到厚度小于10 nm的PA層,水滲透速率提高至535 L×m-2×h-1×MPa-1。Zhang等[24]將TpTGCl納米線組裝在PES基膜上,再進(jìn)行界面聚合反應(yīng)。納米線簇一方面可以控制水相單體的擴(kuò)散,使PA分離層更薄,另一方面可以增加PA分離層的粗糙度。Li等[25]將SNW-1顆粒與間苯二胺(MPD)作為界面聚合的共同水相單體,制備PA-COFs膜,用于有機(jī)溶劑納濾。研究表明,SNW-1顆粒的孔道可以作為乙醇分子的傳遞通道,提高乙醇的滲透通量。同時(shí),SNW-1顆粒上的亞胺結(jié)構(gòu)可與TMC發(fā)生交聯(lián),降低MPD與TMC的交聯(lián)度,從而獲得較為疏松的PA層。
理論上,摻雜法制備COFs納濾膜并不能充分利用COFs本身的分離能力,而是主要利用COFs的多孔結(jié)構(gòu)調(diào)控界面聚合反應(yīng)過程,從而調(diào)控PA層結(jié)構(gòu),制備出具有高滲透通量的雜化膜。摻雜法對(duì)COFs材料的形貌和結(jié)構(gòu)有一定要求。研究認(rèn)為[26-27],COFs的尺寸過大會(huì)使其與PA層的相容性變差,從而降低納濾膜的分離選擇性能。
層層組裝法可以分為2種:1) 通過物理或化學(xué)方法削弱COFs片層間的相互作用[20],將三維的COFs顆粒剝離成二維的CONs,再利用抽濾沉積等方式將CONs組裝在基底上,得到COFs納濾膜;2) 將用于制備COFs的單體通過旋涂、噴涂、抽濾沉積等方式負(fù)載在基底上,單體在基底表面層層自組裝獲得COFs納濾膜。
常見的剝離方法主要包括機(jī)械分層(mechanical delamination)[23,28-29]、溶劑輔助剝離(solvent-assisted exfoliation)[30-33]、化學(xué)剝離(chemical exfoliation)[34-36]等,如表1所示。例如,Yuan等[23]向TpPa顆粒中滴加甲醇并研磨1 h,然后將TpPa分散在甲醇中并離心處理,待甲醇揮發(fā)后得到TpPa納米片。Li等[30]將COF-1顆粒分散在二氯甲烷中并攪拌0.5 h,再在室溫下超聲1 h,得到COF-1納米片。Khan等[34]在CTF-1中加入濃硫酸加熱過夜,再緩慢滴加過氧化氫,得到CTF-1納米片。
表1 COFs的剝離方式及CONs的結(jié)構(gòu)特性
上述研究表明,將COFs顆粒剝離成CONs的方法存在操作復(fù)雜、產(chǎn)率低、CONs結(jié)構(gòu)不理想等問題。其中,機(jī)械分層和溶劑輔助剝離的方法相對(duì)簡單,剝離時(shí)間短,但制得的CONs在溶劑中容易發(fā)生團(tuán)聚和沉積,難以得到濃度較高的分散液(≤0.2 mg×mL-1),不利于后續(xù)的制膜過程?;瘜W(xué)剝離可以得到較高濃度的CONs分散液(≥0.5 mg×mL-1),但操作相對(duì)復(fù)雜,耗時(shí)較長[34]。此外,由于COFs片層間的分子作用力較強(qiáng),采用機(jī)械分層可能會(huì)破壞其結(jié)構(gòu),難以得到大而薄的CONs,因而不利于制備連續(xù)且致密的COFs膜[36]。對(duì)此,研究人員試圖通過調(diào)控COFs結(jié)構(gòu)使其具有“自剝離(Self-exfoliation)”效果[37-38]。例如,Yao等[37]在制備COFs顆粒時(shí)加入少量偶氮苯,使其摻雜在COFs片層間,然后將COFs分散在異丙醇中,在紫外光照射下偶氮苯構(gòu)象會(huì)由反式變?yōu)轫樖剑瑥亩鴾p弱COFs片層間的作用力,進(jìn)而剝離出大而薄的CONs。一些研究者嘗試直接合成CONs材料。Li等[39]最先利用緩沖內(nèi)層界面法將COFs單體分別溶于2種互溶的溶劑中,并在二者界面處加入作為緩沖層的乙酸溶液,使單體擴(kuò)散至緩沖層中發(fā)生縮聚反應(yīng),得到具有大尺寸、規(guī)整結(jié)構(gòu)、高穩(wěn)定性的CONs。Li等[40]通過控制對(duì)苯二腈在二氯甲烷微液滴表面發(fā)生縮聚反應(yīng),直接得到2D-CTF-1納米片,大大縮短操作時(shí)間。Shi等[41]通過在COFs合成體系中加入NaCl微粒,使COFs的反應(yīng)單體在NaCl微粒表面吸附并受限生長,得到NaCl@CONs顆粒,再將其中的NaCl溶解,得到具有很高產(chǎn)率的CONs。Zhang等[42]利用溴化乙錠(EB)和Tp在CH2Cl2/H2O界面發(fā)生縮聚反應(yīng),得到EB-COF:Br納米片,并將其沉積在尼龍66上,如圖1所示。制備得到的膜對(duì)多種溶劑具有很高的滲透通量,且對(duì)多種荷負(fù)電物質(zhì)具有很高的截留率。
圖1 利用真空抽濾制膜的示意圖[42]
有研究認(rèn)為[43],單純利用CONs制得的膜難以兼具高通量、高截留率和穩(wěn)定力學(xué)性能。此外,CONs本身的尺寸較小,單獨(dú)利用其組裝得到的納濾膜結(jié)構(gòu)不致密,分離效果不佳。因此,一些研究將CONs與其他材料混合組裝成膜,彌補(bǔ)CONs成膜性差等缺陷。Khan等[34]將CTF-1納米片與GO納米片混合得到GO-CTF組裝成膜。相較于GO膜的層間通道,CTF-1孔道可以提供大量垂直的水傳遞通道,使GO-CTF復(fù)合膜的水滲透速率提高至200 L×m-2×h-1×bar-1。Kong等[44]將TpPa納米片與GO共混抽濾后得到COF-TpPa/GO復(fù)合膜。尺寸較大的GO納米片可以填補(bǔ)CONs納米片之間的間隙,使膜更為致密,而CONs本身的孔道可以提高膜的滲透通量,使得COF-TpPa/GO復(fù)合膜兼具高通量和高染料截留率。
除了將CONs抽濾沉積組裝成膜,一些研究者直接將COFs單體在基底上層層自組裝使其反應(yīng)成膜。例如,Shi等[45]將水解PAN基膜(HPAN)在水相溶液和有機(jī)相溶液中循環(huán)浸泡,利用多次反應(yīng)得到TpPa/HPAN膜和TpBd/HPAN膜,純水滲透速率分別高達(dá)265和339 L×m-2×h-1×bar-1,剛果紅的截留率超過95%。Hao等[46]在對(duì)苯二胺(Pa)接枝的PAN基膜上,反復(fù)交替噴涂均苯三甲醛(TFB)和Pa溶液,層層自組裝得到COF-LZU1層。該COFs膜的水滲透速率超過400 L×m-2×h-1×MPa-1,且對(duì)多種染料的截留率均高于90%。這種將COFs單體通過噴涂方式層層組裝于基底上的方法可以簡便且高效地制備大面積且無缺陷的COFs納濾膜。
表2匯總了近年來采用層層組裝法制備COFs納濾膜的制備條件以及性能參數(shù)。
表2 層層組裝法制備COFs納濾膜的制備條件以及性能參數(shù)
MB – methyl blue; MO – methyl orange; CR – congo red; CV – crystal violet; AF – acid fuchsin; RhB - rhodamine B; EB – evans blue
總的來說,層層組裝法可以制備得到高性能COFs膜納濾膜,但是仍然存在著一些問題。首先,膜性能很大程度上依賴于CONs的結(jié)構(gòu)特性,而CONs的快速高效合成依然是一個(gè)難題;其次,通過抽濾等方式得到的膜結(jié)構(gòu)不夠穩(wěn)定,COFs與支撐層之間缺乏較強(qiáng)的作用力[47],難以承受錯(cuò)流過濾時(shí)水流的剪切力;再次,大面積、無缺陷的COFs膜制備往往受限于膜材料和制膜設(shè)備,尤其是采用CONs抽濾沉積的制膜方法。
界面聚合法是通過COFs單體在兩相或多相界面處(如氣液界面、液液界面、液固液界面等[49])發(fā)生界面聚合反應(yīng),直接形成COFs膜。相較于溶劑熱法得到的COFs顆粒,界面聚合法得到的COFs材料的結(jié)晶度較差[34],但這種方法具有操作簡單、制膜條件溫和、膜厚度易于調(diào)控、制膜方式靈活等優(yōu)點(diǎn),因而受到研究者越來越多的關(guān)注。
Banerjee小組[50]率先提出利用界面聚合(界面結(jié)晶)制備COFs薄膜。他們以三醛基間苯三酚(Tp)為有機(jī)相單體,4,4'-偶氮二苯胺(Azo)等4種胺為水相單體,在油水界面反應(yīng)72 h得到COFs薄膜,并將其轉(zhuǎn)移到無紡布上。制備的COFs復(fù)合膜對(duì)多種溶劑具有很好的滲透性,且對(duì)酸性品紅等多種染料的截留率高于90%。Hao等[51]先將水相單體吸附于聚丙烯酰胺(PAAm)水凝膠中,再將水凝膠浸沒在有機(jī)相單體溶液中,通過在水凝膠上滴加超擴(kuò)散水層在水凝膠-水相-有機(jī)相界面處受限合成得到COFs薄膜,如圖2所示。水凝膠可以減緩水相單體向水層的擴(kuò)散速度,有利于獲得致密的COFs膜,該膜對(duì)金納米顆粒(AuNPs)的截留率超過97%。Corcos等[52]將1,3,5-三(4-氨基苯基)苯(TAPB)和對(duì)苯二甲醛(PDA)分別溶于1,4-二氧六環(huán)和三甲苯的混合溶液中,得到2種單體的有機(jī)相溶液。然后,將2種溶液混合并倒在三氟甲磺酸鈧(Sc(OTf)3)的水溶液上。在Sc(OTf)3的催化作用下,2種單體在油水界面反應(yīng)生成TAPB-PDA薄膜。Shinde等[53]利用Tp和9,9-二己基芴-2,7-二胺(DHF)在氣液界面制備TFP-DHF 2D COFs薄膜,再利用Langmuir?Blodgett(LB)法,使COFs薄膜吸附在陽極氧化鋁(AAO)基底上,并通過改變吸附次數(shù)調(diào)節(jié)COFs薄膜的厚度。制備得到的膜對(duì)水、乙醇等溶劑具有很高的滲透通量,且對(duì)活性黑、維生素B12的截留率高于90%。
圖2 利用水凝膠表面的受限超擴(kuò)散水層制備COFs薄膜的示意圖[51]
自支撐式的COFs薄膜機(jī)械強(qiáng)度有限,而進(jìn)一步提高機(jī)械強(qiáng)度往往需要增加COFs薄膜的厚度,從而導(dǎo)致其滲透通量的下降。因此,在實(shí)際的納濾測試過程中往往會(huì)將COFs薄膜轉(zhuǎn)移并負(fù)載在支撐材料上,但是這一操作不僅使制膜過程更加復(fù)雜,還可能會(huì)破壞COFs薄膜的結(jié)構(gòu)。綜合來看,構(gòu)建具有足夠機(jī)械強(qiáng)度的自支撐COFs薄膜是未來研究的難點(diǎn)。
針對(duì)自支撐式COFs薄膜界面聚合反應(yīng)時(shí)間過長、COFs薄膜轉(zhuǎn)移至支撐層困難等問題,Wang等[54]率先借鑒傳統(tǒng)聚酰胺薄膜的基底支撐式界面聚合法,分別以Tp和Pa為有機(jī)相和水相單體在聚砜基膜上反應(yīng)30 s得到TpPa/PSf復(fù)合膜。該膜的水滲透速率高達(dá)50 L×m-2×h-1×bar-1,對(duì)剛果紅的截留率約99.5%,但對(duì)分子量較低的染料如酸性品紅、橙黃II的截留率較低。Wang等[55]以Tp為有機(jī)相單體,聯(lián)苯胺(Bd)為水相單體,界面聚合反應(yīng)10 s后得到TpBd/PSf復(fù)合膜。水滲透速率約為30 L×m-2×h-1×bar-1,對(duì)剛果紅、鉻黑T的截留率高于99%,對(duì)酸性品紅、橙黃II的截留率高于80%。Wang等[56]在PES基膜上通過Tp和Pa的界面聚合反應(yīng)得到TpPa中間層,然后利用PIP和TMC反應(yīng)制備PA分離層。TpPa中間層提高了膜表面的粗糙度和親水性,獲得更薄的PA層,因而PA/TpPa/PES復(fù)合膜的水通量相較于PA/PES膜提高了125.4%。
相較于自支撐式界面聚合,基底支撐式界面聚合的制備過程簡便、高效,無需轉(zhuǎn)移COFs薄膜,具有很高的制膜效率。然而,較短的反應(yīng)時(shí)間可能會(huì)造成COFs結(jié)構(gòu)不夠致密,使得COFs膜的分離性能較低。
一般認(rèn)為,在界面聚合反應(yīng)中,水相單體的擴(kuò)散速度會(huì)直接影響界面聚合的反應(yīng)速度與薄膜結(jié)構(gòu)。當(dāng)水相單體的擴(kuò)散速度較慢時(shí),形成的膜通常薄且致密[23,57]。受此啟發(fā),Wang等[58]設(shè)計(jì)出一種單向擴(kuò)散式的界面聚合方法來制備COFs膜,利用PVDF基膜將有機(jī)相溶液和水相溶液分隔開,讓水相單體緩慢擴(kuò)散至有機(jī)相一側(cè)的膜面并與有機(jī)相單體發(fā)生反應(yīng),形成TpPa分離層。當(dāng)反應(yīng)時(shí)間為24 h時(shí),COFs膜的水滲透速率達(dá)到60 L×m-2×h-1×bar-1,對(duì)酸性品紅的截留率達(dá)到90.4%。利用相似的方法,Wang等[59]在PEI/PES基膜表面二次生長TpHz,制備得到水滲透速率為40.5 L×m-2×h-1×MPa-1,Na2SO4截留率為58.3%的COFs納濾膜。同樣,Shen等[60]以Tp和2,5-二氨基苯磺酸(DABA)為單體分別在PAN基膜和多巴胺改性的PDA/PAN基膜上制備SCOF層,發(fā)現(xiàn)多巴胺改性層與DABA單體有較強(qiáng)的作用力,制備得到的SCOF/PDA/PAN復(fù)合膜更加致密,截留性能得到提高。
單向擴(kuò)散式的界面聚合由于反應(yīng)速度較慢、反應(yīng)時(shí)間長,因而制備的COFs膜的結(jié)構(gòu)較致密,截留性能更高。然而,受制于制膜裝置尺寸及反應(yīng)時(shí)間,單向擴(kuò)散式的方法存在制膜效率低的問題。
表3為近年來界面聚合法制備COFs納濾膜的制備條件及性能參數(shù)。
表3 界面聚合法制備COFs納濾膜的制備條件及性能參數(shù)
AO7 – acid orange 7; RhWT - rhodamine WT; DR80 – direct red 80; RB – reactive black; EBT – eriochrome black T; DB – direct black
原位生長法制備COFs膜通常是將一種COFs單體或帶有反應(yīng)基團(tuán)的分子接枝在修飾過的基底上,形成生長位點(diǎn),再將基底浸沒在COF單體的混合溶液中[48]。COFs以這些生長位點(diǎn)作為晶核原位生長,在基底上形成一層致密的COFs層。原位生長法的顯著優(yōu)勢是可以最大程度地還原COFs顆粒合成時(shí)的條件,制備的COFs膜具有較好的結(jié)晶度,膜結(jié)構(gòu)均勻致密、缺陷較少。
Lu等[64]在2015年首次采用原位生長法制備出COFs復(fù)合膜。他們以(3-氨基丙基)三乙氧基硅烷(APTES)改性的α-Al2O3作為基底,利用四(4-甲基苯基)甲烷(TAM)和4,4′-聯(lián)苯二甲醛(BPDA)的原位生長得到厚度約4 μm的COF-320膜。Fan等[65]將TFB接枝到氨基化的Al2O3管,并以此作為生長點(diǎn),原位生長出一層COF-LZU1膜,如圖3所示。該膜對(duì)酸性品紅和羅丹明B的截留率分別為91.4%和84.5%,且對(duì)多種染料溶液均有較高的滲透通量。Manchanda等[66]先將水合肼接枝在PAN基膜上,再利用TPB和2,5-二甲氧基-1,4-二甲醛(DMTP)在基膜表面的原位生長制備COFs膜。Pan等[67]先將Pa接枝到醛基化的PAN基膜上形成生長位點(diǎn),再將接枝后的基膜在Tp和Pa的混合溶液中靜置6~72 h,得到原位生長的TpPa-1膜。此外,一些研究以COFs合成初期的晶核為生長位點(diǎn)進(jìn)行原位生長,從而省去基底修飾的步驟。Kandambeth等[68]將COFs單體的混合溶液攪拌后得到含有COFs晶核的鑄膜液,刮涂在玻璃板上放入烘箱中加熱,進(jìn)而生長出一層自支撐的COFs薄膜,該膜對(duì)多種溶劑均有較高的滲透通量。Dey等[69]將Tp和Azo的混合溶液沉積在耐高溫的紙上,在60~90 ℃下反應(yīng)3 d得到自支撐的COFs薄膜,該膜對(duì)不同尺寸的金納米顆粒均具有很高的截留率。Shi等[70]在Tp和Pa的混合溶液中加入乙酸并反應(yīng)5 min,使溶液中生成游離的COFs晶體,再將AAO基底放入其中。研究發(fā)現(xiàn),以COFs晶體層為生長點(diǎn)可以防止COFs直接生長在AAO基底的孔道中使其堵塞,因而具有較高的滲透通量。除了直接形成COFs薄膜,COFs也可以原位生長在其他納米材料上得到復(fù)合材料,再組裝成膜。Zhang等[71]將COF-1原位生長在GO上得到GO/COF-1納米片,通過真空抽濾沉積在基膜上。COFs可以在GO片層間起到支撐作用,使該膜在過濾過程中不會(huì)因?qū)娱g空隙的壓縮而造成通量的驟降。
圖3 管狀COF-LZU1膜制備過程的示意圖[65]
表4為近年來原位生長法制備COFs納濾膜的制備條件及性能參數(shù)。
表4 原位生長法制備COFs納濾膜的制備條件及性能參數(shù)
OGII – orange G II
值得注意的是,由于大多數(shù)COFs材料的合成條件較為苛刻,原位生長制備COFs膜的基底多選擇耐高溫的氧化鋁陶瓷或硅片。在不破壞其結(jié)構(gòu)的情況下,將COFs薄膜與這些基底的剝離是一個(gè)難題。對(duì)此,Xiao等[72]先在硅晶片上原位生長一層TpPa COFs薄膜,再將聚砜-聚乙二醇嵌段聚合物(BCP)的三氯甲烷溶液旋涂在COFs薄膜上,然后用氫氟酸將COFs薄膜與硅晶片分離開。此外,原位生長法制備的COFs薄膜雖然具有較好的結(jié)晶度及致密的結(jié)構(gòu),但這種方法存在反應(yīng)時(shí)間長、操作復(fù)雜、制膜效率低等問題。
盡管COFs材料的孔道規(guī)整有序,但其本身的孔徑通常難以滿足實(shí)際的分離需求。因此,一些研究通過調(diào)控COFs的制備過程來調(diào)節(jié)COFs結(jié)構(gòu)[74]。例如,Kuehl等[75]通過金屬催化偶聯(lián)反應(yīng)用不同基團(tuán)取代COFs單體苯環(huán)上的氫得到新的COFs單體,并利用新單體制備得到一系列具有更小孔徑的COFs膜。類似的,Corcos等[52]分別用甲基和乙基取代對(duì)苯二甲醛(PDA)苯環(huán)上的氫,得到新的醛單體(PDA-Me和PDA-Et),再與TAPB反應(yīng)制備COFs膜。由于甲基和乙基的空間位阻作用,TAPB-PDA-Me膜和TAPB-PDA-Et膜的孔徑比TAPB-PDA-H膜更小,對(duì)羅丹明WT和NaCl的截留率也更高。Wang等[55]在利用Tp和Bd界面聚合制備COFs納濾膜的過程中,采用三聚氰胺(Me)作為共同的水相單體,通過Me和Tp的縮合反應(yīng)調(diào)控COFs的孔結(jié)構(gòu),制備的TpBdMe/PSf膜的純水通量較TpBd/PSf膜提高近一倍。Wang等[76]在采用TFB和2,5-二乙氧基對(duì)苯二酰肼(DTH)制備COF-42膜的過程中,通過在水相中加入聚乙二醇修飾的DTH得到PolyCOF-42自支撐膜。聚合物鏈段的存在提高了COFs膜的機(jī)械強(qiáng)度,并減小膜的有效孔徑,使PolyCOF-42膜對(duì)考馬斯亮藍(lán)R-250的截留率相較于COF-42膜得到明顯提高。
COFs制備過程中引入新的單體或帶有較大基團(tuán)的單體可能會(huì)阻礙COFs結(jié)構(gòu)的形成[77]。因而,一些研究者嘗試通過后修飾改進(jìn)COFs分離層的結(jié)構(gòu)。Yang等[78]將二維TpTGCl納米片與一維纖維素納米纖維(CNFs)通過電荷作用摻雜在一起,得到混合維度的TpTGCl@CNFs,再用真空抽濾的方式組裝成膜。CNFs層覆蓋在CONs上,降低了膜的有效孔徑,膜的水滲透速率約為42 L×m-2×h-1×bar-1,Na2SO4截留率可達(dá)96.8%。Liu等[73]對(duì)IISERP-COF1膜進(jìn)行后修飾,將琥珀酸酐接枝在COFs環(huán)中得到IISERP-COOH-COF1膜。改性后,膜的有效孔徑減小,水滲透速率降至0.55 L×m-2×h-1×bar-1,Na2SO4和NaCl的截留率分別提高至96.3% 和82.9%。
研究人員對(duì)COFs納濾膜的傳質(zhì)分離機(jī)理研究還較少,通常是與聚酰胺膜的傳質(zhì)分離機(jī)理進(jìn)行類比分析。例如,一些研究者認(rèn)為COFs納濾膜的分離機(jī)理同聚酰胺納濾膜類似,為篩分作用和唐南效應(yīng)[55,60]。也有研究者提出,流體在COFs納濾膜中的傳遞過程為孔隙流模型,主要受流體自身黏度的影響[53]。對(duì)此,一些研究者利用分子模擬手段構(gòu)建單層或多層的COFs結(jié)構(gòu),進(jìn)而從微觀角度研究分子或離子在COFs膜中的傳遞過程[76]。
Zhou等[79]將TpPa納米片堆積后發(fā)現(xiàn),片層完全重疊型COFs結(jié)構(gòu)的孔徑約為1.58 nm,對(duì)MgCl2的截留率僅為42%,而片層間發(fā)生部分位移后得到的偏移型COFs結(jié)構(gòu)的孔徑減小為0.89 nm,對(duì)MgCl2的截留率提高至接近100%。Wei等[80]在TpPa上接枝具有不同親水性的基團(tuán),并考察改性后TpPa-X膜的有機(jī)溶劑納濾性能。研究發(fā)現(xiàn),對(duì)于極性較弱的溶劑,納濾膜的通量僅與COFs膜的孔徑有關(guān);而對(duì)于極性較強(qiáng)的溶劑,納濾膜的通量受COFs孔徑及接枝基團(tuán)親水性的共同影響。Xu等[81]利用分子模擬構(gòu)建TpHZ膜,并用活塞流模型研究NaCl在膜中的傳遞過程。研究發(fā)現(xiàn),COFs膜對(duì)離子的截留性能受離子進(jìn)入孔道時(shí)的阻力及離子在孔道內(nèi)的傳遞阻力的共同影響。Song等[82]通過分子模擬研究發(fā)現(xiàn),PA層中摻雜COFs可以加速水分子在其中的擴(kuò)散,縮短水分子的傳遞路徑,從而獲得具有更高水通量的復(fù)合膜。
COFs材料及制備方法為調(diào)控納濾膜結(jié)構(gòu)、研制高通量納濾膜提供了新思路。盡管目前COFs納濾膜的制備研究已取得很多成果,但仍存在一些問題亟待深入研究。
(1) COFs納濾膜分離機(jī)理的研究多以聚酰胺納濾膜為參考,但二者在結(jié)構(gòu)上有明顯區(qū)別。對(duì)此,需要結(jié)合分子模擬方法從微觀角度研究膜結(jié)構(gòu)、成膜過程以及分子傳遞過程,為實(shí)驗(yàn)提供理論指導(dǎo)。
(2) 膜污染是COFs納濾膜需要面對(duì)的重要問題。COFs材料本身多孔且相對(duì)疏水,這使其容易被染料、蛋白質(zhì)等有機(jī)物污染,造成膜性能的快速下降。因此,如何提高COFs納濾膜的抗污染能力是未來研究與應(yīng)用需要考慮的問題。
(3) COFs納濾膜的實(shí)際應(yīng)用仍然面臨挑戰(zhàn)。相較于商品納濾膜,盡管COFs納濾膜在滲透通量上具有很大的優(yōu)越性,但其較高的制膜成本在很大程度上成為規(guī)?;瘧?yīng)用的瓶頸。因此,結(jié)合COFs材料孔道規(guī)整、良好穩(wěn)定性的優(yōu)勢進(jìn)而研制具有應(yīng)用價(jià)值的納濾膜應(yīng)成為未來研究的關(guān)鍵。
[1] MOHAMMAD A W, TEOW Y H, ANG W L,. Nanofiltration membranes review: Recent advances and future prospects [J]. Desalination, 2015, 356: 226-254.
[2] ABDELLAH M H, PEREZ-MANRIQUEZ L, PUSPASARI T,A catechin/cellulose composite membrane for organic solvent nanofiltration [J]. Journal of Membrane Science, 2018, 567: 139-145.
[3] ZHU J Y, YUAN S S, ULIANA A,. High-flux thin film composite membranes for nanofiltration mediated by a rapid co-deposition of polydopamine/piperazine [J]. Journal of Membrane Science, 2018, 554: 97-108.
[4] ZHANG Z, KANG G D, YU H J,. Fabrication of a highly permeable composite nanofiltration membrane via interfacial polymerization by adding a novel acyl chloride monomer with an anhydride group [J]. Journal of Membrane Science, 2019, 570: 403-409.
[5] VAN GOETHEM C, VERBEKE R, PFANM?LLER M,. The role of MOFs in thin-film nanocomposite (TFN) membranes [J]. Journal of Membrane Science, 2018, 563: 938-948.
[6] WU M Y, MA T Y, SU Y L,. Fabrication of composite nanofiltration membrane by incorporating attapulgite nanorods during interfacial polymerization for high water flux and antifouling property [J]. Journal of Membrane Science, 2017, 544: 79-87.
[7] ZHU S, ZHAO S, WANG Z,. Improved performance of polyamide thin-film composite nanofiltration membrane by using polyetersulfone/polyaniline membrane as the substrate [J]. Journal of Membrane Science, 2015, 493: 263-274.
[8] 劉春暉, 馬曉莉. 共價(jià)有機(jī)框架材料的最新進(jìn)展[J]. 化工進(jìn)展, 2019, 38(11): 4978-4990.
LIU C H, MA X L. Latest development of covalent organic frameworks [J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4978-4990.
[9] 胡慧, 閆欠欠, 格日樂, 等. 共價(jià)有機(jī)框架材料在多相催化領(lǐng)域的研究進(jìn)展[J]. 催化學(xué)報(bào), 2018, 39(7): 1167-1179.
HU H, YAN Q Q, GE R L,. Covalent organic frameworks as heterogeneous catalysts [J]. Chinese Journal of Catalysis, 2019, 38(11): 4978-4990.
[10] 李子強(qiáng), 劉大朋, 何健, 等. 共價(jià)有機(jī)框架材料在環(huán)境保護(hù)領(lǐng)域中的應(yīng)用研究進(jìn)展[J]. 環(huán)境工程, 2019, 37(4): 98-103.
LI Z Q, LIU D P, HE J,. Research progress of covalent organic framework materials in environmental protection [J]. Environmental Engineering,2019, 37(4): 98-103.
[11] WANG J L, ZHUANG S T. Covalent organic frameworks (COFs) for environmental applications [J]. Coordination Chemistry Reviews, 2019, 400: 213046.
[12] 劉小舟, 王鈺杰, 劉耀祖, 等. 一種高比表面積共價(jià)有機(jī)框架材料的合成及藥物緩釋性能[J]. 高等學(xué)?;瘜W(xué)學(xué)報(bào), 2019, 40(9): 1813-1817.
LIU X Z, WANG Y J, LIU Y Z,. A covalent organic framework with high surface area for drug delivery [J]. ChemicalJournal of Chinese Universities, 2019, 40(9): 1813-1817.
[13] ZENG Y F, ZOU R Q, ZHAO Y L. Covalent organic frameworks for CO2capture [J]. Advanced Materials, 2016, 28: 2855–2873.
[14] YUAN S S, LI X, ZHU J Y,. Covalent organic frameworks for membrane separation [J]. Chemical Society Review, 2019, 48: 2665-2681.
[15] C?Té A P, BENIN A I, OCKWIG N W,. Porous, crystalline, covalent organic frameworks [J]. Science, 2005. 310: 1166-1170.
[16] KUHN P, ANTONIETTI M, THOMAS A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis [J]. Angewandte Chemie International Edition, 2008, 47(18): 3450-3453.
[17] URIBE-ROMO F J, HUNT J R, FURUKAWA H,. A crystalline imine-linked 3D porous covalent organic framework [J]. Journal of the American Chemistry Society. 2009, 131: 4570-4571.
[18] SMITH B J, OVERHOLTS A C, HWANG N,. Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks [J]. Chemical Communications, 2016, 52: 3690-3693.
[19] LI J, ZHOU X, WANG J,. Two-dimensional covalent organic frameworks (COFs) for membrane separation: A mini review [J]. Industrial & Engineering Chemistry Research, 2019, 58: 15394-15406.
[20] WANG H, ZENG Z T, XU P,. Recent progress in covalent organic framework thin films: Fabrications, applications and perspectives [J]. Chemical Society Review, 2019, 48: 488-516.
[21] 吳夢園. 基于共價(jià)有機(jī)骨架材料制備超薄復(fù)合納濾膜[D]. 天津: 天津大學(xué), 2018.
WU M Y. Preparation of ultrathin composite nanofiltration membranes based on covalent organic frameworks [D]. Tianjin: Tianjin University, 2018.
[22] WU M Y, YUAN J Q, WU H,. Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability [J]. Journal of Membrane Science, 2019, 576: 131-141.
[23] YUAN J Q, WU M Y, WU H,. Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes [J]. Journal of Materials Chemistry A, 2019, 7: 25641-25649.
[24] ZHANG Z, SHI X S, WANG R,. Ultra-permeable polyamide membranes harvested by covalent organic framework nanofiber scaffolds: a two-in-one strategy [J]. Chemical Science, 2019, 10: 9077-9083.
[25] LI C, LI S X, TIAN L,. Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN) [J]. Journal of Membrane Science, 2019, 572: 520-531.
[26] XU L N, SHAN B T, GAO C J,. Multifunctional thin-film nanocomposite membranes comprising covalent organic nanosheets with high crystallinity for efficient reverse osmosis desalination [J]. Journal of Membrane Science, 2020, 593: 117398.
[27] XU L N, XU J, SHAN B T,. TpPa-2-incorporated mixed matrix membranes for efficient water puri?cation [J]. Journal of Membrane Science, 2017, 526: 355-366.
[28] CHANDRA S, KANDAMBETH S, BISWAL B P,. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination [J]. Journal of the American Chemistry Society, 2013, 135: 17853-17861.
[29] WANG S, WANG Q Y, SHAO P P,. Exfoliation of covalent organic frameworks into few-layer redox active nanosheets as cathode materials for lithium-ion batteries [J]. Journal of the American Chemistry Society, 2017, 139: 4258-4261.
[30] LI G, ZHANG K, TSURU T. Two-dimensional covalent organic framework (COF) membranes fabricated via the assembly of exfoliated COF nanosheets [J]. ACS Applied Materials & Interfaces, 2017, 9: 8433-8436.
[31] KANG Z X, PENG Y W, QIAN Y H,. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks(COFs) for efficient CO2separation [J]. Chemistry of Materials, 2016, 28: 1277-1285.
[32] PENG Y W, HUANG Y, ZHU Y H,. Ultrathin two-dimensional covalent organic framework nanosheets: Preparation and application in highly sensitive and selective DNA detection [J]. Journal of the American Chemistry Society, 2017, 139: 8698-8704.
[33] MU X W, ZHAN J, WANG Z L,. A novel and efficient strategy to exfoliation of covalent organic frameworks and a significant advantage of covalent organic frameworks nanosheets as polymer nano-enhancer: High interface compatibility [J]. Journal of Colloid and Interface Science, 2019, 539: 609-618.
[34] KHAN N A, YUAN J Q, WU H,. Mixed nanosheet membranes assembled from chemically grafted graphene oxide and covalent organic frameworks for ultra-high water flux [J]. ACS Applied Materials & Interfaces, 2019, 11: 28978?28986.
[35] BURKE D W, SUN C, CASTANO I,. Acid exfoliation of imine-linked covalent organic frameworks enables solution processing into crystalline thin films [J]. Angewandte Chemie International Edition, 2019, 59(13): 5165-5171.
[36] CHEN X D, LI Y S, WANG L,. High-lithium-affinity chemically exfoliated 2D covalent organic frameworks [J]. Advanced Materials, 2019, 31: 1901640.
[37] YAO J, LIU C, LIU X Q,. Azobenzene-assisted exfoliation of 2D covalent organic frameworks into large-area, few-layer nanosheets for high flux and selective molecular separation membrane [J]. Journal of Membrane Science, 2020, 601: 117864.
[38] MITRA S, KANDAMBETH S, BISWAL B P,. Self-exfoliated guanidinium-based ionic covalent organic nanosheets (iCONs) [J]. Journal of the American Chemistry Society, 2016, 138: 2823-2828.
[39] LI Y, ZHANG M C, GUO X H,. Growth of high-quality covalent organic framework nanosheets at the interface of two miscible organic solvents [J]. Nanoscale Horizons, 2018, 3: 205-212.
[40] LI G L, WANG W, FANG Q L,. Covalent triazine frameworks membrane with highly ordered skeleton nanopores for robust and precise molecule/ion separation [J]. Journal of Membrane Science, 2020, 595: 117525.
[41] SHI X S, MA D W, XU F,. Table-salt enabled interface-confined synthesis of covalent organic framework (COF) nanosheets [J]. Chemical Science, 2020, 11: 989-996.
[42] ZHANG W X, ZHANG L M, ZHAO H F,. A two-dimensional cationic covalent organic framework membrane for selective molecular sieving [J]. Journal of Materials Chemistry A, 2018, 6: 13331-13339.
[43] 張旭珂. 基于二維雜化材料制備及用于染料/鹽分離的高性能復(fù)合膜研究[D]. 鄭州: 鄭州大學(xué), 2019.
ZHANG X K. Construction of high performance composite membrane based 2D hybrid materials for dye/salt separation [D]. Zhengzhou: Zhengzhou University, 2019.
[44] KONG G D, PANG J, TANG Y C,. Efficient dye nanofiltration of a graphene oxide membrane via combination with a covalent organic framework by hot pressing [J]. Journal of Materials Chemistry A, 2019, 7: 24301-24310.
[45] SHI X S, WANG R, XIAO A K,. Layer-by-layer synthesis of covalent organic frameworks on porous substrates for fast molecular separations [J]. ACS Applied Nano Materials, 2018, 1: 6320-6326.
[46] HAO S, JIANG L, LI Y L,. Facile preparation of COF composite membranes for nanofiltration by stoichiometric spraying layer-by-layer self-assembly [J]. Chemical Communications, 2020, 56: 419-422.
[47] 應(yīng)允攀. 面向化工分離的納米多孔材料復(fù)合膜的制備[D]. 北京: 北京化工大學(xué), 2017
YING Y P. Preparation of nanoporous material based composite membranes for chemical separations [D]. Beijing: Beijing University of Chemical Technology, 2017.
[48] LI Y, WU Q X, GUO X H,. Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving [J]. Nature Communications, 2020, 11: 590.
[49] ZHAO C, WU B H, MA M Q,. Ultrathin metal/covalent–organic framework membranes towards ultimate separation [J]. Chemical Society Reviews, 2019, 48: 3811-3841.
[50] DEY K, PAL M, ROUT K C,. Selective molecular separation by interfacially crystallized covalent organic framework thin films [J]. Journal of the American Chemistry Society, 2017, 139: 13083-13091.
[51] HAO Q, ZHAO C Q, SUN B,. Confined synthesis of two-dimensional covalent organic framework thin films within superspreading water layer [J]. Journal of the American Chemistry Society, 2018, 140: 12152-12158.
[52] CORCOS A R, LEVATO G A, JIANG Z W,. Reducing the pore size of covalent organic frameworks in thin-film composite membranes enhances solute rejection [J]. ACS Materials Letters, 2019, 1: 440-446.
[53] SHINDE D B, SHENG G, LI X,. Crystalline 2D covalent organic framework membranes for high flux organic solvent nanofiltration [J]. Journal of the American Chemistry Society, 2018, 140: 14342-14349.
[54] WANG R, SHI X S, XIAO A K,. Interfacial polymerization of covalent organic frameworks (COFs) on polymeric substrates for molecular separations [J]. Journal of Membrane Science, 2018, 566: 197-204.
[55] WANG T, WU H Y, ZHAO S,. Interfacial polymerized and pore-variable covalent organic framework composite membrane for dye separation [J]. Chemical Engineering Journal, 2020, 384: 123347.
[56] WANG M D, GUO W X, JIANG Z Y,. Reducing active layer thickness of polyamide composite membranes using a covalent organic framework interlayer in interfacial polymerization [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1039-1045.
[57] YUAN S S, ZHANG G, ZHU J Y,. Hydrogel assisted interfacial polymerization for advanced nano?ltration membranes [J]. Journal of Materials Chemistry A, 2020, 8: 3238-3245.
[58] WANG R, SHI X S, ZHANG Z,. Unidirectional diffusion synthesis of covalent organic frameworks (COFs) on polymeric substrates for dye separation [J]. Journal of Membrane Science, 2019, 586: 274-280.
[59] WANG R, WEI M J, WANG Y. Secondary growth of covalent organic frameworks (COFs) on porous substrates for fast desalination [J]. Journal of Membrane Science, 2020, 604: 118090.
[60] SHEN J L, ZHANG R N, SU Y L,. Polydopamine-modulated covalent organic framework membranes for molecular separation [J]. Journal of Materials Chemistry A, 2019, 7: 18063-18071.
[61] MATSUMOTO M, VALENTINO L, STIEHL G M,. Lewis-acid-catalyzed interfacial polymerization of covalent organic framework films [J]. Chem, 2018, 4: 308-317.
[62] GADWAL I, SHENG G, THANKAMONY R L,. Synthesis of sub-10 nm two-dimensional covalent organic thin film with sharp molecular sieving nanofiltration [J]. ACS Applied Materials & Interfaces, 2018, 10: 12295-12299.
[63] SHINDE D B, CAO L, WONANKE A D,. Pore engineering of ultrathin covalent organic framework membranes for organic solvent nanofiltration and molecular sieving [J]. Chemical Science, 2020, 11: 5434-5440.
[64] LU H, WANG C, CHEN J J,. A Novel 3D covalent organic framework membrane grown on a porous α-Al2O3substrate under solvothermal conditions [J]. Chemical Communications, 2015, 51: 15562-15566.
[65] FAN H W, GU J H, MENG H,. High-flux imine-linked covalent organic framework COF-LZU1 membranes on tubular alumina supports for highly selective dye separation by nanofiltration [J]. Angewandte Chemie International Edition, 2018, 57(15): 4083-4087.
[66] MANCHANDA P, CHISCA S, UPADHYAYA L,. Diffusion-induced in situ growth of covalent organic frameworks for composite membranes [J]. Journal of Materials Chemistry A, 2019, 7: 25802-25807.
[67] PAN F S, GUO W X, SU Y L,. Direct growth of covalent organic framework nanofiltration membranes on modified porous substrates for dyes separation [J]. Separation and Purification Technology, 2019, 215: 582-589.
[68] KANDAMBETH S, BISWAL B P, CHAUDHARI H D,. Selective molecular sieving in self-standing porous covalent-organic-framework membranes [J]. Advanced Materials, 2017, 29: 1603945.
[69] DEY K, KUNJATTU H. S, CHAHANDE A M,. Nanoparticle size-fractionation through self-standing porous covalent organic framework films [J]. Angewandte Chemie International Edition, 2018, 59: 1161-1165.
[70] SHI X S, XIAO A K, ZHANG C X,. Growing covalent organic frameworks on porous substrates for moleculesieving membranes with pores tunable from ultra- to nanofiltration [J]. Journal of Membrane Science. 2019, 576: 116-122.
[71] ZHANG X K, LI H, WANG J,. In-situ grown covalent organic framework nanosheets on graphene for membrane-based dye/salt separation [J]. Journal of Membrane Science. 2019, 581: 321-330.
[72] XIAO A K, ZHANG Z, SHI X S,. Enabling covalent organic framework nanofilms for molecular separation: Perforated polymer-assisted transfer [J]. ACS Applied Materials & Interfaces, 2019, 11: 44783-44791.
[73] LIU C Y, JIANG Y Z, NALAPARAJU A,. Post-synthesis of a covalent organic framework nanofiltration membrane for highly efficient water treatment [J]. Journal of Materials Chemistry A, 2019, 7: 24205-24210.
[74] LI Y S, CHEN W B, XING G L,. New synthetic strategies toward covalent organic frameworks [J]. Chemical Society Review, 2020, 49: 2852-2868.
[75] KUEHL V A, YIN J S, DUONG P H H,. A highly ordered nanoporous, two-dimensional covalent organic framework with modifiable pores, and its application in water purification and ion sieving [J]. Journal of the American Chemistry Society, 2018, 140: 18200-18207.
[76] WANG Z F, YU Q, HUANG Y B,. PolyCOFs: a new class of freestanding responsive covalent organic framework membranes with high mechanical performance [J]. ACS Central Science, 2019, 5: 1352-1359.
[77] WANG Z F, ZHANG S N, CHEN Y,. Covalent organic frameworks for separation applications [J]. Chemical Society Reviews, 2020, 49: 708-735.
[78] YANG H, YANG L X, WANG H J,. Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations [J]. Nature Communications, 2019, 10: 2101.
[79] ZHOU W, WEI M J, ZHANG X,. Fast desalination by multilayered covalent organic framework (COF) nanosheets [J]. ACS Applied Materials & Interfaces, 2019, 11: 16847-16854.
[80] WEI W, LIU J, JIANG J W. Computational design of 2D covalent-organic framework membranes for organic solvent nanofiltration [J]. ACS Sustainable Chemistry & Engineering, 2019, 7: 1734-1744.
[81] XU F, WEI M J, ZHANG X,. Ion rejection in covalent organic frameworks: Revealing the overlooked effect of in-pore transport [J]. ACS Applied Materials & Interfaces, 2019, 11: 45246-45255.
[82] SONG Y, WEI M J, XU F,. Transport mechanism of water molecules passing through polyamide/COF mixed matrix membranes [J]. Physical Chemistry Chemical Physics, 2019, 21: 26591-26597.
Review on the preparation of nanofiltration membranes based on covalent organic frameworks
MAO Chen-yue, ZHAO Song, HE Peng-peng, WANG Zhi, WANG Ji-xiao
(Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University; Tianjin Key Laboratory of Membrane Science and Desalination Technology; State Key Laboratory of Chemical Engineering (Tianjin University); Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350, China)
Covalent organic frameworks (COFs) are porous nanomaterials that consist of organic structural units connected by covalent bonds. Due to the advantages of large specific surface areas, high porosity, ordered structure and high stability, COFs are considered as ideal materials for fabricating high-performance separation membranes, which receives wide attention in nanofiltration membrane studies. This review briefly introduces the research progress of COFs nanofiltration membranes fabricated by blending, layer-by-layer assembly, interfacial polymerization andgrowth in recent year. The characteristics of different preparation methods are analyzed. Finally, the existing problems in COFs nanofiltration membranes are discussed and the future development is prospected.
covalent organic frameworks; nanofiltration; membrane; separation; layer-by-layer assembly; interfacial polymerization;growth
TQ028.8
A
10.3969/j.issn.1003-9015.2021.01.002
1003-9015(2021)01-0013-11
2020-06-24;
2020-10-10。
天津市自然科學(xué)基金(19JCYBJC20900)。
毛晨岳(1996-),男,江蘇南京人,天津大學(xué)碩士生。
趙頌,E-mail:songzhao@tju.edu.cn